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General Information
The workshop is hosted by the Lawrence Livermore National Laboratory and is
held at the California Institute of Technology.

Schedule (Oral and poster presentations will be at the California Institute of
Technology):

Day Date Time Activity
Sunday December 9, 2001 5:00 PM – 9:00 PM Registration – Pasadena Hilton
Sunday December 9, 2001 6:00 PM – 9:00 PM Reception – Pasadena Hilton
Monday December 10, 2001 8:15 AM – 4:15 PM Opening Remarks/Oral

Presentations
Monday December 10, 2001 4:15 PM – 6:00 PM Poster Presentations
Tuesday December 11, 2001 8:15 AM – 4:15 PM Announcements/Oral

Presentations

Tuesday December 11, 2001 4:15 PM – 6:00 PM
Experimental Discussion/

Computational and Theoretical
Poster Presentations

Wednesday December 12, 2001 8:15 AM – 4:15 PM Announcements /Oral
Presentations

Wednesday December 12, 2001 4:15 PM – 6:00 PM
Computational

Discussion/Experimental and
Theoretical Poster Presentations

Wednesday December 12, 2001 6:00 PM – 9:00 PM Banquet – Pasadena Hilton
Thursday December 13, 2001 8:15 AM – 4:15 PM Announcements /Oral

Presentations

Thursday December 13, 2001 4:15 PM – 6:00 PM
Theoretical

Discussion/Computational and
Experimental Poster Presentations

Friday December 14, 2001 8:15 AM – 12:00 PM Announcements/Oral
Presentations/Summary

Remarks/Closing Remarks



Invited Guest Speakers:

Dr. Edward I. Moses, National Ignition Facility (NIF) Project Manager at the Lawrence
Livermore National Laboratory, will be the guest speaker at the Reception on Sunday
evening, December 9.  Z. Nagin Cox, Mission Operations Engineer for the Mars Sample
Return Mission at the NASA Jet Propulsion Laboratory, will be the guest speaker at the
Banquet on Wednesday evening, December 12.

Message Line:

A phone will be located in the lobby of the Beckman Institute Auditorium for messages:
the telephone number is  (626) 395-5035.

Shuttles:

The Pasadena Hilton will provide shuttles to and from the hotel and Caltech in the
morning and afternoon (parking on or near campus is extremely limited).

Pasadena Convention Center:

The Pasadena Convention Center will have representatives available for scheduling
tourist activities.  Representatives will be available on Sunday during the Registration
and Tuesday through Thursday from 4:00 PM – 8:00 PM in the Pasadena Hilton Hotel
lobby.

Administrative Staff:
C. Cantlin, Lawrence Livermore National Laboratory, Livermore, CA, USA
S. Davis, Lawrence Livermore National Laboratory, Livermore, CA, USA
K. Evans, Lawrence Livermore National Laboratory, Livermore, CA, USA
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A Review on RT and RM Instability and TM Experiments

J.-F. Haas1 and S. G. Zaytsev2

1Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France
2Krzhizhanovsky Power Engineering Institute, Moscow, Russia

We analyse the state of the art for experiments on Rayleigh-Taylor, Richtmyer-Meshkov instabilities
(RTI, RMI) and the resulting (possibly compressible) turbulent mixing (TM). There is a very wide
spectrum of state of matter (in addition to acceleration history and magnitude) ranging from
« ordinary » gas or liquid dynamics experiments, through  intermediate complexity detonation-driven
setups often involving materials with strength, all the way to large laser driven experiments for the study
of high energy density plasmas. Experiments are needed for a better understanding of fundamental
mechanisms (e.g. nonlinear regime of the RTI and RMI, complex natural phenomena (supernovae
explosions) and future applications (inertial confinement fusion). We consider first the field of
« simple » gas dynamics RMI and TM experiments performed in ordinary shock tubes. It was suggested
at the experimental roundtable of the 7th IWPCTM that the experiment type could be presented on a
map with an horizontal axis for a compressibility parameter (such as the incident shock Mach number)
and a vertical axis for the instability strength (e.g., according to the linear RMI formula, the product of
Atwood number, perturbation wave number and initial amplitude). A second map was proposed, with a
horizontal axis tentatively called « usefulness to theory »  and a vertical one labelled « complexity of
diagnostics ». The classical visualization by refractive effects (shadowgraph, schlieren, Mach-Zehnder
or differential interferometry) is useful for geometrical observations of the mixing zones and instability
patterns, but of limited quantitative value in TM. The modern laser sheet method provides a 2D map
of the density or concentration field (via Mie or Rayleigh scattering or fluorescence). Flash X-rays
absorption by Xe, infrared emission or infrared CO2 laser absorption by shock heated CO2 allow density
measurements within binary mixing zones containing these gases. Laser Doppler Velocimetry (giving the
velocity history at a given position) and Particle Image Velocimetry (giving a velocity map at a given
time) have recently been introduced. The Hot Wire Anemometer provides the time evolution at a fixed
position of the Nusselt number, which depends on velocity, concentration and temperature. The initial
gas separation is best membrane-less for RMI and with microfilm for fine scale TM. Often, a
good experiment for theory benefits from an imaginative conception while advanced diagnostics are
useful for a quantitative comparison with numerical simulation and TM modelling. Among the cold
hydrodynamics RTI experiments, some based on gravitational mixing of liquids (molecularly miscible
or not, with or without surface tension) increasingly benefit from modern diagnostics. The experiments
on gases in modified shock- or combustion tubes allow the investigation of compressibility and
acceleration nonsteadiness, but with usually less precise diagnostics. There is a variety of gas detonation
or combustion experiments in which the effect of cylindrical geometries are tested. Effects of initial
interfacial perturbations and material strength can be investigated with jellies. Solid explosive drivers are
needed for the measurement of such RT/RM processes in metals. Among recent high energy laser driven
plasma experiments, the high quality visualizations in some very high Mach number experiments are
fascinating. Our challenge is to insure that simpler and cheaper gas or liquid dynamics experiments will
remain useful with the advent of the next generation of ICF lasers.

PACS Nos.: 42.79, 47.20, 47.27, 47.40, 52.57
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The Experimental Study of Excitation and Development of the
Hydrodynamic Instability in the Mixing Zone Separating Gases of Different

Densities at their Accelerated Motion

S. G. Zaytsev
Krzhizhanovsky Power Engineering Institute, Moscow, Russia

The properties of the mixing zone between gases of different densities during accelerated and
decelerated motion caused by compression waves have been analyzed. The design of the
experimental set-up for study of the mentioned processes has been described.

The wave diagrams of possible regimes of flows and basic parameters such as velocity u, acceleration
g, density ρ, pressure p, and temperature T have been under consideration.

The properties of excitation and development of the Rayleigh-Taylor instability (RTI) at the stages
of accelerated and decelerated motion of the mixing zone have been described.
The characteristics of the mixing zone at the stage of "stratification" caused by interaction with a
reflected compression wave - non-shocked deceleration - have been defined. The mixing zone volume
decreases in this case.

 The generation of shocks during evolution of compression waves and their interaction with the
mixing zone results in growth of the mixing volume caused by excitation of the Richtmyer-Meshkov
instability (RMI).

The amount of the substance involved into mixing during accelerated motion of the mixing zone
separating gases of different densities has been defined. The problem of influence of the working
media compressibility on process of the mixing has been discussed.
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Review of Numerical Simulation of Mixing due to Rayleigh-Taylor
and Richtmyer-Meshkov Instabilities

D. L. Youngs
Atomic Weapons Establishment, Aldermaston, United Kingdom

Since the late 1960s numerical simulation  has been very successfully used to gain  insight into the
non-linear growth of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM)  instabilities. The first
calculations were for single-mode growth in 2D. Then in the 1980s, 2D multimode simulations
became feasible. 3D simulations of fully-developed turbulent mixing in simple situations have been
performed during the past few years. There are many examples where numerical simulation has been
used to study the affect of additional physical processes, such as ablation stabilisation or material
strength, on instability growth. The progress made is reviewed and instances where numerical
simulation has enhanced our understanding are highlighted. The main emphasis of this review will
be on RT and RM instability. However, some reference will be made to simulations of turbulent
shear flow and homogeneous turbulence, especially where ideas from these areas are relevant to
RT/RM studies.

The numerical methods used will be discussed. RT and RM problems involve discontinuities, contact
surfaces or shocks. TVD schemes have proved popular and number of   researchers have used
interface tracking techniques. For 3D LES (Large Eddy Simulation) dissipation at high-wavenumbers
is needed. Many researchers, especially those who work on turbulent shear flow, favour the use of
an explicit sub-grid model to represent this effect. The TVD methods have high-wavenumber
dissipation inherent in the numerical scheme and when applied to turbulence simulations are referred
to as MILES schemes (Monotone Implicit LES). There have been a number of examples of the
application of MILES to RT and RM turbulent mixing and also some examples of 3D DNS (Direct
Numerical Simulation) in which the effects of viscosity and diffusivity are resolved.

The future role of numerical simulation will be discussed. 2D simulation will continue to be useful
for understanding complex experiments or the effect of additional physics, where 3D simulation is
impractical. However, with the advent of very powerful supercomputers, 3D simulation (LES or
DNS) will become increasingly useful and will give a detailed understanding of turbulent mixing in
simplified situations. It is likely that RANS (Reynolds-Averaged Navier-Stokes) models will contine
to be essential for modelling the most complex real applications. However, 3D simulation can make
an important contribution here as well. In addition to experimental data, the results of 3D simulations
should be used to validate the RANS models in simplified situations.
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Modeling Late-Time Nonlinear Evolution of Hydrodynamic Instabilities and
their Role in Inertial Confinement Fusion

D. Shvarts
Ben-Gurion University, Beer Sheeva, Israel and Nuclear Research Center, Negev, Israel

Abstract not available at time of printing.
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Abstract No. E2

Experimental Investigations of the Heavy and Light
Media Separation in the Rayleigh-Taylor Turbulence Zone at

Different Atwood Numbers

Yu. A. Kucherenko, S. I. Balabin, R. I. Ardashova, A. P. Pylaev, O. E. Kozelkov, and
V. D. Murzakov

Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

In the paper the experimental results with respect to the nondimensional rate of separation in the
Rayleigh-Taylor turbulence zone are presented. In the experiments two different density liquids
separated by a plane  contact boundary were accelerated so that in the first  phase of acceleration
 the Rayleigh-Taylor instability evolved and  the definite zone of the turbulent  mixing formed. At
the second phase the sign of acceleration was  jumpwise changed into the opposite one. As a result,
the system of two different density liquids became stable. At these instants of time, in the turbulent
mixing zone the separation processes of  the heavy and light liquids evolved.

For three values of Atwood numbers the experiments were performed. for each of Atwood numbers
the nondimensional rate of separation was determined.
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Abstract No. E3

Experimental Investigation into Influence of Stabilizing Properties of
Transitional Layers Upon the Turbulent Mixing Evolution

Yu. A. Kucherenko, S. I. Balabin, R. I. Ardashova, O. E. Kozelkov, A. V. Dulov, and
I. A. Romanov

Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

It is presented the results of the experimental investigation of the transitional layers width influence
upon the evolution of turbulent mixing caused by the Rayleigh-Taylor instability. In experiments,
mutual soluble liquids with density relation been equal to two were used. A transitional layer having
continuous distribution of density arises in the region of liquids contact because of molecular
diffusion. In experiments, it has been determined the dependence of the turbulent mixing evolution
delay on both the initial perturbation region size and the characteristic width of the transitional layer.
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Abstract No. E4

Improvements to Convergent Cylindrical Plasma Mix Experiments Using
Laser Direct Drive

C. W. Barnes1, S. H. Batha1, A. M. Dunne2, N. E. Lanier1, G. R. Magelssen1,
T. J. Murphy1, K. W. Parker2, S. Rothman2, J. M. Scott1, and D. Youngs2

1Los Alamos National Laboratory, Los Alamos, NM
2Atomic Weapons Establishment, Aldermaston, United Kingdom

Experiments studying mix in a compressible, convergent, miscible, plasma system are being
conducted on the OMEGA Laser at the Laboratory for Laser Energetics at the University of
Rochester.1,2 Thin-walled polystyrene cylinders 2.25-mm long and 0.86 mm inner diameter with
foam inside are directly illuminated with 351-nm wavelength light from 50 laser beams in a 1-ns
square laser pulse.  The turbulence driven by the Richtmyer-Meshkov instability by shock passage
across a density discontinuity mixes marker material that is radiographically opaque.  Initial work
using a high-density, high-opacity marker layer of gold between the plastic ablator and foam clearly
demonstrated significant measurable mix width2. However, the high opacity of the gold prevented
determination of a density profile in the mix region, and it was also overly sensitive to hydrodynamic
effects at the end of the marker layer. Use of lower opacity marker material will be described and its
impact on end effects and the measurements of mix density profile described.

                                                
1 C. W. Barnes et al., Rev . Sci. Instrum. 70 (1999) 471.
2 C. W. Barnes et al., submitted to Physical Review Letters (2001).
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Abstract No. E5

Mixing Between Two Compressing Cylinders

S. H. Batha1, K. W. Parker2, C. W. Barnes1, A. M. Dunne2,
N. E. Lanier1, G. R. Magelssen1, T. J. Murphy1, S. Rothman2,

J. M. Scott1, and D. Youngs2

1Los Alamos National Laboratory, Los Alamos, NM
2Atomic Weapons Establishment, Aldermaston, United Kingdom

Foam-filled cylinders have been imploded by the OMEGA laser at the University of Rochester.  A
marker layer of heavier material is placed between the foam and the outside ablator.  The marker
layer is hydrodynamically unstable when a strong shock passes through both these interfaces and
the marker layer material mixes into the foam and the ablator.  These experiments thus measure mix
in the compressible, convergent, miscible, strong-shock regime.

These experiments are being extended by placing a solid cylinder at the center of the foam, forming
a set of concentric cylinders separated by foam.  The initial shock converges on the central cylinder
and then rebounds and expands.  The shock is predicted to create even more mixing of the marker
layer as it traverses the previously mixed region.  We present experimental measurements of this
configuration.
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Abstract No. E6

Development of a Method for Studying the Interaction Between Shock Wave
and a Flame Front

M. Bliznetsov1, V. Dudin1, S. Gerasimov1, L. Houas3, G. Jourdan3, A. Logvinov1,2,
E. Meshkov1,2, and Yu. Vlasov1,2

1Russian Federal Nuclear Center - VNIIEF, Sarov, Russia
2SarPTI, Sarov, Russia

3IUSTI/CNRS, Université de Provence, Marseille, France

Tomsk University has carried out research into explosive method for extinguishing the wild fires
(A.M.Grishin, Kovalev Yu.M., 1994, Grishin, 1994, Grishin et al., 2000). This method has been
experimentally checked but it is not currently used in practice. According to Grishin's hypothesis
(A.M.Grishin, Kovalev Yu.M., 1994, Grishin, 1994), the explosive method for extinguishing the wild
fires is based on "blowing out" the flame by a shock. There exists another idea (Meshkov, 1999)
according to which this extinguishing is due to development of hydrodynamic instabilities.
Experimental study of this method in natural conditions is rather complex, dangerous, and expensive.
Hence, modeling this method in laboratory conditions is of interest. We report on results of an
experimental study of developing such a method for interaction between shock and flame.

References
Grishin A.M., Babaev V.M., Gruzin A.D., Zverev V.G., Abaltusov V.E., Mamontov G.Ya. (1985).
Meaning of extinguishing wild fires A.D. 1136811 USSR. Published 30.01.85. Bul.4
Grishin A.M., Kovalev Yu.M. (1989). Experimental and theoretical study of the interaction between
explosion and crown fire. FGV, 6, pp. 72-79
Grishin A.M., Zima V.P., Mashovich A.Ya., Samoilov V.I. (2000). Experimental study of the
interaction between a shock induced by point charges, and crowns. Proceedings of international
conference "Common problems on mechanics and ecology", Tomsk University, pp.83-85
Meshkov E.E. (2000). Turbulent mixing associated with hydrodynamic instabilities in modern
practical problems. Proceedings of international conference "Common problems on mechanics and
ecology", Tomsk University, pp.156-158.
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Abstract No. E7

The Influence of Scaling for Periodical Perturbations on Development of
Turbulent Mixing on a Gas-Liquid Interface

M. Bliznetsov, E. Meshkov, N. Nevmerzhitsky, A. Nikulin, E. Sen'kovsky, and E. Sotskov
Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

We report on results of experimental study of the influence of scaling for 3D periodical perturbations
on dynamics of turbulent mixing on a gas-liquid interface, associated with R-T instability. The liquid
was modeled with layers of a low-strength (= 0.01 MPa) water-solved gelatin jellies driven in a
squared (40x40-mm) channel with helium compressed to 13 atm. The perturbations imposed on
unstable surface had quadrilateral pyramidal structures with a height equal to the perturbation
wavelength (=(0=0.25; 1; 2, 2.86 mm. The experimental results obtained in tests without imposed
perturbations of a given shape are also presented. The acceleration of layers was of 3x104m/s2. The
obtained results show:

• When the perturbations are not originally given or when they have  (=(0=0.25 on unstable
surface, the turbulent mixing develops with an initial delay, and then it grows linearly as
(l=dhl/d(2S)=0.12(0.025, where (l- intensity for penetration of light substance into heavy,
hl- depth of the gas- into- jelly penetration, S - layer displacement,

• For (=(0=0.25; 1; 2, 2.86, the R-T instability grows simultaneously with the layer movement,
and turbulent mixing has linear regime for light-into-heavy penetration (l=0.1(0.14. (l
increases from 0.13 to 0.42 with growing the perturbation amplitude; hence, for the given
range of initial periodical perturbations their amplitudes influence weakly on the rate of the
light-into-heavy penetration, but sufficiently on the heavy-into-light.
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Abstract No. E8

Compressible Vortex Rings

M. Brouillette and C. Hébert
Université de Sherbrooke, Quebec, Canada

We present the results of an experimental study aimed at characterising compressible and viscous
effects on the generation and propagation of vortex rings. The overall aim of this study is to
characterise basic vortical structures in the context of compressible turbulence, but these findings also
have applications in the study of shock-vortex interaction, for example. In the context of the
Richtmyer-Meshkov instability, these rings can be viewed as rapidly mushrooming spikes at
moderate Atwood numbers.

The vortices are produced by the diffraction of a shock wave from the open end of the driven section
of a specially-built shock tube. By varying the pressure ratio across the driver and driven sections
we could control the strength of the incident shock wave. Also, by altering the length of the driver,
we could modify the ejection velocity history, also known as the ejection velocity program, at the
orifice end of the tube. Finally, by changing the diameter of the end orifice, we could change the size,
i.e., Reynolds number, of the vortex ring. Our instrumentation comprised fast-response piezoelectric
pressure transducers and flow visualisation was achieved with shadow and schlieren photography
along with holographic interferometry.

A major difference between incompressible and compressible vortex ring formation is in the
maximum circulation attained in the ring. Previous studies have found that the vorticity saturation
threshold of incompressible vortex rings was not a strong function of the ejection velocity program;
we found that this was not the case for compressible vortex rings. In the present study, we found
that a higher normalised circulation was possible, for a given incident shock wave, with a continuous
jet at the exit of the tube than with a rapidly attenuated jet.

The appearance of a shock wave within the recirculating region of the vortex ring is also strongly
dependant on the amount of vorticity deposited within the ring. In fact, the onset of appearance of
this shock wave and other shock and vortical features around the main vortex ring can now be related
to vorticity deposition through the ejection velocity program.

Although the vortex formation mechanism of the present study is inherently compressible and non-
linear, the propagation of these vortex rings is similar to that of incompressible rings reported in
numerous previous studies. The principal compressibility effect is in the structure of the vortex core,
which appears to exhibit a Reynolds number dependence.

Because of the wide range of viscous and convective scales present in this problem, experiments such
as these can also pose an interesting challenge to direct numerical simulation in the context of
compressible turbulence.
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Design of Flyer-Plate-Driven Compressible Turbulent Mix Experiments

R. P. Drake
University of Michigan, Ann Arbor, MI

In this work we consider the optimization of experiments that use flyer plates to study compressible
turbulent mixing.  There are now at least two types of flyer plates that can be used for such
purposes.  The recent advent of high-velocity (>20 km/s), solid state flyers on the Z machine at
Sandia National Laboratories, along with the pending activation of x-ray backlighting, will make
possible very clean experiments.  In addition, any large laser can shock and accelerate a slab of
material, producing a “plasma flyer” that can deliver energy and momentum to a desired target.  If
the laser is large enough (~ 1 kJ), then the plasma flyer can have sufficient lateral size to permit
studies of mixing.  Here we consider the problem of designing of an optimized experiment. 

This poster will discuss the optimization of a flyer-driven experiment for either Rayleigh Taylor
(RT) or Richtmyer Meshkov (RM) experiments.  In RT experiments, one wants to decelerate an
interface immediately after it is shocked (with minimum coasting time), and to move the interface as
far as possible.  In RM experiments, one wants to cause the interface to coast steadily after it is
shocked, for the longest possible time.  This poster will present an analysis and analytic relations
that can guide the achievement of these goals, and hydrodynamic simulations showing what one can
do using flyer plates on Z.  



