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APPLICATION OF Kεεεε-MODEL FOR THE DESCRIPTION OF AN 
ATMOSPHERIC SURFACE LAYER 

Anuchin M.G., Neuvazhayev V.E., Parshukov I.E. 

(RFNC-VNIITF, Snezhinsk, Chelyabinsk region) 

The problem on determination of non-dimensional characteristics of turbulent flow in atmospheric 
surface layer is considered within kε-model. Kε-equations and their singular points are investigated. The 
mathematical program for calculations of characteristics of turbulent flow in surface atmospheric layer is 
developed. From the set of integral curves those curves are chosen which correspond to the solution of 
formulated task and ensure the satisfactory experiments description. Here the basic model constants are 
chosen according to the conventional criteria. At the same it is shown that the parameter Cθ  responding 

to convection source term of an ε-equation should be chosen depending on stability conditions. The best 
agreement with experimental results is reached if 0Cθ =  for steady stratification and 0Cθ ≠  for unstable 

stratification. By a numerical choice of value Cθ  and factor of turbulent diffusion α̂  the quite satisfactory 

description of experimental observations known as analytical interpolar dependencies is received. 
 

 

 

 
 
Introduction 

Semiempirical Kε models of turbulence are widely used for the description of different 
classes of turbulent flows [1-3] (jet streams and channels streams, gravitational turbulent mixing 
of fluid layers with different densities and others).  

Kε model was used for solving of the micrometeorology problems as well. In [4,5] the 
calculations of universal profile functions of atmosphere surface layer were conducted. On the 
basis of Kε model the technique of calculation reconstruction of vertical profiles of 
meteorological values in the atmosphere boundary layer was developed according to the data 
of standard surface meteorological measurements [6,7]. 

In the current paper we are also analyzing the problem about atmosphere surface layer 
(ASL) within the frameworks of Kε model. ASL is an example of the stratified flow, which is 
interested by the fact that it includes simultaneously both shear and convective (gravitational) 
mechanisms of turbulence generation. Moreover, the profile characteristics of stationary ASL 
have been studied experimentally quite well up to present. These conditions make the ASL 
problem by a good test for any semiempirical turbulence model.  

The conducted theoretical and numerical investigations of the problem under consideration 
allowed to perform the procedure of selection of the empirical model constants more accurately 
and to obtain more accurate description of the experimental profiles as compared with the 
previous papers [4,5]. As the analysis showed, the best agreement with the observation data is 
obtained in case we assume the empirical parameter Cθ (which regulates the convective source 

of turbulence in ε equation) depends on the ASL stability status: 0Cθ =  in the stable 

stratification area and 0Cθ ≠  in the unstable stratification area. 
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1. Atmosphere surface layer. Theory of similarity, dimensionless form of equations of Kεεεε 
model.  

To describe turbulent flow in stationary and horizontally homogeneous ASL the following 
system of equations is applicable  
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Here the axis oz is up-directed, Т is temperature of ground surface, θ  is potential temperature, 
U is velocity, g is gravitational acceleration, *u  is dynamic friction velocity, which determines 
turbulent frictional force between horizontal layers, q is turbulent temperature flow on the 
surface, b is turbulent energy pulsation (turbulent kinetic energy), ε  is turbulent energy 
dissipation, k is turbulent viscosity (diffusion) coefficient. 1 2, , , , , ,b C C C C Cθ ε ε ε θα α  are empirical 
constants. 

At the height much above the significant dimensions of surface roughness the dimensional 

parameters of the problem are: u∗ , q, 
g

T
.  With them it is possible to construct the single length 
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= − =   presenting the characteristic of stratification (relational influence 

of dynamic and heat factors). Here κ is Karman constant, 
q

u
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∗

= −  is temperature scale. 

If 0L > , turbulent heat flow is down-directed (air substratum is cooled with a colder ground 
surface), stratification is stable. If 0L < , turbulent heat flow is up-directed (air is heated with a 
hotter surface), stratification is unstable. The limit L → ∞  corresponds to neutral stratification 
(heat flow equals to zero, thermal convection is absent). 

All ASL characteristics are the functions of dimensionless height 
z
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Here the dimensionless functions are indicated with the index “n“, the empirical constants are 
traditionally introduced for convenience. 

