
Semiempirical model of turbulent magnetic field diffusion to driven 

plasma 

E.V.Gubkov, V.A.Zhmailo, Yu.V.Yanilkin 

RFNC-VNIIEF, 607190, Sarov, Nizhni Novgorod region 

E-mail: vaz@vniief.ru 

 

Paper to be presented at the  8th IWPCTM, Pasadena, 2001. 

 There are quite many astrophysical and geophysical problems [1,2] as well as CTF 

related problems [3], in which a significant role is played by plasma-magnetic field 

interface instability. Among the numerous types of the instability, the 

magnetohydrodynamic instabilities were studied first. A most well-known example of 

this instability type is a so-called “chute” instability arising at the plasma-magnetic field 

interface during the interface acceleration. 

This instability type is studied in a large number of papers, (see ref. [3]). The 

papers, as a rule, consider the linear stage of its evolution. The studies of the later, 

nonlinear stage became possible only recently thanks to availability of numerical 

methods. The approaches can be exemplified by refs. [4,5,8]. The first of them treats 

collisionless plasma and uses a “hybrid” model, the others consider plasma as 

“collisional” and perform the computation in the MHD approximation. 

It was possible to obtain many useful results for the RT instability evolution at the 

plasma-magnetic field interface using this kind of approaches, however, all examples 

known to us of using these approaches are limited to problems, where unperturbed flow 

is one-dimensional. (A typical example is plasma cylinder expansion.) This limitation 

relates to the fact that such approaches prove quite complex, cumbersome, and do not 

allow us to follow the computed flow behavior in quite small scales. 

A similar difficulty is encountered in unstable flow computations in 

hydrodynamics. A method to avoid this is using “semiempirical” turbulent mixing  (TM) 

models. The model for “gravitational” TM problems was formulated for the first time in 

ref. [6], later the “semiempirical” models were developed quite extensively, became more 

complex, and found wide use for computation of a different kinds of turbulent flows. The 

models can be exemplified with those of refs. [7,12,13]. 
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The studies of the RT instabilities in hydrodynamics and MHD flows revealed 

quite a close analogy between them at the linear stage [3]. This fact allows us to expect 

that this analogy may be also valid for a later, “turbulent” stage of the problem. 

This paper discusses a semiempirical model for computing characteristics of a 

transitional layer at the accelerated plasma cloud – magnetic field interface. The model 

was developed on the basis of the hydrodynamic models [6,7] with using the above-

mentioned analogy. Results of some 1D and 2D computations by the model are 

presented. 

1. Derivation of governing equations 

Assume that the flow can be described by MHD equations [9].  

Thus, we have: 
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σ
t  is viscous stress tensor, Σ  - conductivity, other notations are 

conventional. 

This system is complemented with equations for magnetic field: 

)9.1(∆Hνu)H(H)u(
t
H

m+∇=∇+
∂
∂ rrrr
r

 

)10.1(0Hdiv =
r

 

 2



where 
πσ

=ν
4
C2

m  is “magnetic” viscosity factor, as well as with the 

equation for different concentrations : iα
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where , D – coefficient of molecular diffusion, and equation of 

state: 
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 As usual, divide the quantities to be calculated into low- and high-frequency 

addends, then make appropriate averaging [10,11], and use the commonly accepted 

expressions for the addends containing the third or higher order moments to obtain the 

following from set 1.1 through 1.12 for averaged values: 

For density: Eq. 1.1  

For velocity: Eq. 1.2  

For concentrations : Eq. 1.11  

For “magnetic” force: Eq. 1.4. 

The equations for velocity and density therewith involve the “turbulent” tensor of viscous 

pressures, tσ , and diffusion coefficient, Dt, instead of relevant “molecular” values. 

 For internal energy: 
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 Here ε  is dissipation rate of turbulent energy k, TΣ  is effective conductivity. 

 The following relations are used for functions tσ  and Dt [7]: 
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 Also, note that relations 1.11 to 1.16 were derived assuming Reynolds numbers 

 and  and addends, such as “turbulent pressure”  and “magnetic 

turbulent pressure, were neglected. 