8th International Workshop on the Physics of Compressible Turbulent Mixing,       15
Pasadena, CA (2001)
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Compressible Hydrodynamics on the Omega Laser,
Motivated by Astrophysics

R. P. Drake1, P. Keiter1, K. E. Korreck1, K. Dannenberg1, H. A. Robey2, T. Perry2,
J. O. Kane2, B. A. Remington2, R. J. Wallace2, O. A. Hurricane2, D. D. Ryutov2,

J. Knauer3, R. Teyssier4, A. Calder5, R. Rosner5, B. Fryxell5, D. Arnett6, Y. Zhang7,
J. Glimm7, N. Turner8, J. Stone8, R. McCray9, J. Grove10

1University of Michigan, Ann Arbor, MI
2Lawrence Livermore National Laboratory, Livermore, CA

3Laboratory for Laser Energetics, University of Rochester, Rochester, NY
4Commissariat à l'Energie Atomique, Saclay, France

5University of Chicago, Chicago, IL
6University of Arizona, Tuscon, AZ

7State University New York Stony Brook, Stony Brook, NY
8University of Maryland, College Park, MD

9University of Colorado, Boulder, CO
10Los Alamos National Laboratory, Los Alamos, NM

Compressible turbulent mixing is an inherent feature in supernovae, supernova remnants, and related
systems.  Our scientific team collaborates to produce, in the laboratory, hydrodynamic mechanisms
that are important for the evolution of such systems.  These experiments are designed to be well
scaled from astrophysical systems to the laboratory.  This talk will provide an overview of this work
and will highlight our most recent results.  Our work is motivated by the specific fact that high-
resolution 2D and 3D numerical simulations have proven unable to reproduce certain aspects of
observations of supernova SN 1987A, and by the general need to provide experimental tests of
modeling of hydrodynamic systems.  The experiments take place on the Omega Laser at the
Laboratory for Laser Energetics, University of Rochester.  We have explored the coupling between
unstable interfaces, instability growth in a diverging system, the comparison of 2D and 3D systems,
the comparison of single mode and multimode systems, and the production and diagnosis of a
radiative-precursor shock.  In each of these cases, the experiment begins by using the laser to drive
a strong shock into a target material.  This produces a hydrodynamic initial state that can be modeled
by any astrophysical or laboratory hydrodynamics code.  The shock subsequently interacts with
other structures in the target, which we design in order to explore a specific physical issue.  In each
case, we then compare the results of the experiments with those of computer simulations.  The US
DOE and NASA supported this work.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Growth of Perturbations on Metals Interface at Oblique Collission with
Supersonic Velocity of Contact Point Motion

O. B. Drennov, A. L. Mikhaylov, P. N. Nizovtsev, and V. A. Raevskii
Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

By now the subsonic mode of collision is studied in detail. In the supersonic mode, when shock
waves arrive to the contact point, jet formation is impossible. It is assumed that perturbations
growth at metals interface is also impossible. It is obtained in our experiments that perturbations are
formed in the mode of supersonic jetless oblique collision at the metals interface. Analytical
consideration of the problem determined existence of the critical value of Mach number characterizing
transition from the stability area to the instable area. Numerical calculations with use of the two-
dimensional Lagrange technique showed presence of an area with large gradient of velocity and high
intensity of strains near the contact point. It results in fulfillment of the conditions for growth of
Kelvin-Helmholtz instability. Comparison of calculated and experimental values of amplitude of
occurred perturbations showed a rather good agreement between them.
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Abstract No. E12

An Experimental Study of the Effect of Shock Proximity on the
Richtmyer-Meshkov Instability at High Mach Number

S. G. Glendinning, D. G. Braun , M. J. Edwards, W. W. Hsing, B. F. Lasinski,
H. Louis, J. Moreno, T. A. Peyser, B. A. Remington, H. F. Robey, E. J. Turano,

C. P. Verdon, and Y. Zhou
Lawrence Livermore National Laboratory, Livermore, CA

The effect of shock proximity on the non-linear evolution of Richtmyer-Meshkov instability of a
sinusoidal perturbation at high Mach number was examined on experiments at the Omega laser at the
Laboratory for Laser Energetics, University of Rochester. We will present results from experiments
using a laser drive of about 3X1013 W/cm2 and targets made with polycarbonate as a pusher and
carbon foam (ρ=0.1 g/cc) as a payload. This provided an incident shock of Mach number ~10, a
nearly constant interface velocity for 10 ns, and a transmitted shock to interface velocity ratio of
about 1.22. Wavelengths studied varied between 50 µm and 150 µm. Different amplitudes were
chosen to allow linear growth, nonlinear growth, or proximate-shock growth to dominate.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Abstract No. E13

Mix Experiments using a Two Dimensional Convergent Shock Tube

D. A. Holder, C. Barton, and A. V. Smith
Atomic Weapons Establishment, Aldermaston, United Kingdom

This paper reports on the first Richtmyer Meshkov instability mix experiments using the improved
version of the AWE detonation driven Convergent Shock Tube (CST). Results from an early
prototype presented at the 7th IWPCTM demonstrated concept feasibility, but also the need for
refinement of the multi-point ignition process that critically controlled cylindricity of the generated
shock. This paper includes a brief description of the modifications undertaken to achieve the required
performance; also images recording the origin of the detonation wave formation and combination
process. The CST facility has been created to allow an extension of earlier RMI studies using a
conventional linear shock tube at low Mach number to two-dimensional studies at Mach number 2
– 3.

The current configuration is as shown, with height (internal)
1.02m: depth 50mm: apex angle 300.  Detonation of an oxy-
acetylene gas mixture by 30 sparkplugs drives a cylindrically
converging shock of order 10 bar into a dense gas region,
bounded by cylindrically curved microfilm membranes,
supported by fine wire meshes. Maximum compression of the
dense gas during its motion into the apex region is ~40 for
sulphur hexafluoride, or optionally, ~20 for xenon.

Visualisation is currently by shadowgraphy using a pulsed
copper vapour laser and drum camera. This provides a timed
sequence of images of the mixing development over the dense gas
region. Results from basic experiments with two unperturbed
interfaces will be presented, with comparisons to TURMOIL3D
code calculations.

Additionally results will be shown from the first experiments to
feature a perturbation superimposed on one interface. These will serve as a forerunner to the
proposed investigations in 2D geometry of a series of perturbation profiles  previously investigated
using the AWE linear shock tube [1]. The results will be used to validate 2D turbulent mix models.

Proposals will also be included for incorporating improved diagnostic techniques including the laser
sheet technique with ICCD camera recording to facilitate image analysis and derivation of
quantitative data.

PACS No.:  47.20.Ma
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Abstract No. E14

Rayleigh-Taylor Instability at a Tilted Interface in Incompressible
Laboratory Experiments and Compressible Numerical Simulations

J. M. Holford1, S. B. Dalziel1, and D. Youngs2

1Cambridge University, Cambridge, United Kingdom
2Atomic Weapons Establishment, Aldermaston, United Kingdom

An important feature of Rayleigh-Taylor (RT) instability is the significant amount of molecular
mixing that occurs, due to the small scales that are created.  Molecular mixing is important both as
a control on the rate of reaction between chemically active species, and because it creates a sink for
available energy by allowing the background potential energy of the flow to increase.  RT instability
is the most efficient known mixing process, and laboratory measurements show that, over the whole
flow evolution, up to 40% of the initial available energy increases the potential energy of the
background stratification, while the balance is lost to viscous dissipation.

Regions of locally unstable stratification are frequently created in perturbed stratified flows, for
example in breaking gravity waves and shear-driven billows.  However, in these naturally occurring
statically unstable regions, the initial conditions are far from the idealised classical RT instability.
 In this study, we investigate the mixing that occurs in RT instability at an interface that is initially
tilted at an angle to the horizontal, introducing a competition between the local overturning of RT
instability and a large-scale overturning within the whole domain.

RT instability is initialised in a water tank in the laboratory by withdrawing a barrier separating
dense salt water above from fresh water below.  Measurements of both the density distribution and
in-plane velocity field are made in a vertical slice through the centre of the tank.  For the first time,
measurements of the instantaneous efficiency of mixing are made.  The instantaneous efficiency at
early times can be higher than the cumulative efficiency, with the rate of increase of potential energy
of the background stratification reaching 50% of the rate of decrease of available energy.  The
reduction in the cumulative mixing efficiency as the angle of the initial interface increases is
quantified.

The experiments have been modelled numerically using the compressible code TURMOIL3D.  The
initial conditions are carefully chosen to model the incompressible experiments as closely as possible.
 Analyses of energy and concentration fluctuation spectra are used to understand the mixing and
dissipation processes.  The combination of experimental and computational modelling is shown to
be useful both as a validation of the numerical methods and as a tool for understanding the basic
dynamics of the flow.
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Abstract No. E15

Study of Diverging and Converging Spherical Shock Waves Induced by
Micro Explosives and their Interaction with Product Gases

S. H. R. Hosseini and K. Takayama
Tohoku University, Sendai, Japan

The paper reports an experimental study of production and propagation of spherical shock waves.
In order to quantitatively observe spherical shock waves and the flow field behind them, an aspheric
spherical transparent test section was designed and constructed. This 150 mm inner-diameter
aspheric lens shaped test section permits the collimated visualization laser beam to traverse the test
section parallel and emerge parallel. Spherical diverging shock waves were produced at the center of
the spherical test section. In order to generate shock waves, irradiation of a pulsed Nd:YAG laser
beam on micro silver azide pellets were used. The weight of silver azide pellets ranged from 5 to 20
mg, with their corresponding energy of 9 to 36 J. Pressure histories at different points over the test
section were measured to validate production of uniform shock waves. After reflection of spherical
shock wave from the test section, a converging spherical shock wave was produced and its
interaction with the interface of explosive product gas was studied. Double exposure holographic
interferometry and time resolved high speed photography were used for flow visualization. The
whole sequence of diverging and converging spherical shock waves propagation and their interaction
with product gases were observed.

PACS No.: 47.40.Nm
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Abstract No. E16

Interaction of Converging Shock Waves With Cylindrical
Heavy Gas Interfaces in an Eccentric Arrangement

S. H. R. Hosseini and K. Takayama
Tohoku University, Sendai,  Japan

Paper reports a study on interaction of converging and diverging cylindrical shock waves in air with
non-uniform gaseous media and resulting Richtmyer-Meshkov instability. An annular vertical co-
axial diaphragmless shock tube was used to produce converging cylindrical shock waves. Cylindrical
soap bubbles filled with SF6 heavy gas were placed out of the geometrical center of shock tube's test

section. As a result of asymmetry between converging cylindrical shock waves and cylindrical
interfaces, a complex wave motion and interaction was produced. Pressure histories at different radii
were measured during the converging and diverging shock wave propagation in the test section after
interaction. A strong secondary shock wave focusing in the SF6 test gas with a high peak

overpressure was observed. Double exposure holographic interferometry was used for flow
visualization. The time evolution of turbulent mixing zone between the air/ SF6 light/heavy gases and

interfacial deformations were quantitatively studied. After the secondary shock wave focusing in the
SF6 a relatively strong jet, which was penetrating to the air in the direction of geometrical center, was

produced.

PACS No.: 47.40.Nm
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Abstract No. E17

From Linear to Turbulent Stages of the Richtmyer-Meshkov Instability
Development in a Large Cross Section Shock Tube

L. Houas1, G. Jourdan1, L. Schwaederlé1, and E. E. Meshkov2

1IUSTI, CNRS, Université de Provence, Technopôle de Château-Gombert,
Marseille, France

2Russian Federal Nuclear Center − VNIIEF, Sarov, Russia

The aim of the present investigation is to contribute to the understanding of the turbulence transition
phases by the help of the development of the Richtmyer-Meshkov instability (RMI). In this way,
we have built a new shock tube which allows to follow a Richtmyer-Meshkov instability induced
mixing from its beginning to the fully turbulent developed stage with both control and knowledge of
the initial conditions. Up today, all experiments developed to study the RMI have been focussed on
the observation of the growth of the initial perturbations in the linear and the non-linear regimes and
not far, or the investigation of the turbulent phase without knowing the real initial conditions, i.e.
when the shock wave interacts with the thin membrane which initially separates the two fluids of
different densities. Thus, the new shock tube has first a large square cross section (20 cm by 20 cm)
in order to prevent from wall effects. Furthermore a suitable experimental chamber permits to
observe and control the initial perturbations we impose to the thin material interface which initially
separates the two gases expected to mix together after the incident shock wave accelerates their
common interface. The total length of the shock tube is of 7 m, the experimental chamber is 50 cm
total length and its field of view starts from 4 cm before the initial position of the interface to 46 cm
after. To follow the development of the initial perturbations and the mixing of the two gases, we have
carried out a Mie scattering laser sheet technique. A 50 Khz Oxford copper vapor laser beam is
transformed as a laser sheet before crossing the experimental chamber in its length direction. This
ultra rapid laser is coupled with a 321 Cordin model high speed camera, which together allow to
record, during the same run, about 100 plane frames of the experiment spaced by 100 to 20 µs
depending on the laser frequency (from 10 to 50 Khz). The maximum recorded image rates is of
about 50,000 pictures per second. Moreover, a suitable rotating mirror device accurately coupled and
synchronized with the laser-camera system, permits to translate, during the same run, the laser sheet
from the center axis of the experimental chamber to its walls in order to obtain a 3D visualization of
the phenomenon. The gas initially present in the experimental chamber is seeded with water vapor
particles. The test gases are air/He, air/Ar and air/Kr in order to investigate the cases where the shock
wave passes from a heavy to a light gas and vice-versa. The initial pressure is 1 atm. and the shock
wave Mach number in air is of 1.3. The principle of the experiment and a view of the experimental
set up are shown on Figure 1. We are now running the first experiments and we hope to present in
the full paper the first results illustrating, during the same run, the development of the different
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stages of the instability, the transient phases as well as some information on the fully turbulent
regime.

(a)

∇∇∇∇P
∇∇∇∇ρρρρ

Shock Linear
Non  
linear

t=0 Initial conditions

Transition
Turbulent mixing

2nd membrane

  (b)
Fig. 1: Principle of the experiment (a) and view of the new large cross section shock tube of IUSTI
coupled with a Copper vapor Mie scattering laser sheet technique (b).
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Abstract No. E18

PLIF Flow Visualization of a Shock-Accelerated Air/SF6 Interface

J. W. Jacobs and V. V. Krivets
University of Arizona, Tucson, AZ

A vertical shock tube is used to study the Richtmyer-Meshkov instability of a membraneless Air/SF6

interface.  The two gases enter the shock tube at opposite ends of the driven section and are allowed
to exit through slots in the shock tube wall to produce a flat, slightly diffuse interface in the test
section.  A sinusoidal perturbation is then given to the interface by oscillating the shock tube in the
lateral direction to produce standing waves.  Planar laser induced fluorescence (PLIF) is used to
visualize the flow by seeding the air with acetone vapor and illuminating it with a sheet of light
produced by a pulsed Nd:YAG laser.  The resulting fluorescent signal is then recorded using a cooled
CCD camera.  Images obtained from these experiments show very clearly the development of the
instability far into the nonlinear regime in which the interface is contorted into pronounced
mushroom structures.  New results using M = 1.3 shock waves will be presented which clearly show
the transition to turbulence in this flow at late times.  The transition process begins with the
development of Kelvin-Helmholtz instability on the vortex spirals.  After formation, the initially
coherent Kelvin-Helmholtz pattern very quickly decays into turbulence.  Eventually the turbulence,
which is initially confined to the vortex cores, begins to erode the remainder of the mushroom
structures.  Experiments will also be presented that study the effects of reshock on different stages
of the instability.  In these experiments a false wall is used to vary the distance between the initial
interface location and the end wall in order to control the arrival time of the reflected shock wave.
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Abstract No. E19

Laser-Based High Pressure, High Strain-Rate Solid-State Experiments

D. H. Kalantar1, J. Belak1, J. D. Colvin1, M. Kumar1, K. T. Lorenz1, K. O. Mikaelian1,
S. Pollaine1, B. A. Remington1, S. V. Weber1, L. G. Wiley1, A. M. Allen2,

A. Loveridge-Smith2, J. S. Wark2, and M. A. Meyers3

1Lawrence Livermore National Laboratory, Livermore, CA
2Oxford University, Oxford, United Kingdom

3University of California at San Diego, San Diego, CA

We have performed a high pressure solid state instability growth experiment using an x-ray ablative
drive on the Nova laser [1].  In this experiment, an Al foil is shock compressed to a peak pressure
of 1.8 Mbar with a sequence of shocks.  A preimposed sinusoidal modulation grows by the
Rayleigh-Taylor instability.  At early time, the growth is nearly fluid-like, but it is suppressed at late
time.  The growth of the instability provides information about the strength of the metal at high
pressure [2, 3].  In order to model this experiment, we invoke softening by shear bands and recovery
of strength following dissipation of the heat associated with the localized shear bands.

In order to develop a lattice level understanding of response of these samples at high pressure, we
perform dynamic x-ray diffraction of shocked materials to verify the state of the material under
compression.  In these experiments, we record x-rays diffracted from orthogonal lattice planes of
shock compressed single crystal Cu.  The shift of the Bragg diffraction from these orthogonal planes
confirms that the lattice undergoes a 3D compression.  By comparison, Si is observed to respond
with uniaxial compression.  [4]

We are also developing shocked sample recovery techniques to characterize the residual deformation
microstructure.  This residual structure is studied by optical and electron microscopy techniques.

Results of the RT, diffraction, and recovery experiments will be discussed.
---
[1] D. H. Kalantar, B. A. Remington, J. D. Colvin, et al, Phys. Plasmas 7, 1999 (2000).
[2] J. F. Barnes, P. J. Blewett, R. G> McQueen, et al, J. Appl. Phys. 45, 727 (1974).
[3] A. I. Lebedev, P. N. Nizovtsev, V. A. Raevskii, V. P. Solov’ev, Phys. Dokl. 41, 328 (1996).
[4] A. Loveridge-Smith, A. Allen, J. Belak, et al, Phys. Rev. Letters 86, 2349 (2001).
---

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Abstract No. E20

RFNC-VNIITF Multifunctional Shock Tube to Investigate
the Evolution of Instabilities in Nonstationary Gas Dynamic Flows

Yu. A. Kucherenko, O. E. Shestachenko, S. I. Balabin, and A. P. Pylaev
Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

In the paper, at the shock tube operation in three modes, the parameters of the flows in the RFNC-
VNIITF were given.

In the first mode, in the shock tube the stationary shock waves are formed. This makes it possible
to investigate the evolution of the Richtmyer-Meshkov instability and turbulence.

In the second mode, in the shock tube a  nonstationary shock wave is formed that makes it possible
to carry out the investigation of the behaviour of the contact  boundaries between different density
gases when there are conditions for the evolution of the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities.

In the third mode, in the shock tube a compression wave is formed. This makes it possible to
investigate the evolution of the Rayleigh-Taylor instability and turbulence.
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Abstract No. E21

Planar Laser Sheet Visualization and Laser Doppler Velocity Measurements
in Shock-Induced Turbulent Mixing Zones

A. Lassis, P. Montlaurent, C. Rayer, and J.-F. Haas
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

We plan to present measurements on gaseous turbulent mixing arising from the Richtmyer-Meshkov
instability (RMI) in a vertical shock tube of driver (below) and driven (above) sections lengths 1 m
and 4-5 m respectively and of  square internal cross section throughout (13 cm by 13 cm). In its
present configuration, the maximum driver pressure is 8 bar and the driven section is initially at local
atmospheric pressure (1 bar), thus the shock tube is limited to Mach numbers of about 1.5 maximum.
The main diaphragm is made of two plastic layers (kapton) with conducting wires between them.
In a typical low Mach number experiment, the initial pressure of air in the driver is set at 3 bar, and
a Mach 1.2 shock is driven in the test section air at a controlled time by Joule heating the wires and
locally melting (and weakening) the kapton.

We will characterize the mixing arising when the shock wave (propagating upwards in the z direction)
accelerates a planar horizontal contact surface made of a thin (0.5 µm) nitrocellulose membrane laid
against a thin stainless steel wire mesh (wire diameter and spacing 1010 and 80 µm). The purpose
of the film-mesh combination is to force the small scales (1 by 1 mm in the x and y directions) of the
RMI, thus insuring an early transition to turbulence of a thin planar mixing zone after shock passage.
The gas pairs of initial interest are SF6-air and air-SF6. As it was several years ago, our primary goal
is to provide an experimental data
base (density structure and turbulent
kinetic energy) for verification and
validation of turbulent mixing models
(1) imbedded in one- or two-
dimensional hydrodynamic codes.
The same laser-doppler velocimeter
will be used (Dantec two component
system) for the measurement of the
kinematic parameters of the mixing
zone. Compared to the earlier effort
performed in a shorter (3.8m) and
narrower shock tube (cross section 8
by 8 cm),  we expect to improve the
quality of the flow because the wall
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effects will be much less disruptive. We are also preparing a planar visualization system using a short
pulse ruby laser to produce a light sheet (thickness 0.5 to 1 mm) entering the shock tube from the
top end-plate. Thus we hope to measure the local structure of the mixing zone without the optical
signature from wall-located mixing which perturbed our earlier visualizations in the smaller tube (2).

References :

1. D. Souffland et al., Measurements and Simulations of the Turbulent Energy Levels in Mixing
Zones Generated in Shock Tubes. pp. 486-491 in the proceedings of the 6th IWPCTM,
Marseilles, June 1997, Jourdan and Houas eds.

2. I. Galametz at al., Visualization of shocked mixing zones using differential interferometry and
X-rays. pp. 178-184 in the proceedings of the 5th IWPCTM, Stony Brook, July 1995,
Young, Glimm and Boston eds., World Scientific.
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Abstract No. E22

Hydrodynamic Instabilities at a Shock Accelerated
Bubble Gas-Gas Interface

G. Layes1, G. Jourdan1, P. Roualdes2, and L. Houas1

1IUSTI, CNRS, Université de Provence, Technopôle de Château-Gombert,
Marseille, France

2Centre d’Etudes de Gramat, Gramat, France

The aim of the present work is to investigate the interaction of a plane shock wave with one gas
bubble within another gas of different density in order to better understand the Richtmyer-Meshkov
instability process in spherical geometry. These experiments are performed in the new 500 mm
circular cross section shock tube installation of IUSTI (donation of DGA Gramat). It is a 12 m total
length shock-tube with a 2 m high pressure chamber long and an experimental chamber total field of
view of 475 mm long by 320 mm high. The shock tube is coupled with a Schlieren high speed camera
system and PCB piezoelectric transducers are flush mounted on the shock tube side walls for both
recording the pressure evolutions and triggering the acquisition device.

Spherical volumes of gas (He, Ar or Kr) with density, and sound speed, differing from that of the
surrounding atmosphere (air) are accelerated by a relatively weak shock wave. The incident shock
wave Mach number in air is around about 1.2. From successive Schlieren pictures (up to 30 000
frames per second), we hope to investigate the hydrodynamic interface instability and the bubble
distortion. Finally, we plan to generate several neighboring bubbles in the experimental chamber in
order to study the bubble coupling during their acceleration.
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Abstract No. E23

Experimental and Numerical Study of Shock Wave–Bubble Interaction

K. Levy1,2, O. Sadot1,2, D. Oron1,2, Y. Srebro2, Y. Elbaz2, A. Yosef-Hai1,2,
G. Ben-Dor3, and D. Shvarts1,2

1Ben-Gurion University, Beer-Sheva, Israel
2Nuclear Research Center - Negev, Israel

This work presents a study of the interaction of a shock wave with a spherical bubble, which results
in the formation of vortex rings and a jet. Similar studies which presents various stages of the
interaction evolution were published in [1-5].

In the present work two configurations were studied in which a spherical bubble of SF6 (Heavy
bubble) or He (light bubble) was imbedded in the shock tube at ambient conditions. The evolution
of the flow due to the interaction of the shock wave with the bubble was followed experimentally
and numerical. The results reveal that in the first case a jet is formed due to a converge shock wave
towards the bubble center, which formed high-pressure region on the bubble axis that forced the
heavy fluid forward. In the second case a vortex ring is formed around the bubble creating a region
of high pressure in the heavy gas forcing the heavy fluid forward and forming a jet. A good agreement
was found comparing the results of the experiments to those of the simulations.

References

1. Quirk et al., J. Fluid Mechanics, 318, pp. 129 (1996).
2. Picone et al., J. Fluid Mechanics, 189, pp. 23 (1988).
3. Yang, et al., J. Fluid Mechanics, 258, pp.217 (1994).
4. Haas et al., J. Fluid Mechanics, 181, pp. 41 (1987).
5. Smith et al. in the proceeding of the MIX  91 workshop.
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Abstract No. E24

Laser-Driven Near Isentropic Compression of an Aluminum Flyer Plate

K. T. Lorenz, D. Kalantar, J. Edwards, J. D. Colvin, and B. Remington
Lawrence Livermore National Laboratory, Livermore, CA

A new design for producing a ramped pressure wave for the study of material response in solid
media under nearly isentropic compression conditions will be discussed.  A plasma source, initiated
from laser heating of a low-density carbon foam, unloads across a vacuum gap onto an Al target to
provide a ramped, shockless, pressure load.  Experiments using HE to create shockless  drives have
previously been demonstrated by Barnes, et al. [1] and Levedev, et al. [2,3].  This type pressure
drive is coupled to targets having modulated surfaces for the study of material response and strength.
The current design configuration of our near isentropic drive will provide peak pressures and strain
rates on order of 0.4Mbar and 106 – 107sec-1, respectively.  Initial experiments using VISAR, x-ray
radiography and thin Al foils will examine both the planarity and the time-dependent nature of the
pressure loading in the target.  Recent experimental results and as well as experimental simulations
scaled to the laser drive conditions will be presented.

[1]  J.F. Barnes, P.J. Blewett, R.G. McQueen, K.A. Meyer and D. Venable, J. Appl. Phys. 45, 727
(1974).