In the dimensionless variables instead of (1.1)-(1.4) after some transformations we finally 
have the following system of equations: 
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To interpret the experimental observations we use the dimensionless function 
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monotonous and single-valued function ofξ . 
For limiting cases of neutral stratification ( 0z L → ), strong instability ( z L → −∞ ) and strong 

stability ( z L → +∞ ) the similarity considerations allow to make a number of specific conclusions 
without solving the system (1.5)-(1.6).  

If 0z Lξ = →  ( L → ∞  or 0q →  or 0z → ), the parameter q ceases to be the parameter of 

the problem, and dependence of the functions 
U
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scale also disappears, i.e. that regime is self-similar. It is possible only if at 0ξ →   
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→ , hence it follows that the values of universal functions approach the 

constants: ( )0 1uϕ = ,  ( )0 1εϕ = . Such constant values are provided by Karman constant κ 

previously introduced into the definition of universal functions. 
Thus, near to zero the following decompositions are true:  

 

( )

1

1

1

1

1

1

ln

ln

1

1

1

1

n

n

n

n

n

u

u const

const

b

k

ξ β ξ
θ ξ β ξ

γ ξ

ε δ
ξ
ξ β ξ

ϕ β ξ

= + + 
= + +

= + +

= + + 


= − + 
= + + 

L

L

L

L

,  (1.7) 

It is verified by multiple atmosphere observations and laboratory experiments by studying 
surface layers in unstratified fluid. 

According to the necessity of asymptotic (1.7) existence if 0ξ → , the additional limitation for 
the values of Kε model empirical constants follows: 2 1ˆ C Cε εσ = − .  At this for the decomposition 
coefficients it is possible to obtain: 
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The limiting case z L → −∞  is the regime of purely convective turbulence, which may be 
obtained at 0u∗ → , i.e. u∗  falls out from the determining parameters of the problem, hence it 
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follows: ( ) 1/ 3

u uCϕ ξ −≈ − , ( ) 1/ 3
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( uC , Cθ , Cε , bC  are constants.) 
The obtained asymptotic presents just qualitative information about behavior of universal 

functions and does not allow uniquely formulating the boundary conditions for b and ε for 
numerical solution of the system of equations (1.5), (1.6) at finite integrating interval. 

The universal functions are considered rather well known, though different authors propose 
different formulas for experimental data interpolating. However, for the stratification, which is not 
very far from indifferent ( | | 1ξ < ), different sources give close results especially for convective 
conditions. In [10] by processing of multiple experiments the formula adjusted for convective 
and stable conditions was obtained: 
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Below we present the results of calculations of ASL characteristics within the frameworks of 
Kε model. 

 
 

2. Statement of boundary problem. Selection of values of kεεεε model empirical constants.  

As the basic sought functions we will use nb and nk .  nb  corresponds to turbulent kinetic 

energy and is a positive and monotone decreasing function. Function nk  is also monotone and, 
according to the experimental observations, increase from −∞  up to some finite value 

( ) 1nk ∞ ≤ . Thus, the system of equations (1.5)-(1.6) is to be solved, which, if ˆ 0α ≠ , with the 

variables nb  and nk  assumes the following form: 
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Here the stroke sign denotes ξ  differentiation. 
If we head for the dependencies (1.7) and (1.9) and attempt to approach them along the 

whole interval ξ−∞ < < +∞ , the boundary conditions for the system (2.1)-(2.2) will be as 
follows, taking into account the form of the functions nk , nb : 

,n nb k= +∞ = −∞ at ξ = −∞                                  (2.3) 

0, 1n nb k= =  at ξ = +∞ .                                       (2.4) 

1, 0n nb k= =  at 0ξ =                                            (2.5) 

Formally the model constants 2 1 ˆ, , ,C C Cε ε θ α  remain undefined. The constants 

2 1 2 1 ˆˆ, , ,C C C Cε ε ε εσ α= −  are supposed to be uniform for the whole area ξ−∞ < < +∞ , where the 
solution is sought. If we consider the decomposition of the function (1.9), obtained from the 
experimental data, in series in the neighborhood 0ξ = , we will obtain different decompositions to 
the right and to the left. Taking into account (1.7) the coefficient 1β  should be discontinuous that 
is Cθ  should be taken as piecewise with discontinuity at 0ξ = .  
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In meteorology the following constant values are considered to be conventional 

2 1 2 1ˆ2; 1.45; 0.55C C C Cε ε ε εσ= = = − = ; ˆ 0.54α = ; 1Cθ = . 
However such selection of the constants is not unique [2,14]. For example, in [2] the 

description of self-similar profiles in experiments [13] is the basis for constant selection, and it is 

obtained that 2 11.92; 1.43C Cε ε= = ; ˆ ˆ1.7 0.83α σ= ⋅ = .  

