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Abstract. We present a nonlinear theory of the unstable growth of fingers
at material interfaces accelerated by shock waves in two and three dimen-
sions. Our theory provides quantitative predictions for the overall growth
rate of the unstable interface and the growth rates of spike and bubble in
compressible fluids. Our theoretical predictions are in remarkable agree-
ment with the results of full numerical simulations from early to late times,
and agree, for the first time, with the experimental data on air-SF6. Previ-
ous theoretical predictions of the growth rate for air-SF6 unstable interfaces
were about two times larger than the experimental data.

In 1960, Richtmyer showed theoretically that a perturbed material interface be-
tween two fluids of different density accelerated by a shock is unstable [1]. Ten years
later, Meshkov performed experiments to confirm the Richtmyer’s prediction [2]. This
instability is known as Richtmyer-Meshkov (RM) instability and plays an important
role in studies of supernova and inertial confinement fusion (ICF). Since then several
experiments [3, 4] and numerical simulations [5]-[12] on the growth of the RM unstable
interfaces have been performed. Several theories have been developed by different ap-
proaches [1], [13]-[21]. Most of previous theoretical work focused on the growth rate in
linear regime. However, the growth of the RM unstable interface is nonlinear [8] and,
for a long time, theories failed to give a quantitatively correct prediction for the growth
rate of RM unstable interface in the nonlinear regime. Previous theoretical predictions
were about twice as large as the experimental data on air-SF6.

∗We would like to thank Dr. R. Holmes for providing the data from his numerical simulations in
two dimensions. This work was supported in part by the U. S. Department of Energy, contract DE-
FG02-90ER25084, by subcontract from Oak Ridge National Laboratory (subcontract 38XSK964C) and
by National Science Foundation, contract NSF-DMS-9500568.
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In this paper, we report recent significant theoretical progresses made by the au-
thors. We have developed non-linear theories for Richtmyer-Meshkov instability for
compressible fluids in the case when the reflected wave is a shock. Our theories provide
analytic predictions for the nonlinear growth rate of the overall unstable interface and
the growth rates of spike and bubble. A spike is a portion of heavy fluid penetrating
into light fluid, and a bubble is a portion of light fluid penetrating into heavy fluid. The
overall growth rate of RM unstable interface is the growth rate of the half of the overall
size of the mixing zone between the two fluids. The agreements among our theoretical
predictions, the results of full nonlinear numerical simulations and experimental data
are remarkable.

Richtmyer’s impulsive model is a widely used theoretical model for the growth rate
of RM unstable interfaces [1]. It predicts

vimp = −∆u
ρ′ − ρ

ρ′ + ρ
ka0(0+). (1)

Here ∆u is the difference between the shocked and unshocked mean interface ve-
locities. ρ and ρ′ are the post-shocked fluid densities, and a0(0+) is the post-shocked
perturbation amplitude at the interface. Richtmyer showed three examples in which
the predictions of the impulsive model agree quite well with the asymptotic solutions
of the linear theory [1]. A more extensive comparison over a large parameter space
showed the domains of agreement and disagreement [16]. Even when the prediction of
the impulsive model agrees with the result of the linear theory, it agrees in the regime
where the nonlinearity is important and the linear theory is no longer valid [8].

In order to develop an approximate nonlinear theory for compressible RM unstable
interface, we adopt the physical picture that the dominant effects of the compressibility
occur near the shocks. This influences the material interface when the shocks are in the
vicinity of the material interface, namely at early times. We assume that the initial dis-
turbance at the interface is small. Then, at early times the compressibility is important
and the nonlinearity is less important. As time evolves, the magnitude of the distur-
bance at the material interface increases significantly and the transmitted shock and
reflected wave move away from the interface. The effects of compressibility are reduced
and the nonlinearity starts to play a dominant role in the interfacial dynamics. From
this physical picture, we see that at early times the dynamics of the system are mainly
governed by the linearized Euler equations for compressible fluids, while at later times
the dynamics are mainly governed by the nonlinear equations for incompressible fluids.
The RM unstable system goes through a transition from a linear and compressible one
at early times to a nonlinear and incompressible one at later times. Our approach is to
qualitatively separate the dynamics of the RM instability into two stages corresponding
to early and later times. We determine an approximate solution in each stage. Then
we match the early time solution and the later time solution to obtain an analytical
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expression which changes gradually from one to the other. The matched solutions give
quantitative predictions for the overall growth rate and the growth rates of spike and
bubble in compressible RM instability from early to later times.