Re ∞→magRe
TP

 A number of additional assumptions were used in this paper to calculate averaged 

magnetic field: 

- cylindrical symmetry of the problem was assumed, 

- the geometry of the initial magnetic field was assumed “poloidal”, 

- “magnetic viscosity” can be neglected. 

Under these assumptions, the magnetic field components  and  (where z is 

axis of symmetry) are related with A , azimuthal potential vector component, as 
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 Assume that CD D~
m= , where  is an empirical constant. mC

When considering the equations for turbulent values k and ε , turbulence 

anisotropization by magnetic field must be included. To do this, a simplest method is 

using the equation system for ′′= jiij uuk  instead of a single equation for k [7]. By 

analogy with this equation [7], the following can be written for diagonal components kj: 
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jФ  - exchange term (between velocity and magnetic field fluctuation) 
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, - fluctuating part of magnetic field,kh jε - 

dissipation of the .  jk

 To “close” system 1.21-1.29, jΦ  and jε  should be expressed in terms of the 

previously introduced functions. 

 The last addend in 1.29 can be written (by analogy with Rotta’s hypothesis [10]) 

as a sum of the diffusion and relaxation terms for tensor components kiik hh=π

j

. If then 

the first addend in 1.29 is neglected, it is possible to express function Φ  in terms of 

and jlr ikπ . 

 The equation system for these functions can be derived from 1.2 and 1.9. By 

solving this system, they can be expressed in terms of  and average velocities and 

fields. 

ijk

 The equation for jε  can be written, following [11], as 
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[11].It is suggested 

that the methods for determination of jΦ  and jε  should be discussed separately. 
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 2. Setting up  the computations and discussion 

 

 The computations discussed below assumed that the magnetic field was not very 

strong and its effect on the anisotropy and turbulence dissipation could be neglected. This 

allowed us to neglect addend Φ  in 1.22, i.e. to use one equation for k and one equation 

for 

j

ε  presented in [7]. 

 In so doing the magnetic field action on plasma is expressed in terms of force f
r

 in 

equation 1.2 and by relevant addends γr  (1.26) in “generation” term G2 for turbulent 

energy. 

 The plasma  action on magnetic field leads to its displacement, however 

turbulence causes field diffusion into the plasma, with the diffusion coefficient itself 

depending on the field. 

Two problems of plasma cloud expansion to surrounding, “background”, low-

density plasma (“vacuum”) with magnetic field were calculated. 

Problem 1. One-dimensional problem of cylindrical plasma cloud expansion in 

magnetic field. 

It is agreed that at t=0 there is a cylindrical symmetric plasma cloud of radius  , 

energy E, and mass M (per unit length) surrounded by cold “background” plasma of 

density  and by magnetic field oriented along axis of symmetry z, i.e. 

0r

0ρ )H,0,0(H 1=
r

. 

It is convenient to consider this problem in dimensionless variables. Introduce 

scaling: 
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Next, restrict our consideration to ρ 00 →′ , i.e. “sub-Alfven” plasma expansion.  

The dimensionless initial data are summarized in Table 2.1 

 

 

 

 6



Table 2.1 

 ρ  ε  u H 

0rr <  
2

0πr

1
′

 

1 0 0 

0rr >  ′
0ρ  0 0 1 

 

 To calculate the turbulent mixing with the code of ref. [7], the data of initial 

turbulent energy profiles k and turbulent energy dissipation ε  should be added to these 

initial data. It was assumed that at t=0 these functions are nonzero only in the layer of 

thickness  near boundary . In the computation, C00 rr <<δ 0r 1m = . 

 The computed data for 
π

10 2

0

−

=′ρ  and 1.0r0 =  is plotted in Figs. 1.1-1.3. 

 The figures depict turbulent mixing zone (TMZ) boundaries with tine (here  

is radius determined by level 

)t(R1

05.0)( 1 =RH

τ0.5t

,  is that by level ) (Fig. 1); 

magnetic field profiles at times 

)t(R 2 95.0)( 2 =RH

= , and τ , where τ  is period of one cylinder radius 

oscillation (Fig. 2), plasma density profiles at the same times (Fig. 3). 