Values 2 1,C Cε ε  in these sets differ insignificantly. One can notice the difference in α̂ and the 

value Cθ  remains virtually indefinite. 

Below we describe the algorithms for selecting the values ˆ, Cθα  for best description of the 
experimental observations at the finite interval [ ; ]a aξ ∈ − +  for the both nominal sets of 
constants 2Cε  and 1Cε  (which are assumed already known). 
 
 
3. Behavior of solutions of the systems of equations of surface layer.  

Let us investigate the behavior of the integral curves of the system (2.1), (2.2). We equate 
the right-hand sides to zero and obtain: 
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The obtained flock of points is the solution of the system. Decomposition of the sought 
solution in the neighborhood 0ξ = is presented with the formulas (1.7), and the behavior of the 
integral curves near this point will be considered below. 

It is known that 2 1C Cε ε> . We consider the behavior of the solution of the equations (2.1)-
(2.2) at (0; )ξ ∈ +∞ . It would be natural to suppose that the solution should pass through the 

critical points 
0

1nb
ξ =

= , 
0

0nk
ξ =

=  и 1n nb b
ξ =+∞

= , 1n nk k
ξ =+∞

= . Since 10 1nk< ≤  and 2
1 0nb ≥  should 

be satisfied, then one should assume 10 C Cθ ε≤ ≤  at 0ξ > .   

When ξ = − ∞ , the empirical formula (1.9) gives 5 / 4( )n kk c
ξ

ξ
=−∞

≈ − . Let us find the 

decomposition of the solution of the equations (2.1)-(2.2) in the neighborhood ξ =− ∞  in the 

form ( )n kk c α
ξ

ξ
=−∞

≈ − , ( )n bb c β
ξ

ξ
=−∞

≈ − . We obtain that the exponents α  and β depend on the 

used values of the parameters 1 2 ˆ, , ,C C Cε ε θ α . From the allowed decompositions at ξ =− ∞ we 
select those, which correspond to the physical meaning of the problem, i.e. along the whole 
interval ( ;0)ξ ∈ −∞  the conditions of monotone increase of the function nk  from −∞  to 0 and 

monotone decrease of nb  from +∞  to 1 should be satisfied. We obtain 3/ 2 2α≤ <  and 
2β α= − (that is 0 1/ 2β< ≤ ). Thus, at no values of the used parameters it is possible to obtain 

the solution of the equations (2.1)-(2.2), which would satisfy asymptotic of the empirical formula 
(1.9) at ξ =− ∞ . 

We consider the behavior of the solution at 0ξ ≈ . Taking into account (1.7), at the fixed 
values 1 2,C Cε ε  it is always possible to select values ˆ,Cθ α , which allow to obtain coincidences 
for solution of the problem (2.1)-(2.2) with the values of the experimental curve slope at the right 
and at the left of 0ξ = . 

Thus, while solving the equations (2.1)-(2.2) for the selected fixed values 1 2,C Cε ε , at the 

expense of selecting α̂  and value Cθ  discontinuous at 0ξ = , one may accurately describe 
individually or the behavior of the experimental curve in the neighborhood 0ξ =  or ξ = +∞ . 

Though decompositions by ξ = ±∞ , following from Kε model, do not agree with the 
experimental formulas, which have different asymptotic at infinity with different authors, there 
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may be no sense to try to satisfy them accurately. The experimental observations relate to the 
limited interval of change of dimensionless height, therefore the numerical integration of the 
equations (2.1)-(2.2) should be performed at the limited interval of height change. If we do not 
try to satisfy the empirical asymptotic at ξ = ±∞ , but consider just the mean square deviation of 
the obtained solution from the experimental data at the limited interval, for example 2 2ξ− ≤ ≤ , 
then one may obtain good agreement with the experiment at the expense of parameter 
selection ˆ,Cθ α .  