At early times, the dynamics are compressible and approximately linear. The solu-
tion is governed by the linearized Euler equations and can be found in [1] and [16].

At later times, the dynamics are nonlinear and approximately incompressible. The
governing equations for inviscid, irrotational and incompressible fluids are

∆φ(x, z, t) = 0, in material 1,
∆φ′(x, z, t) = 0, in material 2,

(2)

∂η

∂t
− ∂φ

∂x

∂η

∂x
+

∂φ

∂z
= 0 at z = η, (3)

∂η

∂t
− ∂φ′

∂x

∂η

∂x
+

∂φ′

∂z
= 0 at z = η, (4)

−ρ′
∂φ′

∂t
+ ρ

∂φ

∂t
+

ρ′

2
(∇φ′)2 − ρ

2
(∇φ)2 = 0 at z = η. (5)

Here φ and φ′ are the velocity potentials of the two fluids. z = η(x, t) is the
position of the interface at time t. The initial shape of the material interface is given
by η(x, 0) = a0 cos(kx).

Recently the authors have developed a procedure for solving (2)-(5) [19]. The
method is a perturbation expansion of the solution in terms of a0 and the solution
procedure is recursive. The n−th order solutions are expressed in terms of the solu-
tions of orders less than n. The explicit solution of the impulsive model through fourth
order can be found in [19]. To be consistent with the early time linear solution which is
single mode, we choose single mode initial growth rate η̇(x, 0) = v0 cos(kx). Following
the solution procedure developed in [19]. the four leading order terms of η have been
derived explicitly. The results are

η(1) = (a0 + v0t) cos(kx),

η(2) =
1
2
Akv2

0t
2 cos(2kx),

η(3) =− 1
24

k2v2
0[(4A2 + 1)v0t

3 + 3a0t
2] cos(kx)

+
1
8
k2v2

0[(4A
2 − 1)v0t

3 − 3a0t
2] cos(3kx),

η(4) =− 1
12

k3v2
0[4A

3v2
0t

4 + 3Aa2
0t

2] cos(2kx)

+
1
12

k3v2
0[(8A

3 − 4A)v2
0t

4 − 8Av0t
3 + 3Aa2

0t
2] cos(4kx).
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We then carry through the following three steps: (i) Construction of the series
solutions for the overall growth rate and the growth rates of spike and bubble; (ii)
Application of Pade approximation to construct an approximate solutions at later times;
(iii) Construction of approximate solutions from early to later times for compressible
fluids by matching the early time solution and later time solution. The matching
determines v0 as vlin, the linear growth rate determined from the linear theory [1, 16]
Following these three steps, we have [18, 20]

v =
vlin

1 + vlina0k2t + max{0, a2
0k

2 −A2 + 1
2}v2

link2t2
(6)

for the overall growth rate,

vsp = v +
Akv2

lint

1 + 2k2a0vlint + 4k2v2
lin[a2

0k
2 + 1

3(1−A2)]t2
(7)

for the growth rate of the spike and

vbb = −v +
Akv2

lint

1 + 2k2a0vlint + 4k2v2
lin[a2

0k
2 + 1

3(1−A2)]t2
(8)

for the growth rate of the bubble. Here a0 is the post-shocked perturbation amplitude
and A = (ρ− ρ′)/(ρ + ρ′) is the post-shocked Atwood number.

