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Abstract. The aim of this paper is to develop criteria for the transition
to turbulence of a mixing zone induced by the Richtmyer-Meshkov and
Rayleigh-Taylor instabilities. Our criteria, which make use of quantities
defined in the context of biorthogonal decompositions, consist of an ex-
ponentially decaying energy spectrum, the saturation of the global entropy
function, and quasi-uniform temporal and spatial entropies. We analyze two
numerically simulated flows corresponding to a cylindrical explosion gen-
erated by explosive. Although these flows are identical, except for slightly
different initial conditions, we show by using the previous criteria that their
respective evolutions toward a fully-developed turbulent state are rather
different.

1 Introduction

Theoretical and experimental studies of the Rayleigh–Taylor (R-T) and Richtmyer–
Meshkov (R-M) instabilities show that at large Reynolds number flows, over a wide
range of Atwood numbers [1, 2, 3, 4], the R-T instability develops into a turbulent front
which, after an initial linear growth described by Taylor [5], seems to be independent of
the initial conditions when the front growth starts following a t2 power law. Whether
this self-similar behavior of the front growth can be used as a criterion for turbulence
remains an open question. In this paper, we propose alternative criteria, based on the
following decompositions.
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Biorthogonal decomposition techniques have been proposed as tools for analyzing
spatio-temporal complex physical phenomena [6]. They consist in expanding vector-
ial functions ~V (~x, t) = (v1(~x, t), v2(~x, t), · · ·, vd(~x, t)), with ∀(~x, t) ∈ X × T, ~V (~x, t) ∈
Rd, d = 1, 2, 3, · · · into orthogonal modes in a Hilbert space H(X) and orthogonal modes
in a Hilbert space H(T ) for which there is a one-to-one correspondence between the
two sets of functions [6]. Such a biorthogonal decomposition of ~V (~x, t) is the spectral
decomposition of the operator U acting from H(X) to H(T ) such that

∀~φ ∈ H(X), (U~φ)(t) =
∫

X

~V (~x, t) · ~φ(~x)dm(~x), (1)

where ~φ(~x) ∈ Rd. The adjoint operator U∗ is defined from H(T ) to H(X) as

∀ψ ∈ H(T ), (U∗ψ)i(~x) =
∫

T
vi(~x, t)ψ(t)dm̃(t) (2)

for i = 1, 2, · · · , d. In this definition, dm(~x) and dm̃(t) denote the measures defining the
scalar product in H(X) and H(T ), respectively.

If U has a point spectrum, the decomposition takes the form

~V (~x, t) =
N∑

i=1

Anψn(t)~φn(~x) (3)

where A1 ≥ A2 ≥ · · · ≥ AN > 0,
and (~φn, ~φm)H(X) = (ψn, ψm)H(T ) = δnm.
The eigenmodes ~φn(~x) and ψn(t) are related by the operator U: U~φn = Anψn (and
U∗ψn = An

~φn). The relation between the spectral decomposition of U and that of the
correlation operator U∗U (or UU∗) is straightforward [6, 7]. The former can thus be
understood as a deterministic version of the proper orthogonal decomposition [8].

In the sense of the two norms previously introduced, two global averaged quantities,
the energy and the entropy, can be defined. The energy is simply the sum of the squares
of the eigenvalues

E =
N∑

n=1

A2
n, (4)

while the entropy [6] is defined as

H = − 1
logN

N∑

n=1

pnlogpn, (5)

where pn is the normalized eigenvalue pn = A2
n/E. The entropy quantitatively measures

the degree of space-time complexity of ~V (~x, t). If the energy is uniformly distributed
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Figure 1: Fourier spectrum of the initial interfacial perturbation.

among all modes, then the entropy is maximal, equal to one. Likewise, if only a single
mode is excited, the entropy is zero.

Two other quantities, the spatial and temporal entropies, have also been introduced
[6]. The spatial entropy measures the spatial degree of complexity at each instant. It
is defined as

HS(t) = − 1
logN

N∑

n=1

pψn(t)logpψn(t) (6)

where the temporal functions pψn are

pψn(t) =
A2

n| ψn(t) |2
ES(t)

, (7)

ES(t) being the spatial energy of the flow evolving in time,

ES(t) =
N∑

n=1

A2
n| ψn(t) |2.

Similarly, a temporal entropy measuring the degree of complexity in the time series,
at each spatial position, is

HT (~x) = − 1
logN

N∑

n=1

pφn(~x)logpφn(~x) (8)



Zhao, Aubry, and Legrand 111

where the spatial functions pφn are

pφn(~x) =
A2

n| ~φn(~x) |2
ET (~x)

, (9)

ET (~x) being the temporal energy of the flow, spatially evolving,

ET (~x) =
N∑

n=1

A2
n| ~φn(~x) |2.

2 Detection of a Self-Similar State

In the previous framework, a space-time symmetry naturally appears as a pair of oper-
ators (S̃, S), S̃ acting on H(T ) and S acting on H(X), which intertwines the operator
U defined in (1), i.e. S̃U=US (and, similarly, SU∗ = U∗S̃). The argument can be
generalized to a space-time self-similarity satisfying

US = γS̃U, (10)
SU∗ = γ−1U∗S̃ (11)

where γ is different from one.
A necessary and sufficient condition for a flow to be self-similar (10), (11) is the

exponential decay of a subset of eigenvalues, i.e.