 As seen in these figures, a noticeable magnetic field and plasma interpenetration 

(“turbulent diffusion”) is observed. At ρ 10 <<′  and 1r0 <<′  the result weakly depends on 

specific magnitudes of the parameters and on initial profiles k and ε . 

 Problem 2. Two-dimensional problem of spherical cloud expansion. 

 Assume that at t=0 there is a spherical plasma cloud of energy E, mass M, radius 

 surrounded with “background” plasma of density 0r 0ρ , thermal pressure P0 and by 

magnetic field, whose strength tends to ),0,0( 0HH =
r

 with ∞→r . 

Like previously, introduce scaling  
M
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It was solved two spherical tasks №2.1 and 2.2. We assumed H0=0, 00 ≠P  in the 

task 2.1 (so, this task become one-dimensional) and 0,0 00 =≠ PH  in the task 2.2. 

The dimensionless initial data for the problem are summarized in Table 2.2. 

Table 2.2 
 7



 ρ  ε  u H 

0rr <  
3

0r4
3
π

 1 0 0 

0rr >  0,1 0ε  0 H0 

 Here 0ε =10, H0=0 in the task 2.1 and 0ε =0, H0=1 in task 2.2, r0=0,5, 2=γ , 

 In contrast to Problem 1, here magnetic field in region  is not constant and 

corresponds to the dipole magnetic field of radius  in the external field of strength 

(0,0,1). 

0rr >

0r

 The initial data for the “turbulent” functions k and ε  were given like in Problem 1: 

in a thin layer near interface . 0r

 It was assumed that 1Cm = . 

 The results of the computation are plotted in the figures 4-9. 

 The first of them depicts the TMZ time dependence for 1D task 2.1. We can see 

TMZ width Lt is comparable with the cloud radious. 

 The fig. 5 depict the TMZ time dependence for 2D task 2.2 (
2
πθ = ). 

 Comparing fig. 4 and 5 we can note although the plasma clouds dynamics are 

similar, but the magnetic field diminish value of Lt. 

 Figs. 6,7  plot the plasma density isolines at times t=0,4, 0,6, Figs. 8,9 depict the 

magnetic pressure isolines at the same times . 

As seen, a noticeable field and plasma inter-diffusion is observed in this problem 

as well at the selected value of Cm, with this being significantly stronger at the 
4
πθ = . 
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Conclusion 

This paper discusses  first our attempt to develop a semi-empirical model of 

turbulent mixing in inhomogeneous plasma with magnetic field. 

To describe the MHD effects, the simplest form of the model is shown to require 

setting two additional constants determining the turbulent magnetic field diffusion factor 

and dissipative addends in the equation of energy.  

To determine the constants, it is reasonable to involve experimental data on 

pinches and plasma liners. 

It is being planned to make more accurate 2D computation and include turbulent 

energy anisotropy in it. 

The authors would like to thank A.S.Pavlunin for his assistance in the 

computations and L.A. Rogacheva for help in execution of this paper. 
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Cylindrical cloud. 

 
fig1. TMZ time dependence  
(concentration levels 0.05 and 0.95), cylindr. task, Pm=1.0 

 
fig2. Magnetic field profiles, cylindr. task, Pm=1.0, t=0.6, t=1.2 
 

 
fig3. Plasma density profiles, cylindr. task, Pm=1.0, t=0.6, t=1.2 

Spherical cloud. 
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fig4. TMZ time dependence, spher. task, Pth=0.1, Pm=0 
 

 
fig5. TMZ time dependence, 2D task, Pm=0.44, Θ=π/2 (equator) 
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fig6. Plot of the plasma density, 2D task, Pm=0.44, t = 0.8 
 

 
 
fig7. Plot of the plasma density, 2D task, Pm=0.44, t = 1.2 
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fig8. Plot of the “magnetic” pressure, 2D task, Pm=0.44, t = 0.4 
 

 
 
fig9. Plot of the “magnetic” pressure, 2D task, Pm=0.44, t = 0.6 
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