[2]  A.I. Lebedev, P.N. Nizovtsev, V.A. Rayevsky, in the Proceedings of the 4th International
Workshop on the Physics of Compressible Turbulent Mixing, 29 March – 1 April, Cambridge,
England (Cambridge University Press, Cambridge, 1993), p. 81.

[3]  A.I. Lebedev, P.N. Nizovtsev, V.A. Raevskii and V.P. Solov’ev, Dokl. Akad. Nauk. 349 (MAIK
Nauka / Interperiodica Publishing, Moscow July 1996), pp. 332-4. Translation: Phys. Dokl. 41, 328
(1996).

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Abstract No. E26

Single-Mode Incompressible Richtmyer-Meshkov Instability Experiments

C. E. Niederhaus1 and J. W. Jacobs2

1NASA Glenn, Cleveland, OH
2University of Arizona, Tucson, AZ

The Richtmyer-Meshkov instability of a moderate Atwood number, miscible, two-liquid system is
experimentally investigated.  The instability is generated by dropping a fluid container onto a coil
spring, producing a nearly impulsive acceleration followed by a period of freefall.  The initial density
interface has a well-defined, 2-D, single-mode sinusoidal perturbation generated by laterally
oscillating the fluid container.  The perturbation quickly inverts and then grows in amplitude after
undergoing the impulsive acceleration.  Planar laser-induced fluorescence is used for flow
visualization, providing clear views of the fluids far into the nonlinear regime.  Disturbance
amplitudes are measured and compared to theoretical predictions in the linear, weakly nonlinear, and
nonlinear regimes.  The effects of Reynolds number (based on circulation) on the vortex core
evolution and overall growth rate of the interface are also investigated.  In addition, an instability in
the vortex cores is observed and criteria established for its occurrence.
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Abstract No. E27

Experimental Study of a Strongly-Shocked Gas Interface with Visualized
Initial Conditions

J. G. Oakley, M. H. Anderson, and R. Bonazza
University of Wisconsin at Madison, Madison, WI

The Richtmyer-Meshkov (RM) instability is studied for a strongly shocked gas-gas interface in the
nonlinear regime.  The impulsive acceleration of the interface by a shock wave imparts a velocity to
the interface and baroclinic vorticity ( p∇×∇ρ ) causes the amplitude of a single mode perturbation

to grow.  Experiments for studying the compressible, turbulent mixing of a gas-gas interface are
conducted in a shock tube.  The shock tube is oriented vertically (9.3 m high), has a large square
cross-section (25.4 cm),  is modular (for studying interfaces of different ages) and has a structural
capacity of 20 MPa [1].  The driven and test section gases are initially separated with a thin copper
plate that has been formed with a sinusoidal perturbation along its length.  The sine wave plate has
three wavelengths of λ=38.1 mm and an amplitude, a0=3.2 mm which forms an initial condition in
the linear to nonlinear transition with a wavelength amplitude product of  ka0=0.52. The sine wave
plate is retracted from the shock tube forming a  membraneless, single-mode  perturbation between
the driven and test gases.  Using a heavy-above-light gas configuration, the Rayleigh-Taylor (RT)
instability develops and the perturbation amplitudes grow in time forming the initial condition for
the RM experiment.  A continuous wave laser is used in the interface section to illuminate the
interface, and the RT instability is imaged using a 256x256 pixel array, 8-bit CCD camera framing
at 100 fps.  The test gas is seeded with smoke particles (~0.5 µm) and Mie scattering is used to
visualize the interface the two interface gases.  After acceleration by the planar shock wave, the
interface travels down the shock tube and is imaged in the test section using a pulsed YAG laser and
1024x1024 pixel array, 16-bit CCD camera.  One post-shock image is obtained per experiment.  The
experimental images are processed to determine the initial and post-shocked perturbation amplitudes.
The experimental results are compared with linear and nonlinear RM theories.  The gas pair
combination CO2-air is studied in the strongly shocked regime, M=2.90.

[1] Anderson, M.H., B.P. Puranik, J.G. Oakley, P.W. Brooks and R. Bonazza, “Shock tube
Investigation of Hydrodynamic Issues Related to Inertial Confinement Fusion,” Shock Waves,
10(5), pp. 377-387, 2000.
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Experimental Investigations of the Self-Similar Mixing Mode of Different
Density Gases in the Earth’s Gravitational Field

Yu. A. Kucherenko, O. E. Shestachenko, Yu. A. Piskunov,
E. V. Sviridov, V. M. Medvedev, and A. I. Baishev

Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

At the installation OSA the experiments on the investigation of the self-similar mixing mode of
different density gases in the Earth’s gravitational field were performed. When so doing the heavy
gas was placed over the light one. By means of the specter-diaphragm the gases were separated. At
some instant of time the specter-diaphragm was  quickly ruptured into  small-scale fragments under
the action of the external force. At the formed contact boundary of two different density gases the
Rayleigh-Taylor instability and  the unstationary zone of turbulent mixing were evolved.

For three values of Atwood numbers the experiments were carried out. In the experiments the
trajectories of the mixing fronts in the light and heavy gases were registered.  The mixing asymmetry
coefficient and the constant alpha specifying the nondimensional mixing rate were determined.
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Abstract No. E29

Modeling Laser Material Strength Experiments

S. Pollaine1, D. Kalantar1, B. Remington1, J. Belak1, J. D. Colvin1,
J. Edwards1, R. Minich1, K. O. Mikaelian1, K. T. Lorenz1, S. V. Weber1, L. G. Wiley1,
D. Paisley2, A. Hauer2, J. S. Wark3, A. Loveridge3, A. M. Allen3, T. R. Boehly4, and

M. A. Meyers5

1Lawrence Livermore National Laboratory, Livermore, CA
2Los Alamos National Laboratory, Los Alamos, NM

3Oxford University, Oxford, United Kingdom
4Laboratory for Laser Energetics, University of Rochester, Rochester, NY

5University of California at San Diego, San Diego, CA

We have done many experiments on the Omega and Janus lasers to measure material strength and
other properties of Al, Si and Cu at high pressures (100 kb – 1 Mb) and strain rates (1.e5 – 1.e8).
These experiments are diagnosed by VISAR (velocity measurement), x-ray diffraction and material
recovery.  We simulate these experiments with the Steinberg-Guinan constitutive model that includes
shear strength, yield and melting temperature as a function of pressure and temperature.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Experiments and Simulations of Instabilities in a
Shock-Accelerated Gas Cylinder

K. Prestridge1, C. A. Zoldi1,2, P. Vorobieff 3, P. M. Rightley, and R. F. Benjamin1

1Los Alamos National Laboratory, Los Alamos, NM
2State University New York, Stony Brook, Stony Brook, NY

3University of New Mexico, Albuquerque, NM

The interaction of a planar (M=1.2) shock with a heavy-gas SF6, round cylinder surrounded by air
produces strong vorticity, driven by the shock wave's pressure gradient interacting with density
gradients at the air/SF6 interface. The growth of the cylinder is measured using six images of the
density profiles of each experimental event, unlike earlier studies, which captured only one image per
event.  The velocity field is measured at one time using Particle Image Velocimetry (PIV).  We also
present two-dimensional computational simulations, using the RAGE code, which utilize the actual
initial conditions measured in the experiment. The simulation has the same spatial resolution as the
experimental diagnostics, and for the first time, the width of the computational domain has been
matched to that of the experiment, allowing us to consider sidewall effects. Experimental images
show an instability growth rate somewhat higher than the results of the RAGE simulation. Velocity
fields measured experimentally qualitatively agree with simulations, but the quantitative difference
in velocity magnitudes is substantial.
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Abstract No. E31

Experimental Study into Rayleigh-Taylor Turbulent Mixing Zone
Heterogeneous Structure

Yu. A. Kucherenko, A. P. Pylaev, V. D. Murzakov, A. V. Belomestnih, V. N. Popov, and
A. A. Tyaktev

Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

The heterogeneous structure study has been performed by means of a “light-sheet” technique at the
SOM gas-dynamic accelerator. The investigated system consisted of three layers of different density
liquids. For leading out the information from the mixing zone inner region illuminated by the “light-
sheet”, visualizing particles were seeded into one of the liquids. The visualizing particles, which got
into the “light-sheet”, diffused light, and at the same time photo images of the liquid fragments,
contained the visualizing particles, were formed by a light-sensitive receiver. For the error reduction
refractive indexes of all the three liquids were equalized. A special test has been conducted for
determining of measurements inaccuracy. Experiments have been performed for two values of
acceleration of artificial field of gravity. Distributions of liquid fragments sizes are showed in the
form of bar charts for different moments of time.
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Measurements of Turbulence Correlations in Low Atwood Number
Rayleigh-Taylor Mixing

P. Ramaprabhu and M. J. Andrews
Texas  A & M University, College Station, TX

Simultaneous measurement of velocity and density fields in a statistically-steady, low Atwood
number (~ 10-3), Rayleigh-Taylor experiment have been made.  The experiment allows long data
collection times and thus extensive spectral characterization.  The method used is referred to as
Particle Image Velocimetry-Scalar (PIV-S), and is a variant of the PIV technique.  The PIV-S method
uses different concentrations of particles to mark fluids of different densities.  Tracking the motion
of individual particles yields velocity measurements, while local particle concentrations gives density
measurements.  Two-dimensional fields of <ρ’2>, <u’2>, <v’2>, <u’v’>, <ρ’u’>, and <ρ’v’>
correlations, with associated power spectra will be presented.  The density measurements compare
well with corresponding temperature data from thermocouple experiments.
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Abstract No. E34

Experimental Study of the Interaction of a Strong Shock
with a Spherical Density Inhomogeneity

H. F. Robey1, T. S. Perry1, R. I. Klein1, 2, J. A. Greenough1, J. O. Kane1, and
T. R. Boehly3

1Lawrence Livermore National Laboratory, Livermore, CA
2University California at Berkeley, Department of Astronomy, Berkeley, CA

3Laboratory for Laser Energetics, University of Rochester, Rochester, NY

Laser-driven experiments conducted on the Omega Laser are described which probe the interaction
of a very strong shock with a spherical density inhomogeneity.  The interaction is viewed
simultaneously from two orthogonal directions.  This enables visualization of both the initial
distortion of the sphere into a double vortex ring structure as well as the onset of an azimuthal
instability that ultimately results in the three-dimensional breakup of the ring. The experimental
results are compared with three-dimensional numerical simulations using an adaptive mesh
refinement technique.  The agreement between experiment and simulation is shown to be quite good.
 The experimental results completely define the three-dimensional topology of the flow, and the
three-dimensional breakup is shown to be in remarkable agreement with the incompressible theory
of Widnall et al.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Turbulent Transition in a High Reynolds Number,
Rayleigh-Taylor Unstable Plasma Flow

H. F. Robey1, Y. K. Zhou1, A. C. Buckingham1,
P. Keiter2, B. A. Remington1,  and R. P. Drake2

1Lawrence Livermore National Laboratory, Livermore, CA
2University of Michigan, Ann Arbor, MI

A high Reynolds number, Rayleigh-Taylor unstable plasma flow driven by laser radiation is
described.  Given enough time at these experimental conditions, the interfacial mixing layer will
eventually transition to turbulence.  The experiments are limited, however, in the very short time
duration of the available flow.  The Reynolds number characterizing the mixing layer is determined
from the experimentally measured length and velocity scales together with the plasma kinematic
viscosity determined from a corresponding 1D numerical simulation.  From these, the Reynolds
number is determined to be sufficiently large (Re > 105) to support a turbulent flow.  An estimate
of the developing Taylor and Kolmogorov dissipation scales, however, shows that the temporal
duration of the flow is insufficient to allow for the appearance of a turbulent inertial subrange.  A
methodology is described for estimating the time required for the development of a fully turbulent
flow at these conditions.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Effects of High Initial Amplitudes and High Mach numbers on the Evolution
of the RM instability: II. Experimental Study

O. Sadot1,2, A. Yosef-Hai2, A. Rikanati1,2, D. Oron1, G. Ben-Dor2, and D. Shvarts1,2

1Nuclear Research Center Negev, Israel
2Ben-Gurion University, Beer-Sheva, Israel

Recent theoretical work [Rikanati et. al. this conference] suggested that the reduction in the RM
instability initial growth rate observed in recent experiments [1, 2] is mainly a result of high initial
amplitudes used in those experiments, rather then high Mach number effects.

In the present work, effects of high initial amplitudes and high Mach number are studied
experimentally. Results from a shock tube apparatus at low Mach number (M=1.2) with high initial
amplitudes shows velocity reduction similar to the theoretical predictions. Preliminary experiments
studying the RM instability at high Mach numbers were done, using a newly constructed shuck tube,
to confirm the velocity reduction due to effects of high Mach numbers.

References
1) Aleshin et. al., in Proceedings of the Sixth International Workshop on the Physics of

Compressible Turbulent Mixing edited by G. Jourdan & L. Houas, Marsielle France 1997.
Page 1.

2) Dimonte G., Frerking C.E., Schnider M. and Remington B., Phys. of Plasmas 12, 304 (1996).
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Measurements within a Richtmyer-Meshkov Mixing Zone
using a Triple Hot Wire Probe Technique

L. Schwaederlé1, G. Jourdan1, L. Houas1, and J.-F. Haas2

1IUSTI, CNRS, Université de Provence, Technopôle de Château-Gombert, Marseille, France
2Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

A triple probe constant temperature hot wire anemometer (CTHWA) investigation is undertaken in
a shock tube to characterize the turbulent mixing zone induced by the Richtmyer-Meshkov
instability (RMI) when the shock wave propagates through the interface between two gases of
different densities. The first gas is air and the second is He (lighter), Ar (moderately heavier) and Kr
(much heavier). The experiments are conducted in a 8.5cm square cross section shock tube of which
test section is represented on Fig. 1. The two gases are separated by a thin (0.4µm) nitrocellulose
film resting on an orthogonal grid made of  9_9 wires (180µm diameter, 8.5mm spacing) which is
accelerated by a Mach number 1.25 shock wave in air at atmospheric pressure. Fig 2. summarizes
the principle and the aim of the present investigation.
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      Fig 1. Experimental set-up   Fig 2. Principle of the
investigation

The CTHWA output voltage is a function of local Reynolds number, heat conductivity and
temperature with empirical constants. With the simplifying assumption of linear profiles for both
temperature (with a jump less than 30K in all cases) and heat conductivity across the mixing zone,
and using the Rankine-Hugoniot calculations in pure and premixed gases, the determination of the
constants, given by a suitable calibration procedure with varying concentrations (by steps of 10%),
provides the evolution of the Reynolds number within the mixing zone. An example of both (a) raw
hot-wire signal and (b) deduced Reynolds number evolution in air/Ar mixing zone are represented in
Fig 3.
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In order to obtain separately the mixing
density, temperature and velocity we
positioned three HWA probes  (5 µm in
diameter and 1.25 mm in length),
inserted from the end plate along the
shock tube axis and working at different
temperatures. We intend to present the
local Reynolds number evolution across
the mixing zone, the estimates of
density, velocity and temperatures with

(a) (b

Fig. 3. Typical hot-wire signal and local Reynolds number evolution

statistical results based on identical shock tube experiments, and carry this study at different
positions both axially and laterally.
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Abstract No. E38

Experimental Study into Evolution of Gravitational Turbulent Mixing of
Gases at the Multifunctional Shock Tube

Yu. A. Kucherenko, O. E. Shestachenko, Yu. A. Piskunov, E. V. Sviridov,
V. M. Medvedev, and A. I. Baishev

Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

At initial moment of time investigated different density gases are placed inside the multifunctional
shock tube and separated with the “Spectre-diaphragm”. Next the “Spectre-diaphragm” is destroyed
into small-scale fragments by an external force. The gaseous interface is accelerated by a compression
wave formed in the shock tube. At that, the Rayleigh-Taylor instability arises at the contact
boundary of different density gases, and a non-stationary zone of gravitational turbulent mixing
forms. According to the experimental results, the dependence of the turbulent mixing zone width on
the interface displacement has been built, and the non-dimensional rate of mixing alpha has been
obtained.
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Abstract No. E39

Shock Tube Experiments on Richtmyer-Meshkov Instability Across a
Chevron Profiled Interface

A. V. Smith, D. A. Holder, C. J. Barton, A. P. Morris, and D. L. Youngs
Atomic Weapons Establishment, Aldermaston, United Kingdom

This paper reports on the latest experiment in the series of Richtmyer-Meshkov instability (RMI)
shock tube experiments. They feature a dense gas / air interface in the form of a chevron of central
obtuse angle 157º and full test cell height. The interest in an inclined interface of this angle was
initiated at the 5th IWPCTM [1].

The experiments were conducted at shock Mach number 1.26 (70kPa overpressure), using the 200
x 100 mm shock tube with a three zone test cell arrangement of air / dense gas / air. The dense gas is
optionally sulphur hexafluoride (SF6) or xenon (Xe) which provide Atwood numbers of 0.67 and
0.64 respectively. Gas separation was by means of microfilm membranes, supported by fine wire
meshes. Visualisation of the gas mixing was by laser sheet illumination of the seeded dense gas using
a copper vapour laser pulsing at 12.5kHz. Mie scattered light was recorded using a 35mm rotating
drum camera to capture a sequence of 50 images per experiment; or alternatively a single image from
an ICCD camera.

Sample laser sheet images are compared to those from corresponding 3-D hydrocode calculations.
Quantitative analysis will be of the form of derived relative intensity data from line-outs through
experimental images and their code equivalents. Comparisons will reveal substantial agreement on
major features.

A video will also be available showing a full sequence of images from one experiment with
corresponding  computed code images.

1. Bashurov et al. Experimental and Numerical Evolution Studies for 2-D Perturbations of the
Interface Accelerated by Shock Waves. 5th IWPCTM

PACS No.: 47.20.Ma
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Abstract No. E40

The Evolution and Interaction of Two Shock-Accelerated Unstable
Gas Cylinders

C. Tomkins, K. Prestridge, P. Rightley, C. Zoldi, and R. Benjamin
Los Alamos National Laboratory, Los Alamos, NM

The interaction of two Richtmyer−Meshkov-unstable gas cylinders is investigated experimentally.
 The dense-gas cylinders are initially configured with separation S in the spanwise direction (S = 1.1
to 2.0 times the diameter, center-to-center), and subject to acceleration by a planar shockwave.  The
evolution of the resulting flow structures is captured downstream by flow visualization and PIV.

In the single-cylinder case (Prestridge et al.), the flow structure is dominated by two spanwise-
separated vortices.  In the double-cylinder configuration, the innermost vortices interact (e.g., Figure
1).  The nature and degree of the interaction—and hence the morphology of the resulting flow
structures—is observed to be highly sensitive to the initial cylinder spacing.  The effects of the
interaction on both the initial baroclinic vorticity production, and the subsequent evolution of this
deposited vorticity, are investigated.

Figure 1. Flow visualization example of interaction between adjacent shock-accelerated gas cylinders.

References

K. Prestridge, et al., “Experiments and Simulations of Instabilities in a Shock-Accelerated Gas
Cylinder”, submitted to Phys. Fluids.

PACS No.: 47.20Ma
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Abstract No. E41

Doubly-Shocked Richtmyer-Meshkov Instability Experiments at Nova

D. J. Ward, K. S. Budil, T. A. Peyser, B. A. Remington,
P. L. Miller, R. J. Wallace, H. Louis, and A. Demiris

Lawrence Livermore National Laboratory, Livermore, CA

Hydrodynamic instabilities are present in many physical systems, ranging from very small inertial
confinement fusion capsules to supernovae.  A great deal of effort, computational, theoretical and
experimental, has been focused on the evolution of buoyancy-driven (Rayleigh-Taylor), shear-driven
(Kelvin-Helmholz) and shock-driven (Richtmyer-Meshkov) instabilities.  For astrophysics the
interaction of shock waves with molecular clouds in the interstellar medium is a common occurrence
and a problem that has been studied extensively.  A slightly more complex problem is the interaction
of multiple shock waves with such a cloud, in either a co- or counter-propagating geometry.  This
is the system that we chose to address with these experiments.

We will present the results of a series of experiments that investigated hydrodynamic instabilities
in doubly shocked systems. A half-hohlraum driver was used to launch a shock into a miniature
shock tube that then crossed a rippled interface, causing the ripples at the interface to grow via the
Richtmyer-Meshkov instability.  A second, counterpropagating shock was launched from the
opposite end of the shock tube by a second half-hohlraum driver that impacted the developing mix
region at some later time.  This unique geometry allowed independent control of the relative timing
of the two shocks and their relative strength.  However, for ease of experimental implementation we
have chosen to begin with the case of two roughly equal strength, counter-propagating shock waves.
 The evolution of the mixing region was observed via radiography. 

The quality of the data obtained in this experiment was greatly improved over prior experiments by
the use of a layered ablator, constructed by using two density matched plastic materials, only one
of which was radiographically opaque to the backlighter X rays.  The opaque material was confined
to the central 100 microns along the line-of-sight, thus virtually eliminating the complications due
to shock curvature in that direction.  The initial perturbation was a 100 µm wavelength ripple with
an initial amplitude of 1 µm.

The experimental results show good agreement with two-dimensional radiation-hydrodynamics code
simulations.  We will also discuss comparisons to existing analytic models for the evolution of the
RM instability. 

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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The Interaction of Supernova Blast Waves with Interstellar Clouds:
Experiments on the OMEGA Laser

R. I. Klein1,2, H. Robey1, T. Perry1, and J. Greenough1

1Lawrence Livermore National Laboratory, Livermore, CA
2University of California at Berkeley, Berkeley, CA

The interaction of strong shock waves, such as those generated by the explosion of supernovae with
interstellar clouds, is a problem of fundamental importance in understanding the evolution and the
dynamics of the interstellar medium (ISM) as it is disrupted by shockwaves..  The physics of this
essential interaction is critical to understanding the evolution f the ISM, the mixing of interstellar
clouds with the ISM and the viability of this mechanism for triggered star formation.  We present
the results of a series of new OMEGA laser experiments investigating the evolution of a high density
sphere embedded in a low density medium after the interaction of a strong shock wave, emulating
the supernova shock-cloud interaction.  The interaction is viewed from two orthogonal directions
using face-on and side-on x-ray radiography enabling visualization of the both the initial distortion
of the sphere into a vortex ring as well as the onset of a powerful azimuthal 3D instability that
ultimately results in the three-dimensional breakup of the ring.  These studies augment the previous
studies of Klein et al. (2000, 2001) on the NOVA laser by enabling the full three-dimensional
topology of the interaction to be understood.  We compare the experimental results for the vortex
ring with the incompressible theory of Widnall et al. 1974 and we discuss high resolution 3D
numerical simulations that recover all of the essential features of the interaction including Richtmyer-
Meshkov, Rayleigh-Taylor and Kelvin-Helmholtz instabilities.  We discuss implications for mixing
in the ISM.

This work was performed under the auspices of the U.S. Department of Energy by the
University of California Lawrence Livermore National Laboratory under contract No. W-7405-
Eng-48.
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Abstract No. E43

Evolution of the Mixing Zone of Different
Densities Gases Being Interaction to Compression Waves

S. G. Zaytsev1, V. V. Krivets1, I. M. Mazilin1, S. N. Titov1, E. I. Chebotareva1,
V. V. Nikishin2, V. F. Tishkin2, S. Bouquet3, and J.-F. Haas3

1Krzhizhanovsky Power Engineering Institute, Moscow, Russia
2Institute of Mathematical Modeling, Moscow, Russia

3Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

The experimental and numerical study of the mixing zone evolution between a combustible mixture
(hydrogen-oxygen, molecular weight is 18.5) and argon was carried out during accelerated, and then
decelerated motion. The accelerated motion was formed by compression waves generated by a flame
front in a combustible mixture. The magnitude of acceleration was about 104 acceleration of gravity.
In experiments the density distribution and shape of the mixing zone in the test-section were
observed.
One-dimensional (1D) and two-dimensional (2D) models of process were used in numerical
calculations.