It is easy to see that in the early time, or small amplitude limits, (6)-(8) approach
to vlin. Equations (6)-(8) show that all three growth rates decay at later times and that
the spike grows faster than the bubble. We comment that our nonlinear theories given
by (6)-(8) contain no adjustable parameter. Equations (6)-(8) are applicable to the
systems with no indirect phase inversion only. An indirect phase inversion is defined
for the situation a0(0+)vlin(t → ∞) < 0. For the case of reflected shock, the indirect
phase inversion usually does not occur [16].

Now we compare our theoretical predictions with the results from full numerical
simulations. In Figure 1, we consider an air-SF6 interface. A weak shock of Mach
number 1.2 propagates from air to SF6. The reflected wave is a shock. a(0−) = 2.4mm
and A(0+) = 0.701. The wave length of the perturbation is 37.5mm and the pressure
ahead of the shock is 0.8 bar. These parameters corresponds to Benjamin’s experiments
on air-SF6 (a) is for the overall growth rate. (b) is for the overall amplitude determined
by integrating (5) over time. (c) and (d) are for the growth rate of bubble and spike,
respectively.

In Figure 2, we consider an Kr-Xe interface. The unstable interface is accelerated
by a strong shock of Mach number 3.5 moving from Kr to Xe. The reflected wave
is also a shock. a(0−) = 5mm and A(0+) = 0.184. The wave length is 36mm and
the pressure ahead of the shock is 0.5 bar. These physical parameters correspond to
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Zaytsev’s experiments. The dimensionless perturbation amplitude a0(0−)k is 0.87. This
amplitude is about two times as large as than the amplitude a0(0−)k = 0.40 given in
Figure 1 for the air-SF6 case. (a) is for the overall growth rate. (b) is for the overall
amplitude. (c) and (d) are for the growth rate of bubble and spike, respectively.

The results from linear compressible theory and from linear impulsive model given
by (1) are also shown in Figures 1 and 2. Figures 1 and 2 show that our theoretical
predictions are in the excellent agreement with the results from full numerical simula-
tions, while the predictions of the linear theory for compressible fluids and the linear
impulsive model are qualitatively incorrect at later times.

In experiments, it was difficult to measure the growth rate directly. Instead, one
measured the amplitude of the disturbed interfaces, i.e. the half of the longitudinal
distance between the spike and bubble tips. One assumed that the amplitude was a
linear function of time and applied a linear regression analysis to determine the overall
growth rate of the unstable interfaces. The overall growth rate determined from the
experimental data was 9.2 m/s over the time period 310-750 µs, (see Figure 1(b)).
When we applied the linear regression to the amplitude predicted by our theory and
to the amplitude determined from numerical solution of full Euler equations, we found
the identical results 9.3 m/s for the growth rate over that time period for both our
theory and for the full numerical solutions. Therefore, the prediction of our theory is
in excellent agreement with the experimental result, as well as with the full nonlinear
numerical simulation. Predictions of the growth rate from the impulsive model and
from the linear theory are 15.6 m/s and 16.0 m/s respectively.

Finally, we verify the physical picture on which the theory was based. In figure 3,
we show predictions from linear compressible theory, nonlinear incompressible theory
and nonlinear compressible theory, namely (6), as well as the result from full numerical
simulations, for the overall growth rate of air-SF6 interface. The nonlinear incompress-
ible theory is obtained from setting v0 to v∞lin = limt→∞ vlin(t) in (6). The physical
parameters here are identical to ones in Figure 1. Figure 3 verifies that our physical
picture is reasonable. The dynamics of the RM unstable interface indeed changes from
a linear compressible one at early times to a nonlinear incompressible one at later times.

We comment that one may replace vlin by its asymptotic limit v∞lin = limt→∞ vlin(t)
in (6)-(8) to obtain approximate expressions for non-linear growth rates at later times.
For weak shocks, v∞lin can be approximated by the linear solution of the impulsive model
given by (1).

