Code-to-Code Comparisons for the Problem of Shock Acceleration of a Diffuse Dense Gaseous Cylinder

J.A. Greenough¹, W.J. Rider², C. Zoldi², J.R. Kamm²

8th IWPCTM December 9-14, 2001 Pasadena, CA

¹Lawrence Livermore National Laboratory, ²Los Alamos National Laboratory

Motivation

• Focus on computational issues as cause for disagreement between Rage and ongoing LANL shock/cylinder experiments:

- Large scale (dipole aspect ratio) differences
- Quantitative velocity measurements (PIV)
- Remove experimental uncertainities/unknowns:
 - Use well-defined initial conditions
 - Analysis and comparisons based on computational data
 - Use different codes for comparison

Motivation

- Use this research to also examine:
 - What does convergence mean for evolving flows & instabilities?
 - What are the resolution requirements for "fully-resolved" calculations of this class of flow?
 - What quality of results can we obtain from low-order codes (second-order) in this regime?
- Our guide will be existing & on-going experiments

Experimental Configuration

- "Pour" SF_6 in the shocktube as a laminar stream
- LANL experiments seed gas with glycol/water droplets (original CalTech experiments used biacetyl)
- Laser sheet illumination with multiple frames per experiment

FIG. 1. Drawing of the jet/PLIF configuration.

Comparison Between Experiment and Simulation

Quantitative Measurements

Simulation has larger velocities and smaller lengths compared to the experimental data.

Codes

- Rage (LANL; Gittings et al.)
 - Eulerian (Lagrange + Remap); directionally split
 - Unstructured AMR (point-wise adaptivity)
 - Multi-component formulation (mass fraction); one energy equation
 - Euler equations (inviscid)
- Cuervo (LANL; Rider & Kamm)
 - Eulerian (direct); directionally and temporally unsplit
 - Rectangular uniform grids
 - single-component formulation (gamma blending); one energy equation
 - Navier-Stokes equations (constant properties)
- Raptor (LLNL; Greenough et al.)
 - Eulerian (direct); directionally split
 - Block-structured AMR (patch-based adaptivity)
 - VOF formulation (volume fraction); N energy equations
 - Navier-Stokes equations (Chapman-Enskog, Sutherland's formula)

Model Problem

Integral Lengths/Flow

125 micron zoning, t = 0.8 msec

Integral Lengths/Flow

62.5 micron zoning, t = 0.8 msec

Integral Lengths/Flow

31.25 micron zoning, t = 0.8 msec

Integral Lengths - Summary

Mixing Fraction

Vortex Spacing

Circulation Budget

- Deposition by shock (positive)
- Counter-sign production (baroclinic)
- Late-time equilibration

Flow Dynamics

- Early time
 - Vortex blob deposition (shock-passage time ~ $30 \,\mu sec$)
- Intermediate time
 - Blob dipole transformation
 - Counter-sign production
- Later time
 - Dipole configuration established
 - Balanced net vorticity (i.e. $\Gamma \sim \text{constant}$)

Flow Dynamics - Density

Flow Dynamics - Vorticity

Flow Dynamics – Baroclinic Generation

t = .47 msect = .58 msect = .70 msect = .82 msecii</th<

31.25µm, 15.625µm, 7.8125µm

NEW Raptor Summary No prelax, viscosity fix

31.25µm, 15.625µm, 7.8125µm

Lengthscale estimates

• Using order of magnitude considerations (Tennekes and Lumley)

• U $\approx 2,000 \text{ cm/sec}, \nu \approx 0.1 \text{ cm}^2/\text{sec}, L = 0.1 \text{ cm}$ Re = 2,000

• $\eta/L \sim \text{Re}^{-0.75}$ $\eta \sim 3 \,\mu\text{m}$ (Kolmgorov scale)

• $\lambda/L \sim \text{Re}^{-0.5}$ $\lambda \sim 90 \,\mu\text{m}$ (Taylor scale)

• At 7.8125 μ m resolution, we have about 12 points/ λ resolvable

Conclusions

- Have we demonstrated convergence?
 - Maybe. Some diagnostics show convergence while others do not.
 - Include addition diagnostics (statistical, wavelet analysis).
- Have demonstrated what resolutions and physics are required for resolved calculations.
- Directly compute mm wavelength vortices. This is a robust feature present in analogous flow (Jacobs' Diffuse Interface R-M).

• Rage calculations appear to be the outlier; much more structure and different integral measurements. Vorticity?

Courtesy of Prof. J.W. Jacobs

M=1.2 Diffuse Interface R-M

NEEDS

- High(er) resolution experimental imaging
 - PLIF visualization. LANL facility appears to generate a "more stable" evolving flow better pictures. Isolate mm-scale vortices
- More direct measurements
 - Mixing measurements (Rayleigh scattering). Complementary to Helium jet work by J. Budzinski.
- More computing resources (never have enough) would allow definitive simulations.
 - e.g. highest resolution run took ~ 70 hrs wall clock on 128 CPU's of an SP-3; AMR required 4.7 Mzones compared to 43 Mzones single grid.

LANL Experimental Activity

• No outer flow seeding

Varying the seeding densities & light intensity

Images courtesy C. Tomkins, LANL, DX-3