The analysis of numerical and experimental results has shown:
1. The one-dimensional model satisfactorily describes a trajectory of the mixing zone motion

and density distribution outside the mixing zone during accelerated, and then decelerated
motion.

2. The shape of perturbations in the mixing zone generated as a result of the Rayleigh-Taylor
instability evolution at the stage of accelerated motion is satisfactorily described by two-
dimensional model.

3. At the stage of deceleration two qualitatively different ways of the mixing zone evolution are
observed:

4. At deceleration caused by the reflected shock, the decrease of the perturbation amplitude is
observed – non-shocked deceleration.

5. In the given design of experiments, there are waves, which observed sometimes inside the
incident compression wave. They form reflected shock waves with the Mach number just
slightly exceeding M=1. The interaction of these extremely weak shocks with the mixing
zone resulted in the perturbation amplitude growth inside the mixing zone – shock-induced
deceleration.
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Abstract No. E44

Studies of Rayleigh-Taylor Instability in Aluminum Under
Shock-Wave and Shock Less Loading

A. Lebedev, P. Nizovtcev, and V. Raevsky
Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

The paper present results of experimental studies of Rayleigh-Taylor instability growth in aluminum
alloys AMg-6 and 6061-T6 subjected to shock-wave and shock less loading up pressures of 45Gpa.
Fast growth of perturbations was recorded at the initial stage of acceleration in experiments with
shock-wave loading. This testifies to short-time reduction of strength of tested material. To explain
this phenomenon, the authors suggest a relaxation model of aluminum strength, taking into account
heterogeneous character of deformation at shock wave front. Results of micro structural analysis of
samples subjected to shock less and shock-wave loading are presented.

The study was performed at financial support under Agreement 512964 between Lawrence
Livermore National Laboratory University of California and All-Russia Research Institute of
Experimental Physics
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Ablative Rayleigh-Taylor Instability at Short Wavelengths

H. Azechi1, T. Sakaiya1, M. Nakai1, H. Shiraga1, K. Shigemori1, N. Miyanaga1,
M. Nishikino1, S. Fujioka1, Y. Tamari1, H. Nagatomo1, H. Takabe1, and  A. Sunahara2

1Osaka University, Osaka, Japan
2University of Rochester, Rochester, NY

The Rayleigh-Taylor (RT) instability in inertial confinement fusion (ICF) targets and in some
astrophysical objects has an essential difference from the classical RT instability: material ablation.
Since the ablation removes the RT perturbation away from the unstable surface, the RT growth is
expected to be substantially reduced from its classical growth. Accordingly the RT instability at
short wavelengths provides a critical test of various theories. To date, few experiment has addressed
the short wavelength RT instability because of the wavelength of interest is around or even below
the diagnostic spatial resolution. We will report in this Workshop the short wavelength RT
instability growth rates which are measured for the first time by utilizing the newly innovated moiré
interferometry. The measured growth rates are reasonably well reproduced by the simulation that
solves the Fokker-Plank equation for non-local heat transport.
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A Vortex Model for Studying the Effect of Shock Proximity on
Richtmyer-Meshkov Instability at High Mach Number

H. F. Robey and S. G. Glendinning
Lawrence Livermore National Laboratory, Livermore, CA

The effect of shock proximity on the non-linear evolution of Richtmyer-Meshkov instability of a
sinusoidal perturbation at high Mach number is investigated analytically using a vortex model.  The
presence of the time-dependent shock boundary condition is incorporated using a system of image
vortices of opposite sign located at the shock-to-interface distance ahead of the shock. For certain
conditions, the perturbation growth rate is predicted by the linear theory to exceed the velocity of
the transmitted shock relative to the mean interface.  The effect of the image vortices is to initially
suppress the growth of the perturbation while the shock remains close to the unstable interface. 
Later in time as the shock separates from the interface, the growth rate rebounds to a value slightly
greater than would have occurred in the absence of the proximity effect.  The model is compared with
data from recent high Mach number RM experiments conducted on the Omega Laser and is shown
to provide very reasonable agreement. 

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Abstract No. C1

Modes’ Interaction on Nonlinear Stage of
Richtmyer-Meshkov Instability Evolution

V. I. Anisimov and A. V. Polionov
Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

Universal dependence, permitting to describe linear and non-linear stages of Richtmyer-Meshkov
instability evolution for single mode for the wide range of Mach and Atwood numbers was obtained
earlier. In the present paper we are making an attempt to describe modes’ interaction. For each single
mode its own turbulent viscosity is determined. During modes interaction it is supposed that
evolution of each mode damps because of total viscosity all modes being in the presence. The
obtained results are compared with direct numerical simulation by MACH code.
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Abstract No. C2

Application of Kεεεε-Model for the Description of an
Atmospheric Surface Layer

M. G. Anuchin, V. E. Neuvazhayev, and I. E. Parshukov
Russian Federal Nuclear Center – VNIITF, Snezhinsk, Russia

The problem on determination of non-dimensional characteristics of turbulent flow in atmospheric
surface layer is considered within kε-model. Kε-equations and their singular points are investigated.
The mathematical program for calculations of characteristics of turbulent flow in surface atmospheric
layer is developed. From the set of integral curves those curves are chosen which correspond to the
solution of formulated task and ensure the satisfactory experiments description. Here the basic model
constants are chosen according to the conventional criteria. At the same it is shown that the
parameter responding to convection source term of an ε-equation should be chosen depending on
stability conditions. The best agreement with experimental results is reached if for steady
stratification and for unstable stratification. By a numerical choice of value and factor of turbulent
diffusion the quite satisfactory description of experimental observations known as analytical
interpolar dependencies is received.
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Computational Modeling of Low-Mach-Number
High-Atwood-Number Turbulent Mixing

Wm. T. Ashurst and A. R. Kerstein
Sandia National Laboratories, Livermore, CA

A prerequisite for physical understanding of compressible turbulent mixing is clarification of low-Ma
high-At turbulent mixing mechanisms.  Remarkably, uncertainty persists concerning the
interpretation of the fundamental experiments in this regime, such as the seminal mixing-layer study
by Brown and Roshko [1] and subsequent GALCIT experiments.  It is difficult to perform numerical
simulations directly comparable to the pertinent experiments, and theoretical progress has been
limited.  The present study provides an integrated picture of low-Ma high-At turbulent mixing using
a new computational model for stochastic simulation of variable-density turbulent mixing. 
Comparison of model results to various published and unpublished experimental and numerical
results clarifies the physical mechanisms underlying the diverse results and demonstrates novel
predictive capabilities.  A planned extension of the model to compressible flow is outlined.

G. L. Brown and A. Roshko, J. Fluid Mech. 64, 775 (1974).

PACS Nos.: 47.27.Eq, 47.27.Nz, 47.27.Jv
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Spectral and High-Order Compact Methods for Shock-Induced Mixing

A. W. Cook, W. H. Cabot, and J. A. Greenough
Lawrence Livermore National Laboratory, Livermore, CA

A methodology, based on high-order compact and spectral schemes, is described for computing
multicomponent turbulent flows at any Mach number. Filters are employed to stabilize the
numerical integration and high-order artificial transport coefficients are introduced to control Gibbs
oscillations. The equations and numerical scheme are formulated such that, under grid refinement, the
method approaches a DNS. The method is evaluated for flows in 1, 2, and 3 dimensions, including
comparisons with lower-order schemes. The dissipative character of the filter and artificial terms
appears to be of little consequence for strongly forced flows which evolve over short periods of time;
however, the dissipation is more noticeable for unforced flows which evolve over long periods of
time.

PACS Nos.: 02.70.Hm, 47.20.Ma

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Numerical Simulation of Mode Coupling in Laser-Driven
Rayleigh-Taylor Instability Experiments

R. M. Darlington and K. S. Budil
Lawrence Livermore National Laboratory, Livermore, CA

This study addresses the simulation of multimode laser-driven Rayleigh-Taylor instability
experiments. The linear and transition stages of the instability will be examined, with particular study
of the mode coupling between short and long wavelengths. The experiments, conducted at the Nova
laser facility at LLNL, consisted of ablatively-accelerated planar composite foils mounted onto the
side of a gold hohlraum.  A modulation was machined at the interface between a brominated plastic
ablator layer (40 um thick) and a titanium payload (15 um thick) and its growth was diagnosed by
measuring the changing optical depth modulation via face-on radiography.  In this work we will focus
on the evolution of a superposition of a 20 and a 4 um mode and contrast this to the evolution of a
20 um single mode perturbation. The shape and growth rate of
the resulting instability will be examined, as well as the effect of numerical methods on the
simulation. Similar simulations will also be used to examine the evolution of this perturbation in a
more idealized situation where the target layers will be much thicker in order to mitigate thin foil
effects, and the laser drive can be sustained for much longer durations.  This will allow us to
investigate the experimental conditions required to follow the instability further toward the turbulent
regime.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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A Comparison of High-Resolution 3D Numerical Simulations Of Turbulent
Rayleigh-Taylor (RT) Instability: Alpha-Group Collaboration

G. Dimonte1, A. Dimits1, S. Weber1, D. L. Youngs2, A. C. Calder3, B. Fryxell3, J. Biello3,
L. Dursi3, P. MacNeice4, K. Olson4, P. Ricker3, R. Rosner3, F. Timmes3, H. Tufo3, Y.-N. Young3,

M. Zingale3, M. J. Andrews5, P. Ramaprabhu5, S. Wunsch6, C. Garasi6, and A. Robinson6

1Lawrence Livermore National Laboratory, Livermore, CA
2Atomic Weapons Establishment, Aldermaston, United Kingdom

3University of Chicago, Chicago, IL
4NASA Goddard Space Flight Center, Greenbelt, MD

5Texas A & M University, College Station, TX
6Sandia National Laboratories, Livermore, CA

The RT instability is investigated by comparing high resolution (256 x 256 x 512 zones) simulations
using various (5-7) numerical techniques with identical initial conditions. The fluids have a density
ratio ρ2/ρ1 = 3 and an ideal gas specific heat ratio of γ =  5/3. The hydrostatic equilibrium is adiabatic
with a pressure ~ 2  (ρ1+ρ2)gL  (g = acceleration, L = box width) at the interface to keep the
velocities sub-sonic (Mach < 0.2). The initial perturbations have an RMS amplitude ho/L ~ 3 x 10-4

with mode numbers randomly distributed in a cylindrical shell 32 ≤ n ≤ 64. This paper compares the
self-similar growth ~ gt2 of the mixing zone and internal scales, the atomic mixing, and the energy
budget from the different codes and with available experiments.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Numerical Methods for Determination of Mix

S. Dutta1, E. George1, J. Glimm1,3, J. Grove2, X. Li1,
A. Marchese1, D. H. Sharp2, Z. Xu1, and Y. Zhang1

1State University of New York at Stony Brook, Stony Brook, NY
2Los Alamos National Laboratory, Los Alamos, NM
3Brookhaven National Laboratory, Brookhaven, NY

We present numerical studies of the growth of a 3D mixing layer due to Rayleigh-Taylor (RT) or
Richtmyer-Meshkov (RM) instabilities.  Simulations based on the Front Tracking code FronTier give
a mixing rate alpha for the bubble growth in planar RT mixing within the range determined by
experiments of Youngs-Reed, Smeeton-Youngs and Dimonte et. al. Identical simulation problems,
solved with a TVD capturing code, give an alpha below this range of experiment. We present an
analysis (based on theory and on diagnostics from the two simulations) to indicate that the difference
between simulations is primarily due to diffusion of mass across the fluid interface in the TVD
(capturing) simulation.

Axisymmetric 3D spherical RM mixing studies show dependence of the mixing rate on the azimuthal
angle, especially after reshock.  Statistical mix quantities (volume fraction, etc.) are recorded and
compared with mix model equations of the authors and co-workers.

PACS Nos.: 47.20Bp, 47.52+j
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Rayleigh-Taylor Instability in Compressible Fluids

Y. Elbaz1,2, A. Rikanati1,2, D. Oron3, and D. Shvarts1,2

1Nuclear Research Center Negev, Israel
2Ben Gurion University, Beer-Sheva, Israel

3Weizmann Institue of Science, Rehovot, Israel

The behavior of the single mode and multimode Rayleigh-Taylor (RT) instability in compressible
fluids is studied using full two-dimensional numerical simulations and analytical theoretical models.
Due to the finite mass of the heavier fluid above the bubble, resulting from the initial density
distribution, the perturbation growth causes a state of pressure non-equilibrium on the heavier fluid,
leading to a bulk acceleration of the heavier fluid as in the case of RT instability in a finite layer of
an incompressible fluid. Also, the finite sound speed of the heavier fluid causes an effective mass
accumulation in time, therefore changing the pressure gradient on the interface with time.

Analyzing the instability dynamics in a frame of reference moving with the accelerated physical
system shows a small effect of compressibility on the instability dynamics. In this frame of reference
the simulation results coincide with the known incompressible results - a constant velocity in the
single mode case and α~0.04-0.06 in the multimode case. However, due to the bulk acceleration of
the heavier fluid, in the laboratory frame of reference the bubble velocity continuously increases in
the single mode case, and in the multimode case an αgt2 growth rate is obtained, with α continuously
increasing as well.
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One-Dimensional Simulation of the Effects of Unstable Mix on Neutron and
Charged-Particle Yield from Laser-Driven Implosion Experiments

R. Epstein, J. A. Delettrez, V. Yu. Glebov, V. N. Goncharov, P. W. McKenty,
P. B. Radha, S. Skupsky, V. A. Smalyuk, and C. Stoeckl

Laboratory for Laser Energetics, University of Rochester, Rochester, NY

The effects of Rayleigh–Taylor flow in laser-driven implosion experiments are simulated in one
dimension by the hydrodynamics code LILAC. Mix is modeled as a diffusive transport process
affecting material constituents, thermal energy, and turbulent mix-motion energy within a mix region
whose boundaries are derived from a saturable, linear, multimode model of the Rayleigh–Taylor
instability. The growth rates and the coupling between perturbations of different unstable interfaces
are obtained analytically in terms of the one-dimensional fluid profiles. The initial perturbations are
due to beam-energy imbalance, hydrodynamic imprint of short-scale laser nonuniformity, and target
surface roughness. The effects of fuel–pusher mix on neutron production and secondary particle
yields are characterized and compared with data from implosion experiments.  The limitations of
one-dimensional mix as an approximation to the multidimensional distortion of the fuel–pusher
interface will be considered.
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3D Computation for Surface Perturbation Evolution of Plasma Cloud
During its Expansion in Magnetic Field

E. S. Gavrilova, E. V. Gubkov, V. A. Zhmailo, and Yu. V. Yanilkin
Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

Previously, ref. [1] considered the 2D problem of initially spherical plasma cloud expansion in the
axial magnetic field. In particular, it was noted that the plasma surface was unstable to evolution of
perturbations (of “chute” type).

This paper solves the above problem with taking into account the growth of the perturbations.
The computation is performed with 3D code TREK [2]. Two methods to solve the problem are
discussed:

• it is assumed that outside the cloud there is plasma of quite low density as well which magnetic
field is “frozen into”, in this case appropriate MHD equations are used to compute magnetic
field variations;

• it is assumed that outside the cloud there is vacuum, in this case quasi-stationary
approximation [1] is used to compute the magnetic field.

Two initial perturbation types are given: one mode and random. The computed data for the linear
stage of the one mode perturbation growth is compared to the analytical data.

The results of the problem computation with random perturbations are averaged (over azimuth).
Thus obtained plasma density and magnetic field profiles, in particular, dependence of the transition
zone width in the profiles on the problem parameters are considered. Applicability of this plasma
model is discussed.

1. Bakhrakh S.M., Gubkov E.V., Zhmailo V.A., Terekhin V.A. “Plasma cloud expansion in
homogeneous magnetic field”. PMTF, 1974, No. 4, pp. 146-150.

2. Yanilkin Yu.V., Tarasov V.I.,  Stadnik A.L., Bazhenov S.V., Bashurov V.V., Belyaev S.P.,
Bondarenko Yu.A., Bykova E.A., Gavrilova E.S., Gorev V.V., Dibirov O.A., Ivanova G.G.,
Kovalev N.P., Korol'kova T.V., Pevnaya P.I., Sofronov V.N., Toropova T.A., Shanin A.A.
Program System TREK for Numerical Simulation  of 3D Multi-component Medium Flows.
Proceedings of workshop “New Models and Numerical Codes for Shock Wave Processes in
Condensed Media”, Oxford, 1997, pp 413-422, 1997.
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The Richtmyer-Meshkov Instability in Cylindrical Geometry:
Experiments and Simulation

M. J. Graham1, K. S. Budil1, J. Grove2, and B. A. Remington1

1Lawrence Livermore National Laboratory, Livermore, CA
2Los Alamos National Laboratory, Los Alamos, NM

Hydrodynamic instabilities are fundamentally important to a wide range of fields, including
astrophysics, inertial confinement fusion (ICF), and inertial fusion energy (IFE).  The most common
of these instabilities is the Rayleigh-Taylor (RT), or buoyancy-driven instability, is caused when a
material of higher density is accelerated by a material of lower density. The Richtmyer-Meshkov
(RM), or shock-driven instability is produced when an incident shock wave impulsively accelerates
a material interface causing small disturbances to grow.

The RT interface is unstable only when the external force acts from the heavy material to the lighter
material, whereas the RM instability is present whether the incident shock travels from light to
heavy or vice versa. The majority of the theoretical, computational and experimental work has been
successfully performed for the RM instability in planar geometry.  In most physical applications
the RM instability occurs in a curved geometry, either cylindrical or spherical.  This curved geometry
complicates the system considerably.  For example, the unperturbed system does not have an
analytical solution, while the unperturbed system in plane geometry does.  The occurrence of re-
acceleration or re-shock of the material interface caused by the waves reflecting back from the origin
is unavoidable in curved geometry.

The Nova Laser was used to test critical ingredients of our understanding of the fundamental
properties of the RM instability in the strong-shock, high-compression regime.  A shock was
launched into a copper hemicylinder with a thin plastic ablator layer by focusing 6 KPP-smoothed,
1 ns square laser beams at 3ω onto the interior of the target.  A single-mode sinusoidal perturbation
was machined onto the outer surface of the copper, which was embedded in a thick layer of plastic.
 The expanding interface was diagnosed by side-on radiography and radiographs were recorded at
several times.

We will show numerical simulations of this experiment using two difference codes:  FronTier and
CALE.  In the FronTier method a lower dimensional grid is fitted to and moves dynamically with
discontinuities in the flow. CALE is a continuous adaptive Lagrangian Eulerian method.

PACS Nos.: 52.35.Tc, 47.11+j
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Code to Code Comparisons for the Problem of Shock Acceleration of a
Diffuse Dense Gaseous Cylinder

J. A. Greenough1, W. J. Rider2, C. A. Zoldi2, and J. R. Kamm 2

1Lawrence Livermore National Laboratory, Livermore, CA
2Los Alamos National Laboratory, Los Alamos, NM

The current computational study is motivated by large-scale (and small-scale) discrepancies between
ongoing calculations and experiments of a shock wave accelerating a diffuse cylinder of SF6

(“Experiments and simulations of instabilities in a shock accelerated cylinder,” K. Prestridge, C. A.
Zoldi, P. Vorobieff, P.M. Rightley, and R. F. Benjamin, Los Alamos Report LAUR –00-3973). 
Three different Eulerian based codes, Rage (LANL), Cuervo (LANL) and Raptor (LLNL), are
applied to an idealized two-dimensional version of the experiment.  The model problem consists of
a Gaussian shaped SF6 inhomogeneity in air that is accelerated by a M=1.2 shock wave.  The initial
diffuse cylinder evolves into a quasi-vortex dipole at intermediate times until finally becoming
unstable at late times.  The integral (large) scale features, which include the length and width of the
evolving structure, will be measured from the calculations and compared.  The sub-integral scale,
small-scale vortical features in the central roll-up, will also be examined quantitatively and compared
at intermediate times.  An assessment of the degree of convergence of the simulations as well as
factors accounting for computed differences will be discussed.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Implementation of a Turbulent Mix Model in a 2D ALE Code

B. Grieves
Atomic Weapons Establishment, Aldermaston, United Kingdom

The addition of a turbulent mix model to a two dimensional finite element ALE hydrocode,
CORVUS, is discussed.  Use is made of the existing mixed-cell data structure to facilitate the
inclusion of the model.

This first stage of the model is based on the multiphase flow equations, and is a simplified form of
the model implemented by Youngs (See paper at this workshop) in a 2D Eulerian Code. This is
applicable to simple Rayleigh-Taylor and Richtmyer-Meshkov instabilities, and some results are
presented.

A simple buoyancy-drag model is used to calculate the early stages of the instability growth at
interface nodes, and this is used to initialise the turbulent mix model calculation.
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Error Estimation for Strong Shock Hydrodynamics

J. W. Grove
Los Alamos National Laboratory, Los Alamos, NM

The quantification of uncertainty is a fundamental problem in mathematical modeling.  Sources of
uncertainty include incomplete physical models, poorly defined initial conditions, and the effect of
numerical methods. Traditional numerical analysis is extremely limited in accessing the accuracy of
a computation, especially in highly nonlinear regimes. Predictive calculations require a more detailed
assessment of solution error, including a quantitative model for the probability distribution of the
error in a simulation.

This talk will describe a prototype methodology, developed in collaboration with researchers at the
University at Stony Brook, for studying uncertainty in a computational model.  We apply this
methodology to a simple strong shock refraction test problem. Assuming known probability
distributions for a set of initialization and flow parameters, we perform a statistical study of the
generation and propagation of solution error. Error is computed by comparing fine and coarse grid
computations for different mesh sizes, and numerical methods. We obtain a space-time field of
probability distributions for a variety of state variables, and seek stochastic models for the generation
and propagation of solution error as a function of flow state and numerical method.

PACS Nos.:  07.05.Tp, 47.11.+j, 47.40.-x
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A Semi-Empirical Model for Turbulent Diffusion of Magnetic Field
to Accelerated Plasma

E. V. Gubkov, V. A. Zhmailo, and Yu. V. Yanilkin
Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

A nonlinear phase of instability development at the accelerated plasma/magnetic field interface is
studied. The paper considers the case with short wavelength and incidental initial perturbations. A
semi-empirical model which structure is similar to that of the hydrodynamic model from /1/ is
proposed to describe perturbations of such a kind.

Two problems are solved using the proposed model: a one-dimensional problem of a converging
cylindrical liner with axial magnetic field in cavity (ultra-high magnetic field generator “MK-1” /2/);
a two-dimensional problem of a plasma cloud expansion in external magnetic field /3-5/.

By comparing computation results with the corresponding experimental data,  some constants
introduced to the model are determined, as well as frames of its applicability are specified.

1. Yanilkin Yu.V., Nikiforov V.V., Zharova G.V. A Two-Equation Model and a Method for
Turbulent Mixing Computations in 2D Compressible Flows. – VANT, Ser.:MMPhP, 1994,
Iss.4.

2. Sakharov A.D., LudaevR.Z., Smirnov E.N., Plyushcheyev Yu.I., Pavlovskii A.I., et al.  DAN
SSSR, 1965, V.196, No.1, pp.65-68.