 
 

4. Numerical integration of surface layer system of equations 
 
We solve the system of equation (2.1)-(2.2) for the functions ,n nk b . Since the coefficients 

included into the equations may be discontinuous at 0ξ = , integrating is performed by the two 
intervals: [ ]0.01; 2 and [ ]2; 0.01− − . In the points 0 0.01ξ = ±  the values nb  and kn  are determined 
from the decomposition (1.7).  

Let us determine the right boundary condition at the interval [ ]0.01; 2 . The performed 

studying of the problem shows that at the right the values nb  and nk  quickly approach some 

constant positive values, which are formally dependent on the constants 1 2 ˆ, , ,C C Cε ε θ α . 

Therefore it is natural to take 0
R R

n ndb dk

d dξ ξξ ξ
= =  as a boundary condition.  

We consider the interval [ ]2; 0.01− − . ,n nk b→ −∞ → +∞  is to be satisfied within the limit 

ξ → −∞ . If we take into account the kind of the solution decomposition at ξ = −∞ ,   0ndb

d ξξ =−∞

=  

is to be satisfied as well. This condition is satisfied with adequate accuracy already for values ξ  

at small module, therefore one may take the derivative value close to zero: 0.001
L

ndb

d ξξ
= −  as 

the left boundary condition for nb . The value of nk  in the point 2Lξ = −  we determine from the 

condition ( ) ( )
2

2
0.4

L
n L

u L

k
ξξ

ϕ ξ
= − = ≈ − , where ( )2 0.4u Lϕ ξ = − =  is the experimental value 

determined from (1.9). 
The system of equations (2.1)-(2.2) with specified boundary conditions was solved 

numerically by chaser method at the intervals [ ]0.01; 2 and [ ]2; 0.01− − . The program of 
numerical solution of the given system was created. Calculations were made with various 
number of points N. Convergence of the results was obtained at N>50 in positive and negative 
areas. 

It was assumed that the values 1 2,C Cε ε  have been determined earlier and are constant for 

both intervals. Value α̂  is assumed to be constant and value Cθ  is assumed to be 

discontinuous: 
: 0

: 0

C
C

C
θ

θ
θ

ξ
ξ

+

−

>
=  <

. A great number of calculations with different values of ˆ ,Cθα  

was performed with the purpose to determine such their values, which allow to obtain numerical 
solution describing in the best way (that is mean–square deviation) the empirical functional 
dependence (1.9) at the interval [ 2;2]ξ ∈ − . 
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5. Comparison of numerical solution with experimental observations 

As we have noted above, the following set of constant values is typically used in 

meteorology: 2 1 2 1ˆ2; 1.45; 0.55C C C Cε ε ε εσ= = = − = ; ˆ 0.54α = ; 1Cθ = . 

It was obtained that the resulting solution at 0ξ > very weekly depends on α̂  and strongly 
depends on Cθ . At this the calculated values ,n nk b  approach very quickly (just at 1ξ ≈ ) the 
constant values, which coincide with the values in the critical points (3.1) (that verifies the 
correctness of the numerical solution of the problem).  

Actually, having numerical solution at the finite right interval of height change and knowing 
the solution behavior beyond the interval at large values of ξ , we can construct the solution 
along the whole interval (0; )ξ ∈ +∞ . For nk  the best agreement with the empirical dependence 

is obtained at 0Cθ = .  

Thus, it is necessary to assume 0Cθ =  at (0; )ξ ∈ +∞  and it is required to match α̂  and Cθ  
at the left integrating interval. 

Let us take the value 1Cθ =  at 0ξ < . According to calculation results the optimal value of 

the left parameter ˆ 1α =  was selected, which provides the best agreement between calculation 

and experimental data. The results of calculation of the case ˆ 1α = , 
0 : 0

1 : 0
Cθ

ξ
ξ

>
=  <

 are 

presented in Figure 1 as compared with the empirical data. 
Let ˆ 0.54α = . According to the calculation results the optimal value 1.6Cθ =  at 0ξ < . The 

results of calculation of the case ˆ 0.54α = , 
0 : 0

1.6 : 0
Cθ

ξ
ξ
>

=  <
 are presented in Figure 1 as well 

and almost coincide with the previous case. 
Above we presented another used set of constants of ke model 2 11.92; 1.43C Cε ε= = ; 

ˆ ˆ1.7 0.83α σ= ⋅ = . The results of calculation of this case provide the following optimal values of 

parameters 
0 : 0

1.2 : 0
Cθ

ξ
ξ
>

=  <
. The calculating results are presented in Figure 1 as well.  

