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Previously, refs. [1-3] considered a 2D problem of initially spherical plasma cloud 
expansion in axial magnetic field. The papers indicated, in particular, that the cloud surface was 
nonresistant to “chute” type instability evolution and estimated the instability growth increments. 

The objective of the paper is tracking the evolution of the above instabilities with account 
for their actual, i.e. three-dimensional, nature. 
 Two approaches are used for this purpose: 

- the initial stage of the perturbation growth is considered analytically under the 
assumption of the perturbation smallness, 

- the nonlinear stage is computed with 3D numerical code TREK [4]. 
 

1. Unperturbed plasma cloud dynamics in magnetic field. 
 

Recall the features of solving the problem of dynamics of a plasma cloud expanding in  
the external magnetic field. 

Consider a cloud of energy E, mass M and assume the magnetic field to be axial,  
homogeneous, of strength ),0,0( 0HH =  with r→∞. Also, assume that the initial shape cloud is 
spherical of radius . 0r
 A detailed pattern of the cloud expansion and deformation is obtained by numerical 
computations and discussed in ref. [3]. To find out the qualitative pattern, an approximate model 
can be used, which implies that the motion of each “sector” of the cloud depends on magnetic 
pressure on its surface. If the pressure is given (by relations presented in ref. [1]), then we can 
obtain the equation for the cloud surface radius: 
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 Thus, from the solution it follows that the expanding cloud is decelerated by the magnetic 
field, its radius periodically changes depending on time t, with the deceleration being most 

noticeable at the “equator” (
2
π

=Θ ) and missing at the poles ( 0=Θ ). 

 As the comparison to the data of ref. [3] suggests, this simple cloud dynamics model is 
valid at πω ≤t0 .  
 The plasma cloud deceleration by the magnetic field leads to the perturbation evolution 
on the cloud surface (by analogy with the R-T instability in hydrodynamics: the role of the 
“heavy” fluid is played by the cloud plasma, that of the “light” by the magnetic field). 
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2. Linear stage of instability growth 

 
 When considering this stage of the perturbation growth on the plasma cloud surface, of 
interest to us will be most hazardous of them, that is such, for which increment 0ωγ >> . In this 
case the unperturbed surface can be considered as spherically symmetric and the unperturbed 

magnetic field near the surface as having only one, tangential, component Θ=ΘH sin
2
3

0H  [1]. 

 If the surface perturbation form is given as 
       (2.1) ∑ Θ⋅+=Θ
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where ),( ϕΘlmY  are spherical harmonics, then, by extending the well-known conclusion [5] for 
plane plasma-magnetic field interface to the spherical case under consideration, the following 
equation system can be obtained for harmonics )(tlmξ : 
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 Note that the “engagement” of harmonics l and l±2 in equation system (2.2) is a 
consequence of the fact that the pressure of the unperturbed magnetic field on the surface 
depends on Θ ( p ). This “engagement” disappears, when the initial perturbation is 
localized at , where ∆Θ<<1. Assuming m=0 and l such that , equation 
(2.2) can be reduced to a simpler form: 
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where  are surface acceleration and Alfven velocity characteristic of 
a given angle. 
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 In the quasi-static case ( 0ωγ >> ) from (2.4) it follows that 
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where 
0R
lk = . This expression coincides with that obtained previously [5] for the plane 

interface with parameters corresponding to angle 0Θ . 
 If we continue to consider l>>1, but m=l-∆, where ∆~1, then from (2.2) it readily follows 
that 
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 As seen from the comparison between (2.3) and (2.5), for such perturbations the 
stabilizing role of the magnetic field (addend ~c2

A in 2.5) is noticeably less than that for m=0. In 



particular, for  (2.5) yields an expression for increment )( 00
2 RRcA ⋅<< lmγ  similar to that known 

[6] for a cylindrical problem with longitudinal magnetic field (
0

0

R
Rm~ −γ ). 