3. Bakhrakh S.M., Gubkov E.V., Zhmailo V.A., Terekhin V.A. Expansion of a Plasma Cloud
in Uniform Magnetic Field. – PMTPh, 1974, No.4, pp.146-150.

4. Zakharov Yu.P., Orishich A.T., Ponomarenko A.G. “Plasma Physics” Journal, 1986, V.12,
p.674.

5. Pisarczuk T., Kasprczuk A., Karpinski L., et al. Application of Interferometric Methods to
Investigation of Laser-Produced Plasma in Strong External Magnetic Field. –In “Advances
in laser interaction with matter and inertial fusion”, Madrid, 1996.
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Localization and Spreading of Interfaces (Contact Discontinuities) in PPM
and WENO Simulations of the Inviscid Compressible Euler Equations

S. Gupta, N. J. Zabusky, R. Samtaney, and Y. Gulak
Rutgers, StateUniversity of New Jersey, Piscataway, NJ

The physical or numerically- “motion” of interfaces or  contact discontinuities (CD)  between two
fluids of different density or temperature governs the mixing of species, particularly during the  late
time (“asymptotic “) epochs.

Using the methods of Vorozhtzov and Yanenko, [1] we show that for the equation 00 =
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where r is the order of the scheme (r = 1 for 1st order schemes, such as Lax, etc.),
h is the grid size and  τ is the time-step of the integration.  For r = 1 and 2, the exact solution of (A)
with  a discontinuous  initial density function , ),;,( 0201 xxxx >=<= ρρρρ  , is

ρ(x,t)  = (ρ1 + rρ2)/(r+1) + (ρ2 - ρ1) F(ξ(x,t)), (B),  where   )/()(),( )1/(1
00

+−−= r
r tctuxxtx µξ and F

is the solution of an ODE arising in a self-similar study. In our numerical PPM [3] solutions, we find
 accurate  agreement with the constant term in (B), i.e. the center of a spreading interface depends
on r. This explains the lack of convergence in attempting to localize the CD previously [2]. 
However, the numerical spreading,  ),( txPPMξ , produced by PPM  artificially steepens the density

over two grid intervals if ρ2 > ρ1 and spreads it according to  a power law if  ρ2 < ρ1. This asymmetry
will  prove  troublesome for reshock and reacceleration problems at late time epochs. We also
comment on higher-order algorithms [4] and the effects of vorticity on the interface in 2D.

[1] E. V. Vorozhtzov and N. N. Yanenko, 1990. Methods for the Localization of Singularities in
Numerical Solutions of Gas Dynamics Problems, Springer.
[2] R. Samtaney and N. J. Zabusky, 2001. High gradient compressible flows: Visualization,    feature
extraction and quantification, In Flow Visualization: Techniques and Examples, Editors T. T. Lim
and A. Smits, Imperial College Press.
[3] J.M Blondin et al at NCSU.VH-1. A Lagrangian remap code based on  PPM.
[4] Ravi Samtaney, Caltech . Higher order WENO code
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Update on Instability Modeling for the NIF Ignition Targets

S. W. Haan, T. Dittrich, S. Hatchett, D. Hinkel, M. Marinak, D. Munro, O. Jones,
S. Pollaine, and L. Suter

Lawrence Livermore National Laboratory, Livermore, CA

This talk is a general update on the hydrodynamic instability modeling that we do for ignition targets
for the National Ignition Facility. Recent results include design of a polystyrene-ablator target,
analysis of Rayleigh-Taylor  growth on beryllium targets driven at 250eV at various scales,
simulations of the effect of fill tubes on the implosion,, and simulations of 3D asymmetry and its
impact. Hydrodynamic instability modeling is done with direct numerical simulations, since the
targets are designed to avoid short wavelength instability growth.

PACS Nos.:  52.57.Bc, 52.57.Fg
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Pillars of Creation

J. O. Kane1, D. D. Ryutov1, B. A.  Remington1, S. G. Glendinning1, J. Nash1,
M. Pound2, and D. Arnett3

1Lawrence Livermore National Laboratory, Livermore, CA
2University of Maryland, College Park, MD

3University of Arizona, Tuscon, AZ

The towering ‘Pillars of Creation’ of the Eagle Nebula are a long-standing astrophysical mystery. A
new initiative is underway to develop a model for the formation of the Pillars, employing three-
dimensional numerical modeling and scaled verification experiments using intense lasers. In the
Rayleigh-Taylor instability (RT) model of the Pillars advanced almost fifty years ago by Spitzer and
Frieman (Spitzer, L. 1954, ApJ 120, 1, Frieman, E. A. 1954, ApJ 120, 18), radiation from nearby
stars photo-evaporates and accelerates the cloud surface, and the Pillars are falling ‘spikes’ of dense
gas. Recently, fluid velocities and column densities in the Pillars have been measured (Pound, M. W.
1998, ApJ 493, L113). Preliminary two-dimensional numerical simulations of the RT model have
been performed which produce results consistent these observations, assuming compressible fluids
and a thin initial cloud. Since the radiation may impact the surface at an angle, a ‘Tilted Radiation’
instability (LLNL report UCRL-JC-138744, May 2000; .D. Ryutov, B.A. Remington, H.F. Robey,
R.P. Drake. Phys. Plasmas, 8, 1804 (2001)) can cause the spikes to translate as waves whose tips
may ‘break’, producing the small gas ‘bullets’ visible near the Pillars in images taken by the Hubble
Space Telescope. In an alternate model for the Pillars, the cometary model, the Pillars consist of gas
swept behind dense preexisting nuclei, but it appears difficult to reproduce the observed velocities
and densities in numerical models with dense preexisting nuclei as the initial condition. . However,
the effect of radiative cooling and magnetic fields remains to be explored. The maturing field of laser
astrophysics presents an opportunity for testing models for the Pillars in the laboratory. Theoretical
and numerical evaluations of various models, implications for observations, and plans for verification
experiments are presented.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Application of a Laser Shock Tube for the Study of Supersonic Gas Flows
and the Development of Hydrodynamic Instabilities in

Layered Media

I. G. Lebo1 and V. D. Zvorykin2

1Tekhnikal University-MIREA, Moscow, Russia
2P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

The study of the evolution of hydrodynamic instabilities of the interface between two media found
in the field of acceleration is a problem of great importance in inertial confinement fusion (ICF),
physics of high energy densities, cosmology, and astrophysics. The passage of  strong shock waves
(with Mach number M>>1) through contact surfaces of two gases or plasma with different densities
causes the formation and development of complex vortex structures, which are of interest for
present-day nonlinear hydrodynamics and for studying the problem of a change from an ordered
state to chaos. Another problem, which is important for the development of modern aerospace
engineering and protecting the Earth from collisions with space objects, is the study of supersonic
flow past bodies of complex shape at large Mach numbers. Usually, such experiments in gases are
carried out at relatively small Mach numbers M=1-4 with help of shock tubes. The pressure
amplitudes in shock wave are about 2-10 bar. The design of a miniature laser shock tube for the
study of a wide range of hydrodynamic phenomena in liquids at pressures greater than 10 kbar and
 supersonic flows in gases with large Mach numbers (greater than 10) is discussed in this paper. In
the system considered here, the confinement of a laser-produced plasma  and the excitation of plane
shock waves take place inside a miniature tube, which restricts lateral unloading. The design of such
a laser shock tube (LST) is based on the use of the following basic components: a shock tube
chamber; a powerful  KrF laser [1]; an original laser focusing system; and 2D numerical codes. The
technique proposed here for exciting shock waves in gases and compression waves in liquids by KrF
laser radiation has some advantages in comparison with the conventional technique used in
experiments with shock tubes: 1)  large Mach numbers in gas flows (M>20) and pressure pulses
greater than 10 kbar in liquids [2]; 2) economy of noble  gases and other supplies (laser driven shock
tube volume is less in ∼ 103-104 times). This study is supported by RFBR, grant N0101-00023

References.
1. Zvorykin V.D., Lebo I.G. Laser and Particle Beams, 17, 69, 1999
2. Zvorykin V.D., Lebo I.G. Quantum Electronics, 30, 540, 2000



8th International Workshop on the Physics of Compressible Turbulent Mixing,       73
Pasadena, CA (2001)

Abstract No. C26

Molecular Dynamic Simulation of Shock and Richtmyer-Meshkov Instability
in Cylindrical Geometry

K. Nishihara, V. Zhakhovskii, and M. Abe
Osaka University, Osaka, Japan

Molecular dynamic (MD) approach has been applied to study the converging cylindrical shock
waves and the Richtmyer-Meshkov instability in a dense Lennard-Jones fluid. MD method is based
on tracking of the atom motion and hence it has fundamental advantages over hydrodynamic methods
that assume a shock as a structureless discontinuity and require an equation of state. In addition,
hydrodynamic simulation has a limitation in grid resolution, especially, in the cylindrical geometry.
It is found that the one million particles is enough to simulate propagation of a cylindrical shock in
close detail due to small thickness of shock fronts (a few Angstroms for Argon) in liquid.

We investigate the stability of converging shocks with different perturbation modes and its mixture
for different Mach numbers. The converging shock is unstable for low mode number perturbation
in large Mach number. It was shown that the amplitude of a shock front ripple increases and the
Mach stems are formed. Supersonic jets generated by interaction of reflected shocks in downstream
flow are observed. We also study the Richtmyer-Meshkov instability of an interface between two
L-J liquids of different densities in the cylindrical geometry. The turbulent mixing is observed when
the reflected shock near the center passes again through the unstable interface.
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Abstract No. C27

Compressibility Effects in a High-Speed, Reacting Shear Layer:
An Investigation Using DNS

C. Pantano and S. Sarkar
University of California at San Diego, La Jolla, CA

In technological applications such as combustion, high-speed propulsion and energetic devices, the
variation in thermodynamic variables associated with large heat release interacts with and modifies
the underlying turbulent flow. Direct numerical simulations of the reacting shear layer using up to
20 million grid points are  performed over a wide range of  heat release rates and convective Mach
numbers to quantify and understand some of these modifications to the turbulence evolution and
structure. Large  heat release rates typical of hydrocarbon combustion are considered, and not only
the overall growth characteristics but also the turbulence structure is investigated. The single-step
irreversible combustion of a diluted methane stream mixing with an air stream is considered. An
infinitely fast reaction rate is assumed, that is, the heat release is confined to an infinitely thin region
in mixture fraction space located at the stoichiometric value. 

 A longitudinal snapshot of the density field is shown in Fig. 1. The upper air stream moves to the
left while the lower fuel stream moves to the right. The  mean location of the flame sheet is displaced
to the upper air side. However, the convective stirring of the flame sheet  by the turbulent motion
spans the entire width of the shear layer so that an instantaneous snapshot such as Fig.1 shows a
wide central core of hot, low-density fluid separated from the  cold, high-density fluid on either side
by thin regions with large values of the density gradient.  The thickness growth rate of the shear layer
is the overall quantity of primary interest. With increasing values of convective Mach number, the
growth rate of the nonreacting cases shows the well-known large reduction. What is perhaps less
expected is the effect of Mach number on the growth rate of the reacting cases.  The growth rate is
already quite low at the low-Mach number reacting case and a  further increase in the Mach number
causes only  a relatively small additional reduction. The Reynolds shear stress profiles show that,
in the low-speed case, there is a significant reduction of its peak value in the case with the highest
heat release. However, at the largest convective Mach number, any additional change in the Reynolds
shear stress is relatively small. The width of the profiles of Reynolds shear stress (not shown) as
well as other Reynolds stresses scale well with the vorticity thickness but not the momentum
thickness. The full paper will present results regarding all Reynolds stress components as well as
thermodynamic correlations and cross-correlations



8th International Workshop on the Physics of Compressible Turbulent Mixing,       75
Pasadena, CA (2001)

0 10 20 30
X

0

5

10

15

20

25

Y

Rho
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15



76               8th International Workshop on the Physics of Compressible Turbulent Mixing,
     Pasadena, CA (2001)

Abstract No. C28

Computational Modelling of Two-Shell Cylindrical Implosions with Mix

K. W. Parker1, A. M. Dunne1, S. Rothman1, D. Youngs1, C. W. Barnes2,
S. H. Batha2, N. E. Lanier2, G. R. Magelssen2, T. J. Murphy2, and J. M. Scott2

1Atomic Weapons Establishment, Aldermaston, United Kingdom
2Los Alamos National Laboratory, Los Alamos, NM

Experiments to look at mix in a compressible, convergent geometry have been carried out on the
Omega Laser Facility. These employ a radio-graphically opaque marker layer, which is sandwiched
between the polystyrene ablator and low-density foam. As the implosion proceeds, a strong shock
is launched which causes the marker to become mixed into both the foam and the ablator. More
recently, these experiments have introduced a high-density core to the targets, such that a shock is
reflected from the core back through the mix layer at late time. Presented here are calculations for
these ‘2-shell’ targets. Where possible, comparisons are made to the experimental results.
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Abstract No. C29

Dispersal of Mass and Circulation Following Shock-Sphere (axisymmetric)
and Shock Cylinder Interactions: Effects Arsing From Shock Cavity

Collapse, Vortex Double Layers; Density-Gradient Intensification and Vortex
Projectiles

G. Peng, S. Gupta, S. Zhang, and N. J. Zabusky
Rutgers, StateUniversity of New Jersey, Piscataway, NJ

We quantify and scale the dispersal and mixing (transport) of mass and vorticity following  a spherical
(axisymmetric) shock-bubble interaction. We use planar shocks of Mach =2.5, 5.0 and 10 and a density
ratio - bubble/ambient- of 10.0, a parameter domain beyond that explored earlier [1], where new effects
arise. We correlate and scale the transports with: the primary circulation layer deposited by the passing
incident shock in epoch 1; the collapsing  transmitted shock cavity  circulation layer (TSCCL);  and a
 vortex “double  layer” (VDL) on the downstream boundary.  The TSCSL is generated at the sharp kink
of the collapsing transmitted shock (where numerous shocklets arise, e.g. a “penta-point” shock for M=
2.5) and is responsible for an epoch 1 appearing and upstream-moving Vortex Projectile (VP)  (with an
associated density enhancement). The VDL arises from two shock wave sources incident on the
downstream side of the bubble: from inside, the re-expanding cavity and from outside the incident shock
as it passes the rear side of the bubble. These phenomena evolve into a chaotic downstream array of
vortex projectiles (VPs) which in axisymmetry are complex-shaped stratified rings of opposite polarity.
We observe strong circulation generating baroclinic effects during this epoch [2]. In 3D, these VPs will
be rapidly unstable and lead to domains of reconnecting vortices and stratified turbulence.  The collapse
of the shock cavity produces:  large short-time enhancements of pressure, density and temperature,
which we scale; and subsequent reverberation effects in the bubble interior and exterior, which we quantify.
We simulated the 2d axisymmetric Euler equations with the Colella & Woodward (1984) PPM in a
Galilean frame translating uniformly with the velocity equal to 20 percent of the post-shock velocity.
Our study was made at three resolutions, (z, r): (1){803,123}; (2){1606,246} and {3212,492}. At our
high Mach numbers and resolutions fast instabilities arise which yield coherent structures  (e.g.[3]) and
we comment on their relevance to  the new observed phenomena.

 [1]  N.J. Zabusky and S-M. Zeng, J. Fluid Mechanics 362, pp. 327-346, 1998.
Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-
spherical F/S bubble interactions. Also,:  N.J. Zabusky, Annual Review Fluid Mechanics 31, pp. 495-
536, 1999
[2]  S. Zhang and N. J. Zabusky Shock –planar curtain interactions: Strong secondary baroclinic
deposition and the emergence of coherent and random vortex projectiles  (VPs) and decaying
stratified turbulence. 8th IWPCTM:  International Workshop on the Physics of Compressible
Turbulent Mixing (this volume)
[3] R. Samtaney and D.I. Pullin, Physics of Fluids 8, pp. 2650-2655, 1996
*This work was supported mainly by  DOE (Grant No. DE-FG0293ER25179.A000) and  monitored
by Dr. Daniel Hitchcock. Additional support was provided by Rutgers University SROA program
# This paper is dedicated to Brad Sturtevant whose experiments inspired important configurations for
accelerated flows.

PACS Nos.:  47.40.-x, 47.40.Nm, 52.57.Fg,  47.20 Ma,  47.27.-I,  47.27.Eq, 47.11.+j



78               8th International Workshop on the Physics of Compressible Turbulent Mixing,
     Pasadena, CA (2001)

Abstract No. C30

Influence of Turbulent Mixing Zone on Growth of Local Perturbation in
Environments of Rayleigh-Taylor Instability (Numerical Simulation)

V. A. Raevski, S. N. Sinitsina, and Yu. V. Yanilkin
Russian Federal Nuclear Center − VNIIEF, Sarov, Russia

It is common knowledge that self-similar growth of local perturbation occurs following the law in the
case of absence of turbulent mixing zone. The growth constant is about 3 times higher than the
constant of growth of self-similar turbulent mixing zone. Basing on two-dimensional numerical
computations by Euler technique EGAK, it is revealed that continuous continuum of self-similar
solutions occurs, where is function of the relation and, if at the initial time there are local perturbation
and the perturbations forming further the turbulent mixing zone.
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Abstract No. C31

A Statistical Comparison of Gas Cylinder Experiments with
Their Simulation

W. J. Rider, J. R. Kamm, and C. A. Zoldi
Los Alamos National Laboratory, Los Alamos, NM

We present the statistical analysis of the evolution of a diffuse cylinder of SF6 shocked by a Mach 1.2
shock.  The cylinder baroclinically develops a vortical structure and subsequently mixes with the
surrounding air.  The experimental diagnostics are images of tracer particles in the SF6 and particle image
velocimetry. We examine the nature of the mixing using a variety of tools including image analysis using
correlations, wavelets, and fractal dimension.  Our efforts follow the path of earlier investigations of a
gas curtain geometry.  There we found significant departures in behavior between the details of the
experimentally measured mixing and that computed with the hydrodynamic codes. These statistics from
the experiment are then compared with complementary simulations using several computer codes.  In
each case, we examine the sensitivity of the results to variations in mesh resolution and numerical
algorithms.  Figure 1 contains plots showing that both the integral size of the evolving cylinder and the
magnitude of the velocity field computed in hydrodynamic codes do not match the experimentally

measured results.
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Fig. 1.  The plot on the left shows a distribution of the velocity magnitude for the experiment (green) and simulation
(blue).  The plots on the right show the time evolution of the height and width of the evolving shocked cylinder
structure.
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Abstract No. C33

Large Eddy Simulation of Strong Shock Richtmyer-Meshkov Instability

R. Samtaney, T. Voelkl, and D. I. Pullin
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA

In previous studies of isotropic compressible turbulence [1], it was demonstrated that low-order
difference schemes are unsuitable for large eddy simulations (LES) of compressible turbulence. In this
paper, we present results from formally high-order accurate LES of the Richtmyer-Meshkov (RM)
instability. We chose fifth and seventh-order accurate Weighted Essentially Non-Oscillatory
(WENO) schemes as the numerical method. These were suitably modified to suppress the so-called
carbuncle numerical instability of the shock front. The physical details of the simulations are as
follows. The physical domain is a shock-tube of square cross-section. A smooth flat interface with
a hyperbolic tangent profile between two gases is initially deformed with a prescribed spectrum
giving it multiple harmonic perturbations. This interface is accelerated with a strong (Mach number
= 10) shock. The boundary conditions are periodic in the transverse directions, and inflow and
reflecting along the length of the shock-tube.
The sub-grid-scale (SGS) model employed in the LES is the stretched vortex (SV) SGS model [2].
This model assumes sub-grid motion to be generated by nearly axisymmetric vortices. The sub-grid
heat flux is modeled by advection of a passive scalar taken as the temperature. This model was
successfully demonstrated in a posteriori comparisons between LES and direct numerical simulations
of moderate turbulent Mach number decaying isotropic compressible turbulent simulations in the
presence of shocklets [1].   It requires the velocity gradient tensor and the temperature gradient, both
of which are calculated with an explicit fourth-order finite difference method.
We will present the evolution of the mixing width as a function of time computed using a level-set
approach and a variety of diagnostic procedures, the transverse spectra and evolution of the
turbulent kinetic energy (both sub-grid and resolved). In particular, we focus on the effects on these
variables due to reshock. Finally, we will endeavor to shed light on the modified wavenumber
characteristics of the WENO method and it's suitability for the LES of RM flows.
Acknowledgement: We gratefully acknowledge support of this work by the Academic Strategic
Alliances Program of the Accelerated Strategic Computing Initiative (ASCI/ASAP) under subcontract
no. B341492 of DOE contract W-7405-ENG-48. Useful discussions with Paul Dimotakis, Tony
Leonard, Dan Meiron, and Branko Kosovic are gratefully acknowledged.

 References:
[1] Branko Kosovic, Dale I. Pullin, and Ravi Samtaney. Subgrid-scale modeling for large-eddy
simulation  of compressible turbulence. Physics of fluids, sub-judice.
[2] Tobias Voelkl and D.I Pullin. A physical-space version of the stretched-vortex subgrid-stress model
for large-eddy simulation. Physics of Fluids, Vol. 12, pp1810-1825
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Abstract No. C35

Numerical Investigation of a Laser Induced Turbulent Mixing Zone

P. Seytor and M. Legrand
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

We have used high Mach number (M~30) mix instability experiments1 which have been conducted
using Nova laser system to investigate the growth of the Richtmyer-Meshkov instability resulting
from a strong shock wave. The initial nonlinear single-mode two dimensionnal pertubation was
machined into a brominated plastic ablator (1.22 g/cm3) adjacent to a low density carbon foam (0.10
g/cm3). We compared the experimental measurements with LLNL simulations (CALE 1D/2D) and
our own numerical simulations (FCI1/FCI2). We found both experiment and simulation to be in good
agreement with a k-_ model and also with recent theories for the non linear evolution of instability
relevant to an other work presented at this meeting2.

1D.R. Farley, L. M. Logory, S.D. Murray and E. W. Burke PHYS; Plasmas 6, 4304, (1999).

2M. Vandenboomgaerde this meeting 8th IWPCTM 2001.
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Abstract No. C36

A Mix-Model For One-Dimensional Simulations of Laser-Driven Implosion
Experiments

D. Souffland and F. Renaud
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

In laser-driven implosion experiments, hydrodynamic instabilities can growth at interfaces between
components as well as at ablation fronts. These processes have various origins and evolve through
different ways, but they have in common to favor interpenetration of different fluid components or
of fluid regions differing only by their thermodynamic states. The complete study of these
intrinsically three-dimensional phenomena, involving a large range of length scales, is still
unworkable. We thus need simplified models to assess the impact of variations in the definition of
the target, the hohlraum or the laser drive.

The main hypothesis for the present mix-model is that, at the scale of the mesh size, an intimate
mixing can simulate the interpenetration region. The description of the model, called hereafter
MeDiC, specifies the treatment for the two main cases: density interface instabilities and non-
material front instabilities. Diffusive terms are added to model heat and momentum transfers. In the
first case, an additional equation for the mass concentration of one component of the mixing is
calculate, when, for the second one, the boundaries of the mixing region are imposed. The thickening
of the interpenetration zone is, indeed, supposed to be known from experimental data or from post-
processing of two-dimensional computations results. This information is used to set the boundary
locations, in the non-material front instabilities case, and, in both cases, to calculate the evolution of
the diffusion coefficients.

We will discuss examples of mixings due to the Richtmyer-Meshkov instability occurring at the
interface between the plastic shell and the fuel, on one hand, and to the ablation front instability
occurring at the edge of the hot spot during its formation, on the other hand.