We have extended our theoretical derivation to fluids in three dimensions [21]. The
overall growth rate of the compressible RM unstable interface in three dimensions is

v =
vlin

1 + vlina0k2λ1t + max[0, a2
0k

2λ2
1 − 3λ2]v2

link2t2
. (9)
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Figure 1: Comparison of predictions from linear theory, linear impulsive model, nonlinear theory
and the results from full numerical simulation for air-SF6 interface. A weak incident shock of
Mach number 1.2 propagates from air to SF6. Our theoretical predictions are in the excellent
agreement with the results from full numerical simulations, while the predictions of the linear
theory for compressible fluids and the linear impulsive model are qualitatively incorrect at later
times. (a) is for the overall growth rate. (b) is for the overall amplitude. (c) and (d) are for the
growth rate of bubble and spike, respectively.
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Figure 2: Comparison of predictions from linear theory, linear impulsive model, nonlinear theory
and the results from full numerical simulation for Kr-Xe interface. A strong incident shock of
Mach number 3.5 propagates from Kr to Xe. Our theoretical predictions are in the excellent
agreement with the results from full numerical simulations, while the predictions of the linear
theory for compressible fluids and the linear impulsive model are qualitatively incorrect at later
times. (a) is for the overall growth rate. (b) is for the overall amplitude. (c) and (d) are for the
growth rate of bubble and spike, respectively.
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Figure 3: A comparison among the predictions from linear compressible theory, nonlinear incom-
pressible theory and nonlinear compressible theory (8), as well as the result from full numerical
simulations, for the overall growth rate of air-SF6 unstable interface. Figure 3 shows that the
dynamics of the RM unstable interface indeed change from a linear compressible linear one at
early times to a nonlinear incompressible one at later times.

Here vlin is the growth rate of the linear theory in three dimensions. k =
√

k2
x + k2

y

is total wave number of the initial perturbation at the material interface η(x, y, t =
0) = a0 cos(kxx) cos(kyy). λ1 and λ2 are dimensionless functions which depend on the
post-shocked Atwood number A and the θ, orientation of the wave vector (kx, ky). The
explicit expressions of λ1 and λ2 can be found in [21]. See [21] for the quantitative
predictions for the overall growth rate in three dimensions. It is found that for fixed
total wave number k and fixed Atwood number A < 0.64, the symmetric interface in
three dimensions (kx = ky) is most unstable, while the interface in two dimensions is
least unstable. For the symmetric interface in three dimensions, the expressions for λ1

and λ2 are

λ1 =
1
4
(2− 5

√
2 + 4

√
5−

√
10)A2 +

1
4
(4 + 7

√
2− 6

√
5 +

√
10),

λ2 = −1
8
(7 + 7

√
2− 9

√
5 + 3

√
10)A2 +

1
8
(4 + 7

√
2− 6

√
5 +

√
10).
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The predictions for the growth rates of spike and bubble in three dimensions are
also given in [21].
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Figure 4: A comparison of the predictions of the overall growth rates from linear theory, im-
pulsive model and nonlinear theory (9) in three dimensions for several different values of θ with
fixed total wave number k. For comparison, the results of a full non-linear numerical simulation
in two dimensions are also shown. (a) is for air-SF6 case. (b) is for Kr-Xe case.

In Figure 4, we show the overall growth rates of (a)air-SF6 and (b)Kr-Xe unstable
interfaces for several different values of angle θ with fixed total wave number k. The
physical parameters are the save as the ones given in Figures 1 and 2, except that the
wave number k should be interpreted as the total wave number k =

√
k2

x + k2
y.

In conclusion, we have developed a quantitative nonlinear theory for the overall
of growth rate as well as the growth rates of spike and bubble in compressible RM
instability in two and three dimensions. Our theoretical predictions are in excellent
agreement with the results from full numerical simulations. Our results show that at
later times, nonlinearity is far more important than the compressibility.
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