 
3. Numerical calculations 

 

 The computations were with code TREK [3]. The scaling was as follows: 
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for density. 
 The magnetic pressure on the cloud surface was calculated using two apporoaches: 

- Vacuum was assumed outside the cloud; the magnetic field in it was calculated using  
quasi-stationary approximation [2]. In this case the problem is characterized with an only 

dimensionless parameter, 
1

0
0 r

rr =′ , with the dependence on the parameter disappearing at 

, 10 <<′r 1~r′ . 
-  “Background” plasma of quite a small density with a magnetic field frozen in it was  

assumed outside the cloud. In this case the magnetic field changes are calculated using MHD 
approximation; besides the parameter , the problem is also characterized with parameter 0r
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 At t=0, sphere surface radial velocity perturbations were given, i.e. 
 ),(),,0( 0 ϕµϕµ lmlm Yuuu ⋅+=         (3.1) 

was assumed. Here 13
10

0 u=u  is free expansion velocity of “cold” spherical cloud having a 
linear velocity profile and constant density. u 0ulm ⋅= α  was assumed. 
 Four problems were calculated.  
 In the first of them, α=0 (unperturbed surface) was assumed. The results of the 

calculation are plotted in Figs. 1 through 3 ( , 05.02 =AM 10 =′r , t=0.25;2.0 and 3, respectively). 
The expansion pattern qualitatively agrees with relation (1.1): the plasma spreading in the 
longitudinal direction and oscillating motion (with period ~π) in the transversal direction occur. 
 In the second problem, “meridional” velocity perturbations were given at the initial time: 
α=0.1, l=12, m=0, the other parameters are the same as in problem 1. The calculation results are 
illustrated in Figs. 4 and 5. 

 In this case the ratio of the first addend to the second in (2.3) is 1~ 2
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1~0ρ  at t≤1), hence, a significant perturbation growth 
stabilization can be expected thanks to the magnetic field. 
 This assumption is confirmed by comparison between the results of the calculation and 
similar calculation 3, which differs from the former in the fact that instead of “magnetic” 
pressure,  “thermal” pressure of the same magnitude is given in the “external” plasma. In this 
case the cloud dynamics will remain about the same as in problem 2, however, the perturbation 
growth depends only on the first addend in (2.3), i.e. is significantly faster than in problem 2. 



 Problem 4 differs from problem 2 in given m=l=12, i.e. the initial perturbation was 
localized near “equator” and its amplitude depended on azimuthal angle φ. Its solution results 
appear in Figs. 8 and 9. In this case, according to (2.6), we can expect that increment γ2>0 
(unsteady conditions) and that the cloud surface will be perturbed, in the main, across azimuth. 
These assumptions agree with the calculated data presented in Figs. 8 and 9. 
 

Conclusion 
 
 More extensive computational series with varying parameters r , , l, m, as well as 
setting “random” surface perturbations are being planned. 
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 The authors are thankful to T. Yu. Odintsova for the performed numerical computations 
and assistance in the paper execution. 
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fig1. Plasma cloud expansion in the magnetic field (unperturbed 

surface), t=0.25,  05.02 =AM

 
 
 

fig2. Plasma cloud expansion in the magnetic field (unperturbed 
surface), t=2.0,  05.02 =AM

 



 
 

fig3. Plasma cloud expansion in the magnetic field (unperturbed 
surface), t=3.0,  05.02 =AM

 

  
 

fig4. Plasma cloud expansion in the magnetic field (meridianal 
perturbations, l=12, m=0, ), t=0.25 05.02 =AM

 



 
 

fig5. Plasma cloud expansion in the magnetic field (meridianal 
perturbations, l=12, m=0, ), t=0.5 05.02 =AM

 
fig6. Plasma cloud expansion against termal pressure (meridianal 

perturbations), , P05.02 =thM m=0, l=12, m=0, t=0.5 
 



 
 

fig7. Plasma cloud expansion against termal pressure (meridianal 
perturbations), , P05.02 =thM m=0, l=12, m=0, t=3.0 

 
 
 

fig8. Plasma cloud expansion in the magnetic field (perturbation l=12, 
m=12, ), t=0.4 05.02 =AM

 



 
 

fig9. Plasma cloud expansion in the magnetic field (perturbation l=12, 
m=12, ), t=1. 05.02 =AM

 
 
 
 
 

 