PACS Nos.: 52.57.Fg, 51.20, 42.27.Qb
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Abstract No. C37

Modeling Turbulent Mixing in Inertial Confinement Fusion Implosions

Y. Srebro1,2, D. Kushnir2,3, Y. Elbaz1,2, and D. Shvarts1,2

1Ben-Gurion University, Beer-Sheva, Israel
2Nuclear Research Center, Negev, Israel

3Hebrew University, Jerusalem, Israel

A series of high uniformity spherical implosion experiments has recently been conducted on the
OMEGA laser system in the University of Rochester. In these experiments 3-15atm gas-filled
plastic shells of diameter ~1mm were irradiated with 1ns square laser pulses of total energy ~20kJ.
Fusion yields were measured experimentally to be 10-40% of one-dimensional numerical simulations'
prediction, probably because of core-shell mixing.
Perturbations to these implosions include inner and outer surface roughness, beam-to-beam power
imbalance and single-beam laser nonuniformity, which has been reduced to a minimal level using
1THz 2D-SSD.
Two-dimensional numerical simulations, describing the Rayleigh-Taylor growth of multimode
perturbations during the deceleration-stage, were performed to determine mix region width.
Reductions in the temporal neutron production rate, attained from the simulations assuming various
levels of atomic mixing in the mixed region, were compared to experimental results for implosions
with different convergence ratios.
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Abstract No. C38

Turbulent Mixing Nuclear Burning in Type Ia Supernova Explosion Based
on Bubble Statistical Mechanics

H. Takabe1, S. Yamada1, K. Kobayashi1, A. Mizuta1, and K. Nomoto2

1Osaka University, Osaka, Japan
2University of Tokyo, Tokyo, Japan

It is well known that Type Ia supernovae explode when the masses of white dwarfs become close
to the Chandrasekhar limiting mass.  This is the reason why the Type Ia explosion is used as a
standard candle in the universe to determine, for example, the Hubble constant and dark energy. The
scale of explosion has been well studied with one-dimensional code with some mixing model;
however, the physical mechanism has not determined from the first principle, yet.  There are many
works to understand the physics with large scale computing based on hydrodynamics in two-
dimension or mostly three-dimension in these days [1].  It seems, however, that the smaller scale
fluctuation appears, the smaller the grid size, and it is still open question how the instability grows
and evolves into nonlinear stage and enhance the energy release by nuclear reactions.

In the present report, we would like to model the growth of the Rayleigh-Taylor instability coupled
with the Landau-Darrieus instability. In the nonlinear stage, we consider the statistical mechanics of
the bubbles following the way developed by Don Shvarts[2] and estimate the increase in the nuclear
burning rate due to the increase in the surface area of the burning wave in the form of fractal
structure.  This model is coupled with the multi-dimensional explosion code to predict the scale of
explosion. Such work is expected to be used to identify the physical mechanism of the time evolution
of the burning wave, which may change from deflagration wave to detonation wave.

Reference:
[1]W. Hillebrandt and J. Niemeyer, Ann. Rev. Astron. Astrophys. 38, 191-230
(2000)
[2]D. Shvarts et al, Physics of Plasmas 2. 2465 (1995).
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Abstract No. C39

Turbulent Diffusion in Solar Type Star

N. Toqué
University of Montreal, Quebec, Canada

The shear layers with the instability of Kelvin-Helmoltz are common topics of the  fluids mechanics.
They are less common when they are assumed to be  in a solar type star to partly explain the 
anomalies of abundances at the photosphere. Thanks to the rolling-up of the convective zone, the
ionized species, which are produced in the radiative core of the star, such as the Lithium, have to
migrate to the top of it. However, they are not enough detected at the photophere to validate the
standard stellar model. So, it  is assumed that at the vicinity of the tachoclyne,  the goin-up of the
light  abundances is blocked by horizontal turbulence in shear layers.

This poster introduces the content of the numerical 2D code  and the assumptions made to simplify
the modelisation of the physical problem. It shows results which enforce the influence of the
turbulence and quantify its effect on the going-up of the ionized species to the photophere of the
star.
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Abstract No. C40

Recent Computational Simulations of Rayleigh-Taylor Mix Layer Growth
With a Multi-Fluid Model

E. Vold
Los Alamos National Laboratory, Los Alamos, NM

Recent results of computational simulations of the Rayleigh-Taylor mix layer are presented and
discussed.  Our previous work is summarized briefly comparing mix layer growth characteristics
observed in different simulation modes including single fluid with initial density discontinuity, two-
fluids with interface reconstruction and in a full multi-fluid dynamic approach.  Recent comparisons
under varying compressibility are presented showing negligible influence of compressibility on the
mix layer growth rate.  Using spectral analyses, perturbations intentionally introduced in the initial
conditions are compared to long wave length perturbations introduced inadvertently in these initial
conditions.  The influence of these initial conditions on late time growth and growth rate are explored.
 The compressible multi-fluid model allows each fluid to have its own ‘drift velocity’ relative to the
mass averaged fluid velocity.  This can be applied in several ways within the mix layer to represent
a real molecular mixing, a turbulent enhanced diffusive mixing, or an individual species ‘sub-grid’
convective drift flux.  Examples of these in the Rayleigh-Taylor mix layer are discussed.  Finally, we
consider the combination of these factors which best matches the experimental results for mixing
layer growth rates in incompressible experiments, and how these results may apply to compressible
fluids.
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Abstract No. C41

An Efficient and High Resolution Solver for the Two-Dimensional Numerical
Simulation of the Richtmyer-Meshkov Instability

S. P. Wang, M. H. Anderson, J. G. Oakley, and  R. Bonazza
University of Wisconsin at Madison, Madison, WI

The development of a consistent and fully conservative model and a corresponding efficient and high
resolution solver for the numerical simulation of multicomponent or multifluid flows is presented.
This theoretical and numerical work was developed to support the Wisconsin shock tube
investigation of hydrodynamic issues related to the Richtmyer-Meshkov and Rayleigh-Taylor
instabilities.

A consistent and fully conservative treatment of contact discontinuities is proposed for the
simulation of compressible multifluid flows. The model is capable of  capturing  contact
discontinuities with significantly reduced numerical uncertainties compared to conventional
conservative models.  Starting from the concept of total enthalpy conservation for the mixture, a new
formulation is defined for the determination of the ratio of the specific heats of the mixture, and a
governing equation in conservative form for pressure is obtained subsequently.  With continuity
equations for the individual components, a governing equation in conservative form for the ratio of
specific heats of the mixture is easily derived.  These two derived equations, combined with mass
balance and momentum balance equations form the full system for the description of multifluid
flows.

The conservative governing  equations are then solved with an efficient and high resolution Godunov-
type solver which is based upon the exact Pike(1993) Riemann solver.  To improve the accuracy of
the scheme, by preserving monotonicity of the variables at shock waves and contact surfaces, a
Monotonic Upstream-Centred Scheme for Conservation Laws (MUSCL) technique for the data
reconstruction of fluxes is used.   Second order accuracy is achieved by using a piece-wise linear
method and a  piece-wise spline method is introduced to achieve higher-order accuracy especially
useful for capturing contact discontinuities such as the Richtmyer-Meshkov instability (fourth order
accuracy has been achieved even for non-uniform mesh sizes).

Several 1-D multifluid flows with both strong and weak shocks are simulated using the model.
Comparisons of numerical results obtained by the proposed model, conventional models and exact
solutions are made.  They show that the proposed model and the methods are accurate, robust and
generate oscillation-free solutions near material interfaces.  Finally, the proposed model and method
are extended to 2-D multifluid flow problems and compared to experimental Richtmyer-Meshkov
instability growth measurements conducted in the University of Wisconsin shock tube.
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Abstract No. C42

ALE Simulations of Turbulent Rayleigh-Taylor Instability
in 2-D and 3-D

S. V. Weber, G. Dimonte, and M. M. Marinak
Lawrence Livermore National Laboratory, Livermore, CA

We have performed simulations of the evolution of the turbulent Rayleigh-Taylor instability with
the ALE code HYDRA3, including interface reconstruction. The test problem is that of the “alpha
group”, discussed in the presentation of Dimonte et al. at this conference. Perfect γ=5/3 gases of
densities 1 and 3 are accelerated by constant gravity. The initial interface perturbation is a random
spectrum of modes in the range 32 ≤ n ≤ 64. We employed meshs of 256 x 512, 512 x 1028, and
1028 x 2048 in two dimensions (2-D) and 1282 x 512 and 2562 x 512 in 3-D. The shortest seed
modes have only 4 zones/wavelength at the nominal (coarsest) resolution. Consequently, linear
growth is suppressed by under-resolution, and is not fully converged even at the highest resolution.
However, as the growth transitions toward turbulence, turn-over of the growth rate in the 2-D
simulations occurs earlier and at smaller amplitude with higher resolution. Results for mixing layer
growth in the self-similar ~ gt2 regime and sub-structure of the mixing layer will be discussed.

1 M. Marinak et al., Phys. Plasmas 3, 2070 (1996).

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Abstract No. C44

Study of Turbulent Gravitational Mixing at Large Density Differences Using
Direct 3D Numerical Simulation

Yu. V. Yanilkin, V. P. Statsenko, S. V. Rebrov, N. I. Selchenkova, O. G. Sin’kova,
A. L. Stadnik and A. Ya. Uchayev

Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

3D hydrocode TREK is used for numerical study of turbulence evolution in the field of gravity at
a plane interface between two incompressible fluids (gases) with a large density difference, 3 ≤ ρ2/ρ1

≤ 40.
The computations were conducted on a fine computational grid  with parallelization on several tens
of processors.
The computed data was processed (averaged) in order to obtain moments of hydrodynamic values:
diagonal components of Reynolds tensor (turbulent energy), turbulent flows, density profiles and
mean-square pulsation. The resultant values are compared to predictions with phenomenological
turbulence models and known experimental data.
The dissipation problems in these computations are disscussed.
A one-point function of concentration probability density is constructed using processed results of
the direct numerical simulation. The results are compared to computed data obtained elsewhere.
A fractal analysis of turbulent vortex scales is also conducted, which demonstrates that in the
turbulent mixing zone the fractal size does not essentially change and is close to the measured value
and the value from 3D computations by other investigators.
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Development and Validation of a 2D Turbulent Mix Model

D. L. Youngs
Atomic Weapons Establishment, Aldermaston, United Kingdom

A 2D turbulence model based on the equations of multiphase flow with turbulent diffusion effects
added, is used to model mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities in
situations where the mean flow is two dimensional. For simple 1D flows it is relatively easy to check
that the turbulence model gives satisfactory mix distributions. However, this is much more difficult
to do for the case when the mean flow is two dimensional. In order to validate the 2D turbulence
model, results are compared to the tilted-interface Rayleigh-Taylor mixing experiments presented by
J.M.Holford at this meeting and the ‘chevron’ shock tube experiments presented by A.V.Smith at
this meeting. Experimental measurements of mix distributions are difficult to make in 2D. Hence 3D
Large Eddy Simulation is able to make a very useful contribution. The TURMOIL3D code is used
to perform 3D simulations which give a satisfactory match to the experimental results. The mix
distributions obtained by averaging the calculational results in the third dimension may then be
compared directly with the 2D turbulence model results.

At present 3D LES is often not practical for complex real applications. However, 3D LES for
simplified problems does have a very useful role in helping to validate the turbulence models which
can be applied to complex problems.
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Preliminary Results of DNS and LES Simulations
of Self-Similar Variable Acceleration RT-Mixing Flows

D. L. Youngs1, X. Silvani2, J. Magnaudet2, and A. Llor3

1Atomic Weapons Establishment, Aldermaston, United Kingdom
2Institut de Mécanique des Fluides de Toulouse, Toulouse, France
3Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

The importance of self-similar variable acceleration RT flows (SSVARTs) for the design an
calibration of turbulent mixing models has been shown in an other presentation to the present
workshop.

Because experimental results on SSVARTs are not, and will probably not be available in any close
future, we are currently investigating such flows by means of DNS and LES.

This first presentation of our preliminary results will be devoted to discussing the technical issues
(compressibility effects, subgrid models, initial conditions, mesh size, Atwood number...)  whose
influence must be carefully controled due to the lack of experimental data.  The behaviour of the
observed growth rates and large scale turbulent structures will also be analysed.
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Shock–Planar Curtain Interactions: Strong Secondary Baroclinic Deposition
and the Emergence of Coherent and Random Vortex Projectiles  (VPs) and

Decaying Stratified Turbulence

S. Zhang and N. J. Zabusky
Rutgers, State University of New Jersey, Piscataway, NJ

We continue our previous investigation [1] of the interaction of a shock with a planar, inclined
curtain (s/f/s ) to higher Mach numbers, (M=1.5, 2.5 &  5.0),  longer times (epochs) and alternate
configurations in 2D and 3D (e.g. a fast/slow/fast or (f/s/f) ). In all cases, the qualitative features may
be explained in terms of  opposite-signed vortex layers (deposited by  shock waves in epoch 1) that
move in opposite directions and  collide  at one boundary to form a complex vortex double layer 
(VDL)  that traverses the shock tube. (This causes early-time ``breakthrough’' [1]). We focus on
longer evolution times where, eventually, the transversely moving VDLs collide with the opposite
horizontal boundary and evolve into upstream & downstream moving stratified vortex projectiles
(VPs)  [2]. In 2D, we compare these near-stationary, inhomogeneous coherent structures to the
Lamb-Chaplygin vortex of 2D homogeneous flow.  We also display and quantify: (1) strong non-
acoustic circulation generation via   baroclinic processes during  traversal of the VDL across the shock
tube (epoch 2); and  (2) evolution and decay ( epochs > 2). of a stratified turbulent domain that arises
 between the two dominant VPs. We compare with images from Sturtevant’ s 1985 experiments and
comment on the unusual advantages of this configuration as well as the convergence of results under
mesh refinement.

 [1]  Yang, X. ,  N.J. Zabusky, and I-L.  Chern. Phys. Fluids A 2(6),892-895, 1990.
“Breakthrough” via Dipolar-Vortex/Jet Formation in Shock-Accelerated Stratified Layers.
[2]  N.J. Zabusky and S-M. Zeng, J. Fluid Mechanics 362, pp. 327-346, 1998.
Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock-
spherical F/S bubble interactions.

*This work was supported mainly by  DOE (Grant No. DE-FG0293ER25179.A000) and 
monitored by Dr. Daniel Hitchcock. Additional support was provided by SROA program and the
Jacobs Chair of  Applied Physics at Rutgers University
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Rapid Turbulization Arising from Vortex Double  Layers in Interactions of
“Complex” Blast Waves and Cylindrical and Spherical Bubbles

S. Zhang1, Y.-G. Kang 2, K. Nishihara, N. J. Zabusky1, and H. Kim2

1Institute of Laser Engineering, Osaka, Japan
2Rutgers, State University of New Jersey, Piscataway, NJ

1We examine the interaction of both cylindrical and spherical bubbles and a complex blast wave which
consists  of an approaching shock/contact discontinuity/shock . Such configurations arise following
a supernova explosion, e.g. SN 1987A where a complex blast wave is presently approaching a high
density ring (“inner circumstellar”), and may lead to rapid onset of turbulence on the upstream part
of the bubble2, not an occurrence at low Mach numbers and density ratios3. The mixing in this
turbulent domain will affect the electromagnetic radiation processes. Using PPM4, we examine a
parameter domain containing SN 1987A parameters  to validate the occurrence of this  process which
is related to shock reverberations and vortex double layers and their rapid instabilities.

*At Rutgers, this work was supported mainly by  DOE (Grant No. DE-FG0293ER25179.A000)
and monitored by Dr. Daniel Hitchcock. Additional support was provided by the SROA program
and the Jacobs Chair of Applied Physics at Rutgers University.2Laser Plasma Laboratory, Dept. of
Materials Sci. & Eng., Kwangju Institute of Science and Technology, 1 Oryong-dong, Puk-gu,
Kwangju, Korea

_____________________________________
1Y-G Kang, et al , “A novel experiment on the blast wave-sphere interaction using a laser produced
plasma” Phys. Rev E , submitted May 2001.
2K.J.Borkowski, J.M. Blondin and R. McCray. Astrophys J. 477, 281-293, 1997
3N.J. Zabusky and S-M. Zeng, J. Fluid Mechanics 362, 327-346, 1998.
4M. Blondin et al, Code VH-1 , NCSU. A lagrangian remap code based on PPM.
8th International Workshop on the Physics of Compressible Turbulent Mixing,
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Simulations of a Shock-Accelerated Gas Cylinder and Comparison with
Experimental Images and Velocity Fields

C. A. Zoldi1,2, K. Prestridge1, P. M. Rightley1,  and R. F. Benjamin1

1Los Alamos National Laboratory, Los Alamos, NM
2State University New York  at Stony Brook, Stony Brook, NY

The evolution of a cylinder of SF6 gas accelerated by a Mach 1.2 shock wave is studied both
experimentally and computationally.   Images of the initial conditions and the time evolution of the
cylinder are obtained from the experiment. Velocity measurements are determined at one time using
Particle Image Velocimetry.  Using an image of the experimental initial conditions, 2D simulations
are performed with the adaptive mesh Eulerian code, RAGE.  Although qualitative agreement is
achieved, significant differences exist in quantitative measurements.  The linear dimensions of the
cylinder measured over time are approximately 15% smaller in the simulation than in the experiment.
 In addition, although the directions of the velocity vectors are similar, the peak magnitude of the
velocity is a factor of three larger in the simulation.  The effect of turbulent mixing, which has not
been considered in previous analyses, is examined using the BHR K-S-a-b mix model recently added
to the RAGE code.

PACS No.:  47.20.Ma
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Turbulent Flow Simulations of Two Fluids Moving with
Different Laws of Acceleration

V. I. Kozlov, A. N. Razin, and I. V. Sapozhnikov
Russian Federal Nuclear Center − VNIIEF, Sarov, Russia

With Dimonte tests as an example, turbulent mixing (TM) evolution is discussed that results from
Rayleigh-Taylor instability at the interface between two fluids. In these tests, an ampoule with two
molecularly immiscible fluids (freon and water) was accelerated while the acceleration law being
varied in these tests.

The VIKHR code was used for the numerical simulations of the Dimonte's tests. This VIKHR
technique includes V.V. Nikiforov's semiempirical model of turbulent mixing. This model treats
various characteristics of a turbulent field, like the kinetic energy of turbulence, the turbulence energy
dissipation rate, the average square density fluctuations and the turbulent mass transfer velocity.

The calculations were performed with a sequence of refined grids with different initial TM zone
widths for increasing, decreasing, pulse and constant accelerations of the ampoule (the acceleration
laws were the same as those given in the paper by Dimonte). TM zone growth laws versus the
ampoule's path and the initial TM zone width have been obtained. The numerical results have been
shown to be in good agreement with the measured data provided additional constrains have been
included in the V.V. Nikiforov's model. These constraints can be interpreted as effective treatment
of turbulent motion energy being transferred to the interface energy of the boundary between the
fluids that are molecularly immiscible.

References

Dimonte Guy, Schneider Marilyn. Turbulent Rayleigh-Taylor instability experiments with variable
acceleration // Physical Review E, 1996, v. 54, p.3740-3743.
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The Behaviour of Velocity Variance Resulting from Turbulent Mixing
Zone-Shock Interaction

V. I. Kozlov and A. N. Razin
Russian Federal Nuclear Center − VNIIEF, Sarov, Russia

Turbulent mixing (TM) caused by Richtmyer-Meshkov instability at an interface between two gases
with different densities is discussed. VIKHR code simulations of shock tube tests by Poggi et al have
been performed. The feature of these tests is that the fluid's instantaneous mass velocities were
measured by Doppler's laser anemometer.

The VIKHR code includes the 1D version of the semiempirical TM model suggested by V.V.
Nikiforov that treats eddies' anisotropy. The VIKHR technique permits to precisely calculate
various quantities of a turbulent field, like for instance, the average square variance of different
velocity components and the average square density fluctuations, along with the flow's gas-
dynamical parameter distributions.

The calculations gave TM zone width and location versus time. The temporal evolution of the
average square axial velocity variance was also obtained for several Eulerian points. No special
calculation algorithm for turbulence quantities was used at the shock front in these calculations.

On the whole, there is satisfactory agreement with the test data by Poggi et al. Meanwhile, behind
the front of the first wave (whose intensity is the highest) reflected from the tube's dead end is 
approximately two time higher than that measured in the tests. (Note that the same quantity
calculated by Souffland et. al. exceeds the observed value by an order of magnitude). These results
have shown that the correlations used in the Nikiforov's model to treat shock wave-turbulent field
interactions, need to be improved.

References
1. F. Poggi, M.-H. Thorembey, G. Rodriguez. Physics of Fluids, v. 10, _ 11, 1998, pp. 2698-2700.
2. D Souffland, O. Gregoire, S. Gauthier, F. Poggi, J.M. Koenig. 6th International Workshop on the

physics of compressible turbulent mixing (Marseille, France), 1997, pp. 486-491.
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An Assessment of Multi-Velocity Versus Single Velocity in a Multi-
Component Model of Turbulent Mixing

D. E. Eliason, W. H. Cabot, and Y. Zhou
Lawrence Livermore National Laboratory, Livermore, CA

Turbulent mixing of the fluids in a multi-component system is of interest in situations such as inertial
confinement fusion (ICF) and core-collapse supernovae [1].  We report results of a project to include
a model of turbulent mixing in a multi-component hydrodynamics and physics model called KULL,
which is used for ICF.  Because KULL is a complex, multi-dimensional model, we have developed
a simplified, one-dimensional version called sKULL to speed-up the development of the turbulent
mixing model.

Of primary interest in the development of a turbulent mixing model for a multi-component fluid is
the question of whether it is necessary to allow each component of the fluid to retain its own
velocity.  A recently developed model of turbulent mixing, consisting of an extended buoyancy-drag
model and two-equation turbulent transport model [2], treats all components of the fluid as if they
had the same velocity.  In contrast, multi-velocity turbulent mixing models allow separate velocities
for each component of the fluid [3].  However, the necessity to carry separate velocities for each
component of the fluid greatly increases the memory requirements and complexity of the computer
implementation.  We will report results of a comparison between single velocity and multi-velocity
turbulent mixing models in sKULL with the intention of answering the question of whether the full
multi-velocity treatment is really necessary.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

[1] Remington, B.A., D. Arnett, R.P. Drake, and H. Takabe, Modeling Astrophysical Phenomena
in the Laboratory with Intense Lasers, Science, 284, 1488 (1999).

[2] Zhou, Y., G. Zimmerman, and E.B. Burke, submitted to Phys. Rev. E., (2001).

[3] Youngs, D.L., Laser & Particle Beams 12, 725 (1994).
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Abstract No. C54

High Order Numerical Methods for the 2D
Richtmyer-Meshkov Instability

W.-S. Don1, D. Gottlieb1, L. Jameson2, and C.-W. Shu1

1Brown University, Providence, RI
2Lawrence Livermore National Laboratory, Livermore, CA

The primary goal of this presentation is to examine several numerical methodologies with high order
accuracy for the investigation of the two dimensional (and eventually three dimensional) Richtmyer-
Meshkov instability. The high order schemes employed are the Spectral methods and the high order
Weighted Essentially Non-Oscillatory (WENO) finite difference scheme. We will briefly discuss
several important aspects of the numerical schemes when applied to the Euler equations.  Multi-
species full Navier-Stokes equations will be implemented in the near future.