As is seen, the solutions for all the obtained sets of constants almost coincide between 
each other and are close to the experimental data. The calculations at various values of 
parameters α̂  and Cθ  were conducted, however, the available results would not be improved.  

If we know the values of the used parameters, we may determine the character of the 
solution behavior at 0ξ ≈  and ξ = ±∞ .  

For example, the set of parameters 2 1 ˆ2; 1.45; 0.55C Cε ε σ= = = ; ˆ 1α = , 
0 : 0

1 : 0
Cθ

ξ
ξ

>
=  <

 

provides the following behavior of the functions: 1.62~ ( )nk
ξ

ξ
=−∞

− , 0.38~ ( )nb
ξ

ξ
=−∞

− , and the 

decomposition coefficient for nk  in the neighborhood 0ξ ≈ −  (see (1.7)) 1 3.23β = . At 0ξ > the 

values ,n nk b  quickly approach the constant values coincident with the values in the critical 

points (3.1), at this in the neighborhood 0ξ ≈ +  the value 1 4.17β = . 

The parameter set 2 1 ˆ2; 1.45; 0.55C Cε ε σ= = = ; ˆ 0.54α = , 
0 : 0

1.6 : 0
Cθ

ξ
ξ
>

=  <
 provides the 

following results: 1.54~ ( )nk
ξ

ξ
=−∞

− , 0.46~ ( )nb
ξ

ξ
=−∞

− , 1 1.38β =  at 0ξ ≈ −  and 1 2.83β =  at 

0ξ ≈ + .  
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If 2 11.92; 1.43;C Cε ε= = ; ˆ 0.83α = , 
0 : 0

1.2 : 0
Cθ

ξ
ξ
>=  <

, then 1.59~ ( )nk
ξ

ξ
=−∞

− , 0.41~ ( )nb
ξ

ξ
=−∞

− , 

1 2.55β =  at 0ξ ≈ −  and 1 3.78β =  at 0ξ ≈ + .   
Thus, the values of the model parameters are obtained, at which the numerical solutions of 

the system (2.1)-(2.2) describe well the experimental dependence (1.9) along the interval 
[ 2;2]ξ ∈ − . 
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Figure 1. Dependence of functions  ,n nk b  on dimensionless height ξ : 

--▲--   calculation with 2 1 ˆ2; 1.45; 0.55C Cε ε σ= = = ; ˆ 1α = , 
0 : 0

1 : 0
Cθ

ξ
ξ

>=  <
; 

- -  -    calculation with 2 1 ˆ2; 1.45; 0.55C Cε ε σ= = = ; ˆ 0.54α = , 
0 : 0

1.6 : 0
Cθ

ξ
ξ
>=  <

; 

- - � - -    calculation with 2 11.92; 1.43;C Cε ε= = ; ˆ 0.83α = , 
0 : 0

1.2 : 0
Cθ

ξ
ξ
>=  <

; 

- - � - -   the empirical curve [10], 
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Conclusions 

Within the frameworks of Kε-model the problem about determination of dimensionless 
characteristics of turbulent flow in atmosphere surface layer is considered.  

The complete investigation of Kε-equations and their critical points are conducted. From the 
variety of the integral curves the ones are selected, which correspond to the solution of the 
stated problem and describe quite satisfactorily all experiments. At this the basic empirical 
constants of the model ( )1 2,C Cε ε  are selected according to the conventional criteria. At the 

same time it is shown that parameter Cθ  responsible for the convective source term in the 

equation for ε should be selected different depending on stability status of the surface layer. At 
this the best agreement with experimental observations is obtained, if 0Cθ =  in the area of 

stable stratification and 0Cθ ≠  in the area of unstable stratification.  
The program, which allows solving the obtained model equations, is created. The 

calculations for various values Cθ  and α̂  are conducted.  

By the numerical matching of values Cθ  and turbulent diffusion coefficient α̂  the quite 
satisfactory description of the experimental observations is obtained at the finite interval of 
dimensionless height change for any state of atmosphere stability. 

Taking into account the obtained asymptotic of the model equation solutions for the values 
of dimensionless height ξ = ±∞ , the solution is virtually constructed along the whole interval 

( ; )ξ ∈ −∞ +∞ . 
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