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Mix effects on particle yields can be described effectively
by mix modeling in the 1-D hydrocode LILAC
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MIT

• The mix model includes the transport of target constituents,
thermal energy, and turbulent energy due to both the acceleration
and deceleration instabilities.

• Including mix in 1-D simulations of experiments provides
improved predictions of primary and secondary particle yields
over a broad range of target performance.

Summary
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“Bubble and spike” mixing thickness is obtained from
a multimode Rayleigh–Taylor perturbation model*

TC5195a *S. W. Haan, Phys. Rev. A 39, 5812 (1989).

Takabe/Betti form for g2(t)

Haan saturation
procedure for

Initial perturbation spectrum
Al(t = t0) specified at ablation
surface and fed through to
fuel–pusher interface over
time.
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Mix is modeled as a diffusive
transport process.
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The mix model is based on carefully
formulated phenomenology

TC5666

• Perturbations due to single-beam imprint were obtained from ORCHID
calculations based on measured single-beam nonuniformity.

• Beam-imbalance effects are based on power-imbalance measurements
from each shot and the geometrical superposition of the acceleration
distributions of 60 beams.

• The formulation of the perturbation growth using fully time-dependent
perturbation equations allows secular nonuniform irradiation effects
and “feedthrough” from the outer to the inner instabilities to be treated
as driving terms, rather than as instantaneous effects.

• Plausible flux limitation of the diffusive mix transport is obtained by
allowing that the mixed constituent profiles can remain self-similar
under expansion.



TC4513

Perturbation equations are best written
in terms of a mass amplitude

Incompressible planar approximation

Compressible spherical solution (i.e., Bell–Plesset*)
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*G. I. Bell, Los Alamos National Laboratory, Report No. LA-1321 (1951).
M. S. Plesset, J. Appl. Phys. 25 (1), 96-98 (1954).
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Mix is modeled in 1-D as a diffusive transport process

TC3713

Advection to and from
nearest-neighbor zones is
expressed as diffusion in 1-D.

Aj-1/2 Aj+1/2

v+
v-

ri, Vi

vmix:  obtained from trajectories of mix-region boundaries

     l:   scale length of turbulence structure from rms
            perturbation wavelength

      f:  “flux limit” parameter
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The mix computation is done as a separate
step within the 1-D hydrocode

∑∑∑∑ Diffusive transport of constituent densities f{ } keeps zone masses
constant:
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*Leith, UCRL-96036 (1986).
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Mix-motion energy is computed as turbulent
energy in a “k–l” model

∑∑∑∑ Turbulent energy density k:
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Growth rates of perturbations of arbitrary density
profiles are estimated using Sturm–Liouville theory

TC5857
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• The Rayleigh perturbation equation for an arbitrary density profile
is a Sturm–Liouville eigenvalue equation:

• Estimates obtained using only moderately accurate eigenfunctions are
accurate to second order in variations of the postulated eigenfunction:

• The perturbation growth rate is given by a variational expression:
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A constrained set of static model core properties
reproduces most experimental observables

TC5855
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Mix modeling improves the agreement of simulated
primary neutron yield with implosion data
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• Data from eight shots (August 2000)

• Pure-CH shells, 20–27 mm, 900-mm diameter, D2 fill, 3–25 atm
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Primary yield ratios indicate that implosion degradation
is comparable to the predictions of mix modeling
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neutron yield

20 2727 2720

Shell thickness (mm)

10.0

1.0

0.1

D
at

a/
si

m
u

la
te

d

3 atm 15 atm 25 atm

Clean

Mix

Mix, 1/2 power
imbalance



Simulated and measured neutron-averaged temperatures
show some improved agreement with mix modeling
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Secondary particle yields reflect different
slowing rates and cross sections
with contrasting energy dependence
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Comparison of simulated with measured secondary
particle yield ratios suggests sensitivity to dynamics

TC5670
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The spatial distribution of secondary particle
production depends on the extent of mix
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The relative timing of peak neutron production and
peak compression does not affect the coincidence of
primary and secondary production times
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Mix effects on particle yields can be described effectively
by mix modeling in the 1-D hydrocode LILAC
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• The mix model includes the transport of target constituents,
thermal energy, and turbulent energy due to both the acceleration
and deceleration instabilities.

• Including mix in 1-D simulations of experiments provides
improved predictions of primary and secondary particle yields
over a broad range of target performance.

• The validity of approximating multidimensional hydrodynamics
with a spherically symmetric model remains an issue.

Summary/Conclusion