A series of numerical simulations are carried out to investigate the convergence properties of the
schemes and long time behavior of the interface evolution.  Numerical results from the simulation of
shock interaction with a single mode perturbation of interface separating the heavy (Xenon) to light
(Argon) gases will be presented with various interface thickness and different Mach numbers. It can
be observed that the large and median scale structures such as the spike and bubble, transmitted
shock, shocked-interface velocity and shock triple point obtained by the different schemes are
basically in excellent agreement with each other and with available experimental data. Also
convergence studies had been made.  Some minor discrepancies of the finest scale structures along
the gaseous interface, as can be expected for numerical simulations of the Euler equations with this
sensitive nature, are observed.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Mixing Due to the Rayleigh-Taylor Instability

A. M. Dimits
Lawrence Livermore National Laboratory, Livermore, CA

Several aspects of mixing due to the Rayleigh-Taylor (RT) instability are investigated.

Analysis of 3D multimode simulations using the PPM code [D.H. Porter and P.R. Woodward,
Astrophys. J. Suppl. 93, 309 (1994), and references therein.] show that there are regions of the
parameter space of the initial conditions in which the growth rate is independent of variations in the
initial conditions. The simulated growth rates are found to increase as the Navier-Stokes viscosity
is increased. It is investigated whether this couterintuitive result is due to the suppression of material
mixing at the molecular level for larger viscosities.

Analyses of two RT experiments, one in which water is accelerated by a compressed gas (E.E.
Meshkov and N.V. Nevmerzhitsky, Proc. 3rd Int. Workshop. on the Physics of Compressible
Turbulent Mixing, 1991) and one in which an interface between gases of different density is
decellerated in the post-shock region of a shock in an electromagnetic shock tube (A.M. Vasilenko
et al., ibid.), are presented. Direct compressibility effects on the RT growth are shown to be
negligible in the former. Various effects of the expansion of the gases in the region of the interface on
the RT growth rates are investigated for the latter experiment, both analytically and with 1D
simulations. These effects are found to be insufficient to reconcile the growth rates observed in the
Vasilenko et al. experiments with some other experimental and simulation results.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



100               8th International Workshop on the Physics of Compressible Turbulent Mixing,
     Pasadena, CA (2001)

Abstract No. C56

Transition Stages of Rayleigh-Taylor Instability Between Miscible Fluids

A. W. Cook and P. E. Dimotakis
Lawrence Livermore National Laboratory, Livermore, CA

California Institute of Technology, Pasadena, CA

Direct Numerical Simulations are presented of three-dimensional, Rayleigh-Taylor instability
between two incompressible, miscible fluids, with a 3:1 density ratio. Periodic boundary conditions
are imposed in the horizontal directions of a rectangular domain, with no-slip top and bottom walls.
Solutions are obtained for the Navier-Stokes equations, augmented by a species transport-diffusion
equation, with various initial perturbations. Three of the simulations (Cases A, B and C) were
performed at a resolution of 256 x 256 x 1024 grid points, and the fourth simulation (Case D) was
performed at a resolution of 512 x 512 x 2040 grid points. The A, B and C cases achieved outer-scale
Reynolds numbers, based on height and rate of growth of mixing-zone, in excess of 3000; Case D
achieved an outer-scale Reynolds number of 5500. Initial diffusive growth is captured in the
simulations. The onset of nonlinear growth is as predicted by linear stability theory. Following the
diffusive stage, growth rates are found to depend on the initial perturbations through the end of the
simulations. Mixing is found to be even more sensitive to initial conditions than growth rates. Taylor
microscales and Reynolds numbers are anisotropic throughout the simulations. Improved collapse
of many statistics is achieved if the height of the mixing zone, rather than time, is used as the
progress variable. Mixing has dynamical consequences for this flow, since it is driven by the action
of the imposed acceleration field on local density differences.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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CALE Simulation of Richtmyer-Meshkov Experiments at High
Mach Number

A. Miles1,2, J. Edwards2, G. Glendinning2

1Lawrence Livermore National Laboratory, Livermore, CA
2University of Maryland, College Park, MD

Richtmyer-Meshkov instability experiments, recently conducted on the Omega laser, are simulated
via the C-based Arbitrary Lagrangian-Eulerian (CALE) hydrodynamics code in 2D. In the
experiments, a high Mach number shock (M ≈10) is incident on a corrugated plastic-foam interface
(ka = 0.92). The ratio of plastic to foam density is 12:1. After passage of the incident shock, the
perturbation amplitude grows in time. Computational grids initially rectangular and conforming to
the initial amplitude perturbation are both considered, as are zoning effects. Discrepancies between
the experiment and simulation are considered, including the growth rate at early times, the post-shock
amplitude, and the shock-interface proximity as the transmitted shock propagates through the foam.
A modified input velocity source is presented which results in a time-dependent growth rate that
agrees with the experimental observations much better than does the original source, which is
produced by a 1D Lasnex simulation. Various EOS models are used, and their predictions compared.
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Abstract No. T1

Nonlinear Evolution of Unstable Fluid Interface

S. I. Abarzhi
State University of New York at Stony Brook, Stony Brook, NY

We study the nonlinear evolution of the fluid interface generated by the Richtmyer-Meshkov
instability. For the first time we find the theoretical solutions, which capture the interplay of
harmonics in the nonlinear dynamics of 3D and 2D flows. A new type of the evolution of the bubble
front in RMI is discovered [1]. It is shown that the nonlinear RM bubbles flatten in time and the
shapes of Rayleigh-Taylor and Richtmyer-Meshkov bubbles differ significantly.

To perform the multi-mode analysis for the RM flow, we generalized the method developed in [2]
for RTI, and based our approach on symmetry theory. From the conservation aws we derived a
dynamical system governing the local dynamics of the nonlinear bubble. To capture the interplay of
harmonics in the local dynamics, we extended the functional space, involved all bubbles allowed by
symmetry of the flow, and found a family of regular asymptotic solutions. The physically dominant
solution in this family, i.e. the fastest stable one, corresponds to a flattened bubble, not to a bubble
with finite curvature as in [3].

The theory reveals deficiency of previous theoretical approaches in [3], explains existing
experiments, and establishes control parameters to be monitored in experiments.

1.S.I.Abarzhi, Nonlinear evolution of unstable fluid interface, Phys.Rev.Lett. submitted
2.S.I.Abarzhi, PRL89, 1332 (1998)
3.J.Hecht, U.Alon, D.Shvarts, Phys.Fluids 6, 4019 (1994); N.A.Inogamov, Sov.Phys.JETP 80,
890 (1995); K.O.Mikaelian, Phys.Rev.Lett.80, 508 (1998); Q.Zhang, Phys.Rev.Lett. 81,3391
(1998); S.Abarzhi, Phys.Fluids 12, N12 (2000).
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Nonlinear Asymptotic Solutions to RT and RM Problems for
Fluids With Close Densities

S. I. Abarzhi
State University of New York at Stony Brook, Stony Brook, NY

We consider the interface dynamics in the Rayleigh-Taylor and Richtmyer-Meshkov instabilities for
fluids with close densities, the Atwood number A<1. We find the analytical solutions to the
equations governing the interface dynamics in 3D and 2D (conservation laws, potential
approximation), and analyze their regular and singular asymptotic behavior. First we derive a
nonlinear solution of the Layzer-type, i.e. single-mode solution [1]. For this solution the normal
component of velocity is discontinuous, and the flux of mass through the interface is significant. We
resolve this paradox and find a multi-mode nonlinear solution with NO FLUX of MASS through the
interface. This solution is the fastest one in the family of asymptotic solutions to the conservation
laws [1].
The theory [1] determines parameters to distinguish between the Layzer-type solution and the
nonlinear solution with NO FLUX. In RTI the bubble with NO FLUX is in few times narrower than
the Layzer-type bubble, while in RMI the bubble with NO FLUX is flattened. The singular
asymptotes (spikes) are also analyzed, and the influence of vorticity on the spike motion is
evaluated. We conclude that there is a non-trivial dependence on the Atwood number for the
parameters of the nonlinear motion (such as velocity of the bubble or spike) in either RTI or RMI
cases. The RT/RM mixing process is discussed.

1. S.I.Abarzhi, The dependence of the nonlinear RT/RM motion on the Atwood number, in
preparation, 2001.
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Turbulent Mixing in RTI as Order-Disorder Process

S. I. Abarzhi
State University of New York at Stony Brook, Stony Brook, NY

The cascades of energy and the dynamics of large-scale coherent structure are fundamental issues in
the problem of Rayleigh-Taylor turbulent mixing. The large-scale structure is a periodic array of
bubbles and spikes in the plane normal to the direction of gravity. We study dynamics of this
structure based on group theory, and analyze transitions associated with the growth of length scale
of the flow. In the limiting case of 2D flow, the scale growth occurs as a doubling of the spatial
period, in agreement with Sharp and Wheeler model, and a stable observable coherent structure
appears under this transition. In contrast, for a 3D flow the growth of length scale leads eventually
to anisotropy of the flow in the plane normal to the direction of gravity and no isotropic structure
occurs. We see that in RT turbulent mixing a balance between the inverse and direct cascades is
required to keep isotropy of the flow. These two processes may lead in a generation of an internal
structure with hexagonal symmetry and with close packing in the plane normal to the direction of
gravity. The concept of self-similarity in the RT mixing is discussed.
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A New Turbulent Two-Fluid RANS Model
for KH, RT and RM Mixing Layers

P. Bailly and A. Llor
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

Our aim is to develop an accurate turbulent mixing model for combined RT, RM and KH type of
instabilities, with arbitrarily variable accelerations.
Following the recent analysis of the RT and RM cases by G. Dimonte, and of the self-similar
variable acceleration RT flows (SSVARTs) in an other presentation to the present workshop, we
have considered as crucial to capture the following physical aspects by the corresponding model
features:

• the directed transport by a two-fluid approach,
• the correct buoyancy force by including mass transfer between the fluids,
• the turbulence diffusion by including most of the standard k-ε features,
• the geometrical aspects by consistent closures of the length scales.

This yielded a two-fluid two-turbulence model whose specific and original features will be discussed.
 1D numerical results of this model applied to self-similar flows will be presented.
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Super-Exponential Rayleigh-Taylor Flow

R. E. Breidenthal
University of Washington, Seattle, WA

A new class of forced, self-similar turbulence is proposed.  In it, the rotation period of the large-scale
vortices is forced to decrease by a constant factor at each rotation.  This is achieved by imposing an
e-folding time scale on the flow that decreases linearly with time.  Based on experimental results in
analogous flows, super-exponential turbulence may exhibit extraordinarily low entrainment and
mixing rates.  One application is in inertial-confinement fusion, where super-exponential acceleration
may play a useful role in achieving ignition.  It is shown that super-exponential flows are the mirror
image of unforced turbulence, and both are members of a closely related family of self-similar
turbulence.
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Abstract No. T7

Theoretical Methods for Determination of Mix

B. Cheng1, J. Glimm2,3, and D. H. Sharp1

1Los Alamos National Laboratory, Los Alamos, NM
 2State University of New York at Stony Brook, Stony Brook, NY

3Brookhaven National Laboratory, Brookhaven, NY

We present a theoretical description of the growth of a planar 3D mixing layer due to Rayleigh-
Taylor (RT) or Richtmyer-Meshkov (RM) instabilities. The methods yield agreement with all
known experiments. They also possess advantageous theoretical features, such as real characteristic
speeds and improved mixed cell EOS.

The first method is a bubble merger model, validated by comparison to experiments of Smeeton and
Youngs and of Dimonte et al. The model is based on a renormalization group fixed point calculation,
incorporating the self similar behavior of RT instability. The second method is based on the dynamic
motion of the RT center of mass; it couples the bubble and spike mixing zone edges, and predicts the
RT spike growth as a function of the RT bubble growth. The third method is a drag buoyancy model,
with a phenomenological drag coefficient, set to agree with the RT edge motion models above.
This model predicts RM edge motion. The final method is a mix model, i.e. a set of averaged
equations, with prediction of the behavior of mixed average flow quantities such as volume fraction,
as a function of the mixing zone edges.

PACS Nos.: 47.20Bp, 47.52+j
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Modeling Radiation Effects in Mixing Layers

T. Clark and F. Harlow
Los Alamos National Laboratory, Los Alamos, NM

Radiative heat transport and resulting material phase changes can have a pronounced effect on the
evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing layers.  For sufficiently high
temperature differences across the materials in these layers, the radiation effects may significantly
alter the rate of growth of these mixing layers.  Direct numerical simulation of these processes is
generally not possible for practical circumstances due to the rapid growth of fine-scale structures as
well as the inherent stochasticity of the mixing process.  Consequently, we are developing a turbulent
mix model that incorporates the effects of radiative heat transfer and ablation in a computationally
tractable fashion.  The model under development describes the ablation of the cold material as a
surface phenomenon in which a thin skin of the cold material is ablated by the radiation through a
thin skin of the hot material.  As a first approximation we have assumed that only two materials are
present.  Thus after the cold material is ablated it is indistinguishable from the hot material.  The goal
of the model is to derive a model with sufficient predictive power to determine the mixing layer
growth rates, and to distinguish the circumstances under which the ablation process (i.e., “fire-
polishing”) will overwhelm the tendency towards hydrodynamic mixing intrinsic to these mixing
layers.  We will discuss both model development and computed results.

PACS Nos.: 47.27.Eq, 47.27.Te, 47.55.Kf, 47.70.Mc
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A Model for Instability Growth in Accelerated Solid Metals

J. D. Colvin1, M. Legrand2, B. A. Remington1, G. Schurtz2, and S. V. Weber1

1Lawrence Livermore National Laboratory, Livermore, CA
2Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

We present the derivation of an approximate analytical dispersion relationship for elastic-plastic
acceleration-driven instability growth. We have applied this model, where applicable, to perturbation
growth measurements made in three separate types of experiments: HE-driven planar Al plates, HE-
driven implosions of steel cylinders, and planar Al foils driven indirectly by LLNL's Nova laser.  We
have also compared the analytical modeling with 2-D simulations. We find that for the moderate
strain rates of the HE experiments the simulations and analytical modeling agree with each other and
with the data, with an equivalent plastic viscosity consistent with the von Mises criterion.  For the
high strain rates of the Nova experiments, on the other hand, the viscosity needed in the analytical
model to match the data is about one-tenth of what the simulations predict.  This initial material
weakening, followed by a relaxation to a strengthened state, is consistent with a "relaxation model"
in which plastic flow at high strain rate is confined to discrete shear bands.  We also derive a
characteristic scale for the plastic viscosity and find under what conditions the growth is independent
of initial amplitude.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Toy Models for the Growth Rate of Rayleigh-Taylor Instability

S. B. Dalziel
Cambridge University, Cambridge, United Kingdom

There remains an on-going debate about one of the most basic characteristics of the instability: the
growth-rate coefficient α. In many respects this is surprising, but at the same time it is perhaps
inevitable. After undergoing a period of convergence between experiments and numerics for values
of this important quantity, some recent studies show a continued decline in the growth rate for some
numerical models, at the same time as the models offer overall improvement in the resolution and
quality of results. This paper makes use of a range of toy models for Boussinesq Rayleigh-Taylor
instability in an effort to understand and reconcile the issues.
The paper begins by returning to the classical Layzer model and reconciles it with the behaviour of
other buoyancy-driven flows, before exploring the possible growth rates it predicts for the
developing instability. Attention is then turned to a shell model for the instability. Shell models are
normally used to help explain the behaviour of turbulence in homogeneous fluids subject to forcing
at low wavenumbers. In this study, a very simple model is adapted to take account of buoyancy-
driven forcing over the entire range of available scales. The results offer an interesting comparison
with Rayleigh-Taylor instability, and offer insight into the behaviour that determines the growth rate
α.
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A General Buoyancy-Drag Model for the Evolution of the Rayleigh-Taylor
and Richtmyer-Meshkov Instabilities

Y. Elbaz1,2, Y. Srebro1,2, O. Sadot2, and D. Shvarts1,2

1Ben-Gurion University, Beer-Sheva, Israel
 2Nuclear Research Center - Negev, Israel

The growth of a single-mode perturbation is described by a buoyancy-drag equation, which describes
all instability stages (linear, non-linear and asymptotic) at time-dependant Atwood number and
acceleration profile. The evolution of a multi-mode spectrum of perturbations from a short
wavelength random noise is described using a single characteristic wavelength. The temporal
evolution of this wavelength allows the description of both the linear stage and the late time self-
similar behavior.

The model includes additional effects, such as shock compression and spherical convergence. In
addition to the mixing zone fronts, the internal density profile of the mixing region has been
investigated using a simple diffusion-like model.

Model results are compared to full 2D and 3D numerical simulations and shock-tube experiments
of random perturbations, studying the various stages of the evolution.
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3D Rayleigh-Taylor and Richtmyer-Meshkov Single-Modes

N. A. Inogamov1, A. M. Oparin2, M. Tricottet, and S. Bouquet3

1Landau Institute for Theoretical Physics, Moscow, Russia
 2Institute for Computer Aided Design, Moscow, Russia,

 3Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

We study 3D topology of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) single-modes. 3D
case is much richer than 2D case. For example, in addition to the well-known bubbles and jets, 3D
saddles appear. Saddles are points of stagnation - as are the tips of bubbles and jets - and, therefore,
they play the same important role. We present a 3D analytic description of the interface as a
whole,from bubbles to jets. Hexagonal, square and triangular lattices of bubbles are investigated both
analytically and numerically.
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Rayleigh-Taylor Instability for Compressible and Incompressible Media

N. A. Inogamov1,2, M. Tricottet2, A. M. Oparin3, and S. Bouquet2

1Landau Institute for Theoretical Physics, Moscow, Russia
2Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

3Institute of Computer-Aided Design, Moscow, Russia

After a brief Reminding of the role played by Rayleigh-Taylor Instabilities in astrophysics (Type
II supernovae, supernovae remnants, insterstellar clouds driven by ablation), some developments
concerning instability criteria, linear growth for compressible media will be presented.
Then, the 3D structure of non-linear single-mode instability interfaces is investigated, and proves to
be much richer than in 2D. Accumulation points are analytically studied, up to high-order
development, for arbitrary long times - including asymptotic behaviour.
Finally, some comparisons will be effected to numerical simulations with the predictions concerning
this points and some shape factor.

PACS Nos.: 47.20.Ma, 47.40.Nm
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Three Dimensional Multi-Mode Rayleigh-Taylor and
Richtmyer-Meshkov Instabilities at All Density Ratios

D. Kartoon1,2, D. Oron1, L. Arazi3, A. Rikanati1,2, U. Alon4, and D. Shvarts1,2

1Nuclear Research Center Negev, Israel
 2Ben-Gurion University, Beer-Sheva, Israel

 3Tel-Aviv University, Tel-Aviv, Israel
4Weizmann Institute, Rehovot, Israel

The three dimensional turbulent mixing zone (TMZ) evolution was studied using two approaches.
First, an extensive numerical study was made, investigating the growth of a random three dimensional
(3D) perturbation under Rayleigh-Taylor and Richtmyer-Meshkov unstable conditions in a wide
range of density ratios. Following that, a new 3D statistical model was developed based on the same
logic as the 2D statistical model – binary interactions between bubbles growing at a 3D asymptotic
rate.

The results for the growth rate of the 3D bubble front attained from the theoretical model show good
agreement with both the experimental [1] and the 3D simulation results. The simulation results also
agree well with the experimental spike front growth rate. Further approval for the theoretical model
was gained by detailed comparison of the bubble size distribution to the numerical simulations, and
by comparison to a 3D multi-mode drag-buoyancy model [2].

The good agreement between the theoretical models, the 3D numerical simulations and the
experimental results, together with the clear differences between the 2D and the 3D results, suggest
that the discrepancies between the experiments and the previously developed models are due to
geometrical effects.

[1] G. Dimonte, Phys. Plasmas 6, 2009 (1999).
[2] D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, D. Shvarts, Phys. Plasmas 8 (June 2001)
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Stability of Diverging Shock Waves

V. M. Ktitorov
Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

For the first time the self-similar approach was successfully applied to the stability problem of
diverging shock waves when calculating evolution of small perturbations of self-similar point blast
wave. The new sort of Rayleigh-Taylor instability was found in this case when γ<1.2 (See instability
region on Fig.1 /1/). The results of calculations were later proved in laboratory experiment /2/ as well
as in computer simulation /3/.

In this paper we summarize the solutions of stability problems of various types of diverging shock
waves (both spherical and cylindrical) which were obtained with the help of the self-similar
approach. The following cases are considered:
Point blast wave in non-ideal gas and in the gas which density depends on radius,
Reflected from the center converging shock wave.

We calculate the values of complex exponents of power time dependence of front perturbations in
a wide region of values of harmonic number and of gas adiabatic exponent. We also determine the
region of instability.

V.M.Ktitorov, Khim.Fizika(Chem.Phys.Issues),V.14,No2-3,p.169,1995
J.Grun et al, Phys.Rev.Let.,V.66,No21,p.2738,1991
V.Ktitorov,V.Meltsas, Proceedings of the 6thIWPCTM,Marseille,1997
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Stability of Reflected from the Center Self-Similar
Converging Shock Wave

V. M. Ktitorov
Russian Federal Nuclear Center – VNIIEF, Sarov, Russia

The technique first used in /1-3/ for solving the point blast wave stability problem is applied for the
one of the self-similar converging shock wave after focusing.

Small (linear) perturbations of the shock wave are expanded into spherical harmonics the components
of expansion being presented in the self-similar form. The stability problem is reduced to the solving
of the system of the ordinary differential equations, which are to be solved simultaneously with the
main spherically symmetric equations of the shock wave.

The eigenvalue problem is formulated. This problem is solved, complex values of power exponent
(they describe a time dependence of front perturbations) are calculated as eigenvalues. The
eigenvalues are calculated numerically in the general case of arbitrary values of harmonic number n
and gas adiabatic exponent γ. The region of instability is defined on the plane n-γ.

V.M.Ktitorov (Russian Atomic Science and Technique Issues, Ser. Theoretical and Applied
Physics), No2, p.28, (1984);
D.Ryu and E.T.Vishniac, Astrophys.J. 313, 820 (1987);
V.M.Ktitorov, Khimicheskaya Fizika (Chemical Physics Issues) V.14, No 2-3, p.169, (1995);
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Using a Turbulence Transport Approach to Study Shocks Through
Polycrystalline Metal

R. R. Linn and F. H. Harlow
Los Alamos National Laboratory, Los Alamos, NM

A polycrystalline metal is composed of close packed crystals in each of which the elastic modulus
is non-isotropic to a degree that ranges from slight to extreme (as in delta-phase plutonium where
there is a seven to one variation). We have made considerable progress in the development of a
stochastic model by which to describe the collective behavior as a strong shock or rarefaction passes
through the material.  The basic idea is to start with the laws of mass, momentum, and energy
conservation, decompose each variable into mean and fluctuating parts, ensemble average the
equations, and then derive transport equations and closures for the higher-order moments.  The first
version has been obtained and tested numerically for a self-similar traveling wave, and results show
deficiencies, together with strong clues for their remediation.  We have made much progress in
developing a second, improved version for which results will be presented during the talk.
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Response of Turbulent RANS Models to Self-Similar Variable Acceleration
RT-Mixing:  An Analytical 0D Analysis

A. Llor
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

So far, the validation of RANS models applicable to variable acceleration RT mixing flows (as found
in ICF) has mostly been carried out by fitting experimental or numerical data obtained for constant
(RT) and impulsive (RM) accelerations.  Further checks are also possible on the few available data
for variable acceleration, such as in mixing-demixing flows induced by reverting the gravity field.
Although this approach is widely applied and accepted, it is unsatisfactory because of the complex
relationship between the model features and coefficients and the experimental measurements.