Ak+1 = γAk, k ∈ ℵ. (12)

Then, the corresponding spatial and temporal eigenmodes are related via the pair of
operators (S, S̃) such that

~φk+1 = S~φk, ψk+1 = S̃ψk. (13)

Assuming that the flow, in its turbulent state, satisfies the scaling symmetries of
the Navier-stokes equations [10], the flow is self-similar in the sense of (10), (11) and
the operator S and S̃ are dilation symmetries

(S~φ)(x) = ~φ(λ−1x) (14)
(Sψ)(t) = ψ(λ−1γt). (15)

Once self-similarity takes place, the global entropy should become independent of
the time domain considered in the definition of the operator U (1), namely H considered
over subdomains (0, T̃ ) should saturate for large values of T̃ . Furthermore, as small



112 Criteria for Transition to Turbulence ...

Figure 2: The density field in both cases (time unit : microsecond); Case 1 (left) and Case 2
(right).
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scales gain energy, the slope of the eigenspectrum decreases, the entropy increases and
the temporal and spatial entropies become more uniformly distributed in space and
time.

One can then distinguish two types of criteria. The first type, Criteria 1, permits
the comparison between two different flows.

Criteria 1 As a control parameter varies and the flow becomes more and more
turbulent,
- the eigenspectrum becomes flatter;
- the saturated global entropy increases;
- the temporal/spatial energies and entropies become more uniformly distributed in
space and time.

The second type, Criteria 2, permits the detection of a transition time within a
given flow.

Criteria 2 Two necessary conditions for the flow to be considered turbulent at a
certain time Tt are:
- at Tt and beyond, the global entropy has reached a quasi-saturation level;
- at Tt and beyond, the spatial entropy does not exhibit large scale variations.

3 Application to Simulated RT and RM Flows

In this section, we analyze two simulated R-T and R-M flows, referred to as case 1 and
case 2, respectively. These flows correspond to the same basic physics: a cylindrical
implosion generated by explosive observed via axial radiography. Implosion is initiated
by a cylindrical detonation wave converging in the explosive cylinder. The two cases
differ only by the Fourier content of the initial interfacial perturbation between the two
fluids (see Fig. 1). The binary interface with small initial defects, impulsively driven
by a shock wave, is subject to a R-M instability, followed by a long R-T phase, which
leads to the formation of a mixing zone between the two fluids. The computations are
performed in a 2-D rectangular domain with the Eulerian code 2D EAD which solves
the Euler equations [12]. Fig. 2 shows the density field in both cases.

We now perform the biorthogonal analysis (1) of the velocity and density of the
flows, particularly seeking the presence of a self-similar (inertial) range of the spectra.
Fig. 3(a) shows that the velocity spectrum decays more slowly in Case 2 than in Case 1.
Both spectra, plotted in a logarithmic scale, exhibit an approximately exponential decay
in their “inertial range”, characteristic of self-similarity and fully developed turbulence.
Moreover, a more detailed plot (not shown here) reveals that the spectrum in Case 1
exhibits an order 2 degeneracy, reminiscent of a traveling wave (or a modulated traveling
wave [13]). Such a degeneracy has disappeared in Case 2.

We now compare the global entropy and the mixing length variations in both cases
(see Figs. 3(b),(c)). The entropy reveals that there are three stages in the evolution
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(a) (b)

(c) (d)

Figure 3: (a) Eigenspectrum of the velocity. (b) Global entropy of the density. (c) Square root
of the MZW. (d) Spatial entropy of the density.
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of the flows toward turbulence: (a) until time t = 3µsec, both the mixing zone width
(MZW), δ, and the global entropy, H, grow linearly; (b) this linear growth is followed
by a nonlinear variation of

√
δ with time, as well as a quasi-quadratic growth of the

global entropy; (c) in the final stage, the growth of
√

δ becomes a linear function of
time, while H increases slowly and reaches saturation. A comparison between the two
flows shows that both the saturated entropy and the final mixing length are larger in
Case 2 than in Case 1, suggesting that the former flow is more turbulent.

The spatial and temporal entropies of the density in the two cases are compared in
Figs. 3(d), 4, and 5. Fig. 3(d) shows that the spatial entropy is larger and flatter in
Case 2 than in Case 1, indicating a high small scale intensity in the turbulent mixing
processes of the flow. Fig. 4 displays the spatial distribution of the temporal entropies.
It is clear that the temporal entropy is more uniform in Case 2 than in case 1. Fig. 5
displays the temporal entropy of the streamwise velocity in both cases: characteristic
scales are smaller in Case 2 than in Case 1.

4 Concluding Remarks

We have compared two simulated implosive flows involving R-T and R-M instabilities.
The flows differ only by the shape of the initial interfacial perturbation. As time in-
creases, the flows experience an initial linear growth followed by a non-linear dynamical
stage which becomes turbulent as the t2 growth of the mixing zone width develops.
After that time, the global entropies of the flows saturate.

All the results of our analysis converge to identify Case 2 as the most turbulent
flow. Indeed, Case 2 exhibits
- the largest mixing zone width, growing with time proportionally to t2

- the largest saturated global entropy
- the highest intensity of small scale fluctuations, together with quasi-uniform distrib-
utions of temporal/spatial energies and entropies
- the flattest spectrum, decaying approximately exponentially in its “inertial range”.

In Case 2, the flow can be considered turbulent at Tt=7.5 µsec and beyond. Indeed,
after Tt,
- the mixing zone width grows with time as t2

- the global entropy has reached its quasi-saturation level
- the spatial entropy does not exhibit large scale variations.
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Figure 4: Temporal entropy of the den-
sity. Case 1 (left) and Case 2 (right).

Figure 5: Temporal entropy of the veloc-
ity. Case 1 (left) and Case 2 (right).