It is shown here that self-similar variable acceleration RT (SSVART) provides an appealing
alternative since it extends the usual calibration techniques of turbulent RANS models based on
simple self-similar flows.  The general model equations in 1D (PDEs) are still too complex for full
analytical calculations of SSVART flows, but using reasonable assumptions, simple 0D (ODEs)
approximations can be derived and solved analytically.

This approach is applied to an extended k-ε model derived from Andronov's and to Young's two-
fluid model.  The behaviour of the mixing layer growth rate and integral turbulent scales provides
important informations on the accuracy of these models.

Finally, general qualitative arguments will be discussed showing the importance and the difficulty
of capturing accurately a broad range of SSVARTs with a single simple model.
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Nonlinear Evolution of an Interface in the
Richtmyer-Meshkov Instability

C. Matsuoka1, K. Nishihara2, and Y. Fukuda2

1Ehime University, Ehime, Japan
2Institute of Laser Engineering, Osaka University, Osaka, Japan

We have developed an analytical model that describes a fully nonlinear evolution of an interface in
the Richtmyer-Meshkov instability. Proper boundary conditions at the interface are derived and the
temporal evolution of the interface is investigated as a vortex sheet using them. It is shown that the
created vorticity on the interface has a strong inhomogeneity, which causes the stretching and
compression of the sheet. We discuss the inhomogeneity in detail, from which we show the interface
has a double spiral structure. We also show a good agreement in the analytical solutions of the
interface shape with two-dimensional hydrodynamic simulations.
We present the proper kinematic boundary condition, the modified Birkhoff-Rott equation, in order
to describe the nonlinear evolution of the interface with the temporal evolution of the circulation,
corresponding to the Bernoulli equation, on the interface for an arbitrary Atwood number. The
analytical solutions show that the interface is stretched to the tangential direction proportional to
time. In the nonlinear stage, the modes in the normal and tangential directions mutually interact to
yield to the large deformation of the spike. By introducing the self-similar form of the velocity
potential first found by Rott, we can construct a fully nonlinear evolution of the double spiral
structure in the spike.
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Evolution of Arbitrary Perturbations in the
Richtmyer-Meshkov Instability

K. O. Mikaelian
Lawrence Livermore National Laboratory, Livermore, CA

We present analytical and numerical calculations on the evolution of arbitrarily shaped initial
perturbations undergoing the Richtmyer-Meshkov instability. In many cases a simple, explicit,
analytic formula can be written down for the linear regime. These formulas serve as nontrivial tests
of hydrocodes, and we present simulations with the Arbitrary Lagrangian-Eulerian hydrocode CALE
that cover the linear as well as the deeply nonlinear regime of the instability. A brief outline and code
calculations for possible experiments will also be presented.

PACS No.: 52.35.Py

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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RT Turbulence: Dramatic Dynamics of Interpenetration
(Fast Jets, Sharp Decelerations and Accelerations)

A. M. Oparin1, N. A. Inogamov2, and A. Yu. Dem'yanov3

1Institute for Computer Aided Design, Moscow, Russia
 2Landau Institute for Theoretical Physics, Moscow, Russia

3Moscow Institute for Physics and Technology, Moscow, Russia

Dynamics of turbulent mixing due to the Rayleigh-Taylor instability is considered. The mixing layer
consists of a single horizontal array of large scale structures. The characteristics of these structures
are studied by the spectral and statistical methods. Stimulation of mixing by long-wavelength noise
is studied. It is demonstrated that, for a typical homogeneous unscaled noise,time-squared self-
similarity is retained. The threshold amplitude of random broadband noise is determined, below
which these noise can be ignored. The mixing deceleration by the side boundaries is studied. The
stimulation and deceleration effects sizably influence the mixing coefficient, increasing and decreasing
it respectively.
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Statistical Mechanics Large Scale Model for the Evolution of the Multi-Mode
Kelvin Helmholtz Instability

A. Rikanati1,2, U. Alon3, and D. Shvarts1,2

1Nuclear Research Center Negev, Israel
 2Ben-Gurion University, Negev, Israel

3Weizmann Institute of Science, Israel

The nonlinear growth of the multi-mode incompressible Kelvin-Helmholtz (KH) shear flow
instability at all density ratios is treated by a large scale statistical-mechanics eddy-pairing model,
based on a vortex model for the single eddy behavior and the process of two eddy-pairing. Using an
adaptation of the statistical merger model by Alon et. al [1994], a linear time growth of the mixing
zone is obtained, resulting in the linear time growth coefficient for several density ratios as well as
an asymptotic lognormal eddy size distribution and the average eddy life time probability. Very good
agreement with full numerical simulations and experiments is achieved.

References:
U. Alon, J. Hecht, D. Mukamel and D. Shvarts, Phys. Rev. Lett. 72, 2867 (1994).



124               8th International Workshop on the Physics of Compressible Turbulent Mixing,
     Pasadena, CA (2001)

Abstract No. T23

Effects of High Initial Amplitudes and High Mach Numbers on the
Evolution of the RM Instability: I. Theoretical Study

A. Rikanati1,2, D. Oron1, O. Sadot1,2, and D. Shvarts1,2

1Nuclear Research Center Negev, Israel
2Ben-Gurion University, Beer-Sheva, Israel

Recent shock tube experiments [Aleshin et al. 1997] and laser driven experiments [Dimonte et
al.1998] resulted in an initial bubble growth velocity smaller then that predicted by the matching
impulsive models [Richtmyer et. al. 196? and Meyer-Blewett 1972]. It was suggested that the
reduction can be attributed to effects of both High Mach number and high initial amplitudes [Holems
2000].

In the present work two models are formulated describing the velocity reduction caused by the two
effects. A vorticity deposition model is formulated for effects of high initial amplitudes and a "wall"
model is formulated for describing effects of high Mach number caused by the proximity of the shock
wave with the two fluid interface. Both in good agreement with the matching experimental results.

Implementing the above models for a range of initial conditions (low to high initial amplitudes and
Mach numbers) and with the aid of full numerical simulations, previous experiments and new low
and high Mach number shock tube experiments [Sadot et. al., present conference], the range of initial
conditions is divided into regions of high Mach dominance, regions of high initial amplitudes
dominance and "classical " regions were the two effects are negligible. Using the above mapping, it
was found that effects of high initial amplitudes dominates most of the previous experiments.

References:

Aleshin et. al., in Proceedings of the Sixth International Workshop on the Physics of
Compressible Turbulent Mixing edited by  G. Jourdan & L. Houas, Marsielle France 1997. Page
1.

Dimonte G., Frerking C.E., Schnider M. and Remington B., Phys. of Plasmas 12, 304 (1996).

Holmes et. al., J. Fluid Mech 187, 329 (1999).

Meyer K.M. and Blewett P.J., Phys. of. Fluids 15, 753 (1972).

Richtmyer R.D., Commun. Pure Appl. Math. 13, 297 (1960).
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Compressible MHD Turbulence in Strongly Radiating
Molecular Clouds in Astrophysics

D. D.  Ryutov and B. A.  Remington
Lawrence Livermore National Laboratory, Livermore, CA

Molecular clouds in astrophysics are often subjected to intense irradiation by nearby young stars.
The ablation process ensues and a strong shock is driven into the cloud. In a number of cases, the
radiative cooling time of the shocked matter is much shorter than the dynamical time of the cloud
evolution. In such situations, possible pre-existing turbulent motions and turbulent magnetic fields
can potentially contribute to the "stiffness" of the shocked material. We suggest simple models
allowing quick evaluation of these effects. We conclude that the presence of a turbulent magnetic field
can play a significant role, provided its amplitude is beyond some critical level, whereas the turbulent
ram pressure of the unmagnetized  medium can play only a relatively minor role. Implications for
the dynamics of astrophysical molecular clouds are discussed.

PACS Nos.: 47.27.Jv, 47.65.+a, 95.30.Qd. 98.58.Db

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Single-Velocity, Multi-Component Turbulent Transport Models for
Interfacial Instability-Driven Flows

O. Schilling
Lawrence Livermore National Laboratory, Livermore, CA

A family of two-equation turbulent transport models is proposed for three-dimensional, single-
velocity, multi-component turbulent flows driven by Rayleigh-Taylor, Richtmyer-Meshkov, and
Kelvin-Helmholtz instabilities.  The models are compressible versions of K-Z models, where K is the
turbulent kinetic energy and Z is an auxiliary variable such as the turbulent kinetic energy dissipation
rate, turbulent frequency, or turbulent lengthscale.  Terms are proposed in these equations that
account for buoyancy and compressibility effects.  The relative merits of different K-Z models will
be discussed, and preliminary a priori and a posteriori tests of the models using direct numerical
simulation data for Rayleigh-Taylor instability-induced turbulent mixing will be presented.  Future
plans for model tests and applications to Richtmyer-Meshkov instability-induced turbulent mixing
will also be discussed.

PACS Nos.: 47.20.Ma, 47.27.Eq, 47.40.Nm 

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Large- and Small-Scale Dynamics of Variable-Density Rayleigh-Taylor
Instability-Induced Turbulent Mixing

O. Schilling and A. W. Cook
Lawrence Livermore National Laboratory, Livermore, CA

The statistical dynamics of the large- and small-scales in a three-dimensional turbulent mixing layer
induced by Rayleigh-Taylor instability is studied using 5122 x 2040 direct numerical simulation data.
The terms in the evolution equations for the density-weighted kinetic energy, density-weighted
enstrophy, and squared density are evaluated to study their relative contributions during the time-
evolution. Particular consideration is given to the role of the baroclinic production and turbulent
diffusion terms, as well as to the coupling between the density and velocity fields. The traditional
method used to study the flow of energy between resolved (supergrid) and unresolved (subgrid)
scales by introducing a cutoff wavenumber in Fourier space is generalized using a multi-resolution
wavelet analysis, and used to quantify the forward cascade of kinetic energy, enstrophy, and the
squared density from large to smaller scales, as well as the backward cascade from small to larger
scales. The implications of this study for developing and assessing subgrid-scale and backscatter
models for large-eddy simulation of Rayleigh-Taylor mixing are discussed. Wavelet analysis is ideally
suited to studying evolving, anisotropic turbulent mixing, as wavelet-transformed spectra yield
information regarding both the scale of structures and their location within the flow. The use of
wavelet methods provides additional insight into the coupling between the large-scale, coherent flow
(the bubbles and spikes formed during the merger process) and the small-scale, incoherent
background flow (the smaller scale turbulence induced by Kelvin-Helmholtz instability and the
turbulent energy transfer process).

PACS Nos.: 47.20.Ma, 47.27.Eq

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Analytical Study of the Rayleigh-Taylor Instability in
Compressible Fluids

M. Tricottet and S. Bouquet
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

Since the observation of the explosion of the type II supernova, SN87a, Rayleigh-Taylor instabilities
(RTI) are suspected to play a key-role during the process of expansion of the envelope (due to the
passage of the shock) [1,2,3,4].
In this paper we perform an analytical study of the RTI. In contrast to most of all previous studies
[5,6,7], we examine the case of compressible fluids. In addition, both the static (time-independent
acceleration) and the dynamical (time-dependent acceleration) cases are presented.
For these two cases we are able to derive a non-trivial analytical dispersion relationship.
Comparisons are made, first, with the models developped for incompressible fluids and, as expected,
for wave number, k, going to infinity (wavelengths going to zero) we recover the well-known result
valid for incompressibility.
On the other hand, the influence of the time-dependence in the acceleration is shown and the
differences with the static case are emphasized.

[1] Clayton, Principles of Stellar Evolution and Nucleosynthesis, Univ. of Chicago Press (1983)
[2] Fryxell et al., ApJ. 367, 619 (1991)
[3] Glanz, Science 276, 351 (1997)
[4] Kane et al., ApJ. Lett. 478, 75 (1997)
[5] Abarzhi, Phys. Rev. Lett. 81(2), 337 (1998)
[6] Velasquez et al., Astron. Astrophys. 334, 1060 (1998)
[7] Mikaelian, Phys. Rev. Lett. 80(3), 508 (1998)
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Analytic Nonlinear Growth of A Single-Mode
Richtmyer-Meshkov Instability

M. Vandenboomgaerde
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

Perturbation method where only the most secular terms are retained gives a simple result for the
weakly nonlinear growth of a single-mode shock-accelerated interface [M.Vandenboomgaerde,
C.Mugler, and S.Gauthier, Proceedings, 7th IWPCTM, St. Petersbourg, 1999]. This result writes as
a series in integer powers of time. It can be considered as the Taylor expansion of an analytic
function. We believe that such a function has been identified; it describes the evolution of the
instability from the linear to intermediate nonlinear regime. Whereas the series has a finite radius of
convergence, the function has no singularity. The accuracy of this analytic formula is checked against
various 2D simulations. Comparisons with previous theoretical models are also presented.
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Efficient Perturbation Methods for Richtmyer-Meshkov and
Rayleigh-Taylor Instabilities: Weakly Nonlinear Stage and Beyond

M. Vandenboomgaerde, C. Cherfils, D. Galmiche, S. Gauthier, and P. A. Raviard
Commissariat à l'Energie Atomique, Bruyères-le-Châtel, France

A perturbation method has been derived by Q.Zhang and S-I.Sohn [Phys.Fluids 9, 1106 (1997)] in
order to predict the weakly nonlinear stage of the Richtmyer-Meshkov instability. Retaining the
most secular terms has allowed us to drastically simplify this theory [M.Vandenboomgaerde,
C.Mugler, and S.Gauthier, Proceedings, 7th IWPCTM, St Petersbourg, 1999].
We use this simplified but accurate approach to show the importance of the sign of the amplitude
of the modes in the selection mode process. Such process is also studied beyond the weakly
nonlinear stage. A class of homothetic interfaces is deduced fromthe theory. Its validity is checked
against 2D simulations, even in the intermediate nonlinear regime.
Finally, this approach is used in order to solve the equations of the nonlinear stage of the Rayleigh-
Taylor instability. We present comparisons between theory and various published test cases.
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Abstract No. T33

Combined Shear and Buoyancy Instabilities

P. N. Wilson1, M. J. Andrews1, and F. H. Harlow2

1Texas A & M University, College Station, TX
2Los Alamos National Laboratory, Los Alamos, NM

Mixing layer experiments were performed at Texas A&M University with flows in shear, with an
unstable buoyancy configuration and combined shear and (stabilizing, de-stabilizing) buoyancy. 
Two-time density correlations were measured, as well as single-point, second-order velocity
correlations for the various flow configurations.  A turbulence spectral transport model and a single-
point turbulence transport model were investigated with their local formulation and later with non-
local formulation in both physical and wave number space.  Numerical simulations of the mixing
layer were compared with experimental data and gave good agreement with the addition of terms to
model non-local processes, such as, pressure fluctuations propagating into the surrounding fluid from
the mix region, advection of small-scale eddies by large-scale structures, and vortex pairing resulting
from Kelvin-Helmholtz instabilities. Results of the comparisons between theoretical models and
numerical simulations and experimental data are presented.
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Abstract No. T34

Rate of Growth of the Linear Richtmyer-Meshkov Instability

J. G. Wouchuk
E. T. S. I. Industriales, University of Castilla, Salamanca, Spain

A theoretical model is presented that calculates the exact asymptotic rate of growth of the
perturbations present at a shocked corrugated contact surface. The model covers both situations:
whether a shock or a rarefaction are reflected back in the first fluid. The asymptotic growth rate can
be calculated with the desired accuracy for any value of the incident shock Mach number, fluids
compressibilities or initial density contrast. The growth rate is obtained as the solution, either of a
system of two coupled functional equations in the shock reflected situation, or of only one functional
equation in the rarefaction reflected case. The model includes the compressible history of the sound
wave reverberations between the corrugated fronts and the material interface. It is seen a quite high
speed of convergence for the intermediate calculations. Good agreement with previous numerical and
experimental works is shown.

PACS Nos.: 47.20.-k, 52.35.Py-, 52.35-T
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Abstract No. T35

The Dependence of the Shock Induced Richtmyer-Meshkov Instability on
Dimensionality and Density Ratio

A. Yosef-Hai1, O. Sadot1,2, D. Kartoon1,2, D. Oron2, E. Sarid2, G. Ben-Dor1, and D. Shvarts1,2

1Ben-Gurion University, Beer-Sheva, Israel
2Nuclear Research Center, Negev, Israel

The RM instability occurs when a shock wave passes through a perturbed interface between two
fluids. As a result of the instability, small perturbations on the initial interface develop into an array
of bubbles and spikes. The bubble front was found to be dominated by bubbles rising and
competing1. It was previously shown that this evolution of a multi-mode random initial
perturbations is strongly related to the evolution of the single-mode case.

For a single-mode perturbation the instability can be described by a linear stage, during which the
growth is characterized by a constant velocity, followed by a nonlinear stage, during which the
growth velocity reaches an asymptotic 1/t behavior2. Simple drag-buoyancy considerations can be
used to derive the acceleration of a single bubble. Assuming two fluids with different densities H

ρ

and L
ρ and bubble of wave length λ the equation of motion is:

( ) ( ) ( ) 2
H

d
LHHaL U

C
g

dt

dU
C1 ρ

λ
−ρ−ρ=ρ+ρ

The two constants Ca and Cd, which are the added mass coefficient and the drag coefficient
respectively, are determined by equating Eq. 1 to the prediction of a potential flow model2. For the
2D case Ca=2 and Cd=6 , for the 3D case Ca=1 and Cd=2 . The asymptotic solution of Eq. 1 for
RM is achieved by neglecting the effect of the shock (g=0). By doing so the bubble asymptotic
acceleration is derived:

( )
λ

⋅
ρ+ρ

ρ
−=

HaL

Hd U
Cdt

dU2

The growth rate is the solution of Eq.2. By introducing the coefficients as described above, the
dependence of the late time growth rate on the dimensionality and density ratio is found. The results
are summarized in the following Table:

1LH →ρρ ∞→ρρ LH

2D
1 λ

t3
1
π ⋅

3D
1 λ 1 λ
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In the present work a set of shock tube experiments were made to verify the model’s prediction. A
thin membrane, on which the 2D and 3D initial perturbations were imposed, separated the two gases.
Different pairs of gases were used to achieve different density ratios. The evolution of the shock-
wave induced mixing zone was measured by high speed laser schlieren photography. The linear and
asymptotic stages were observed. The results were found to be in good agreement with both model
and simulations. See the following Figure for the case of  5LH =ρρ .

References:
[1] Alon U., Hecht J., Ofer D. and Shvarts D. 1995 Phys. Rev. Lett. 74, 534.
[2] Hecht J., Alon U. and Shvarts D., 1994 Phys. Fluids 6, 4019.
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Abstract No. T36

A New Framework for Transitional and Turbulent Mixing

Y. Zhou, H. F. Robey, and A. C. Buckingham
Lawrence Livermore National Laboratory, Livermore, CA

We develop a framework, based on the current knowledge of turbulence theory and using
phenomenological treatment, for the characterization of turbulent mixing evolving from shock and
gravity driven instabilities.  The procedure is designed to supplement and connect the history of the
flow development from the early stages of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities
into the fully developed turbulent flow regime under the conditions of high pressure, high
temperature, elevated Reynolds number flow and material mixing.  We first demonstrate an analogy
between the buoyancy drag model and the one equation turbulence transport closure model.  We
show that in simplifying the latter transport model to form the buoyancy drag model, the multiple
length scales of physical turbulence are drastically reduced to essentially a single, dominant length
scale.  Furthermore, we show that in the buoyancy drag model several other terms representing
specific additional contributions of physical turbulence in the one equation transport model are
omitted in the simplification.  Next, we compile the key parameters that are needed to characterize
both initial transitional flow and its subsequent evolution into fully developed turbulent flow.
Although all important length scales are well known and well described in turbulent fluid dynamics
literature, we pay special attention here to their time dependent features because of our special focus
on description of the transient states and their evolution in transitional and turbulent material mixing.
 As a result, we have formed a generalization of the transition criteria proposed by Dimotakis (J.
Fluid Mechanics, 409, 69 (2000)).  We illustrate the utility of our framework for transitional and
turbulent mixing by applying it to a classical fluid dynamics RTI experiment conducted at Cambridge
University and, a laser experiment carried out in the Omega laser facility at the University of
Rochester.

This work was performed under the auspices of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Abstract No. T37

Spherical Combustion Layer in a TNT Explosion

A. L. Kuhl1 and R. E. Ferguson2

1Lawrence Livermore National Laboratory, Livermore, CA
2Krispin Technologies Inc, Rockville, MD

A theoretical model of combustion in explosions at large Reynolds, Peclet and Damkohler numbers
is described.  A key feature of the model is that combustion is treated as material transformations
in the Le Chatelier plane, rather than "heat release".  In the limit considered here, combustion
becomes concentrated in thin exothermic sheets (boundaries between fuel and oxidizer).  The
products expand along the sheet, thereby inducing vorticity on either side of the sheet that continues
to feed the process.  The results illustrate the linking between turbulence (vorticity) and
exothermicity (dilatation) in the limit of fast chemistry, thereby demonstrating the controlling role
that fluid dynamics plays in such flows.

Imploding Shock Phase Explosion Phase

Figure 1. Cross-sectional view of the combustion field generated by the detonation of a 1-g spherical TNT charge. TNT
explosion products (shown as yellow) mix with air (depicted in blue) to form combustion products (represented as red).
 Exothermic cells are marked with white dots.  Vorticity contours are turquoise (positive) and chartreuse (negative),
while compressional dilatation contours are black.

This work was performed under the auspices of the U.S. Department of Energy by the
University of California Lawrence Livermore National Laboratory under contract No. W-7405-
Eng-48.

Abstract No. T38
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Spectral Analysis of Turbulent Flows Induced by RT and RM Instabilities

V. F. Tishkin and N. V. Zmitrenko
Institute for Mathematical Modeling of the Russian Academy of Sciences, Moscow, Russia

The results of analysis of spectral characteristics of a velocity field for two unstable hydrodynamic
problems are examined in this report. One of this problem involves direct simulation of turbulent
mixing experiment, which has done for the case of Richtmyer-Meshkov instability. Results of
simulation describe main characteristics of developing mixing zone, i.e. shape and sizes of turbulent
layer. The spectral analysis has revealed a presence of an interval connected with an enstrophy
transfer to small-scale oscillations.
Another problem relates to classic case or Rayleigh-Taylor instability. The analysis of this case has
shown that an inertial interval is observed.
Both problems were treated with the help of 3D hydrodynamic code NUT. The spectral analysis
was fulfilled by means of specially alaborated for this problems code SPAN.

Supported by ISTC project # 1495.
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Abstract No. T39

Pattern Detection, Compression and Denoising of Rayleigh-Taylor
Mix Data Using Discrete Wavelet Transform Techniques

B. B. Afeyan1, P. Ramaprabhu2, and M. J. Andrews2

1Polymath Research Incorporated, Pleasanton, CA
2Texas A & M University, College Station, TX

Sequential single point density measurements have been collected from a statistically steady
Rayleigh-Taylor mix.  The experiment allows long collection times, and thus highly detailed
statistical analyses are possible. We have studied this data using a number of discrete wavelet
transform techniques in order to denoise, compress and detect patterns and correlations in these ideal
representations of intermittent data. By comparing the statistical properties of the evolution of RT
at various points downstream, we can establish the minimum number of wavelet coefficients whose
evolution can capture the most significant aspects of the turbulent flow. To this end, scale based as
well as largest coefficient thresholding are compared and contrasted and the choice of optimum
wavelets for the tasks as hand identified. instability-induced turbulent mixing will also be discussed.
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