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Abstract. The vortex paradigm [1] provides a cogent physical under-
standing of the behavior of shock-accelerated density- stratified interfaces
at and beyond early times. We use this paradigm to obtain models of the
growth rate of a long wavelength perturbation on a planar contact dis-
continuity.These provide a better agreement with numerical (compressible
Euler) simulations over a wider parameter domain than linearized studies
e. g. as first conducted by Richtmyer. The domain of our models embraces
1.05 ≤ M ≤ 4.0, 1.0 ≤ η ≤ 5.04 and A/λ = 0.025, 0.05, 0.1, where M is
the Mach number of the incoming planar vertical shock, η is the density
ratio across the interface and A/λ is the amplitude to wavelength ratio of
the single harmonic perturbation. Our models and scaling laws are exten-
sions of previous works [6], [3] on fast-slow interfaces and apply to the very
early, intermediate and late times ( when the thin vortex layer “collapses”
into a domain of small radius and yields the familiar dipolar vorticity mor-
phology). The models are validated by comparing with simulations of the
compressible Euler equations. Agreement is presently within 3 % at low
Mach numbers (∼ 1.2) and low density ratios (η ∼ 3). The simulations
were made with a second order Godunov finite-volume scheme on the CM5
programmed in the SIMD mode.

1 Introduction

A linear stability analysis associated with shocks striking a weak, long–wavelength
harmonic perturbation, (x = A cos ky, Ak ¿ 1), on an interface between two gases was
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done by Richtmyer [2]. He derived linear PDEs for interface dynamics and presented a
heuristic “impulsive” formula for amplitude growth rate model

Ȧ = kA|0+∆U
η − 1
η + 1

(1)

where k the wavenumber, η is the density ratio, A|0+ is the amplitude of the harmonic,
and ∆U is the velocity of the interface from a 1D interaction, after shock passage. Yang,
Zhang and Sharp [8] elucidated Richtmyer’s linear analysis.

The vortex paradigm is based on the evolution equation in inviscid flows

Dω

Dt
=
∇ρ×∇p

ρ2
+ ω · ∇~u− ω∇ · ~u (2)

As the shock traverses the interface, the misalignment of ∇p and ∇ρ deposits a
vortex sheet on the interface which dominates the largely incompressible evolution of
the interface. Due to numerical diffusion, the vortex sheet, over time, becomes a vortex
layer (Fig. 1).
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2 Governing Equations, Numerical Methods, Parameters and Con-
vergence

2.1 Numerical methods

Consistent with previous numerical studies, we employ the 2D compressible Euler equa-
tions. We track the interface using a level-set method [4]. The numerical method is a
second–order accurate Godunov scheme based on Chern’s method [5] and is similar to
the Eulerian MUSCL scheme.

The physical domain is a rectangular shock tube. The governing parameters are M ,
η and Ak. The undisturbed incident gas is initialized with unit pressure and density
and the shock is initialized by density and pressure jumps in accord with the Rankine-
Hugoniot conditions (Fig. 1 at t = 0 ).

The test gases are Air-CO2 ( η = 1.54, γ0 = 1.4, γb = 1.297 ), Air-R22 ( η = 3.0, γ0 =
1.4, γb = 1.172 ), and Air-SF6 ( η = 5.04, γ0 = 1.4, γb = 1.0935).
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2.2 Convergence of Interfacial Circulation

In Fig. 1, we used a 1600×80 grid with ∆x = ∆y = 1.The parameters of the simulation
were M = 1.5, η = 3.0 and A/λ = 0.05. The results are shown in Fig. 1–7. The
circulation was quantified by interface-tracking procedures [3]. The results in Fig.2
show excellent convergence of interfacial circulation in this time domain for the last two
grid sets.

3 Vortex Models

3.1 Reduced Modeling

We propose reduced models — analytical and numerical — based on an incompressible
Biot-Savart formulation. The analytical models involve many simplifications and are
less accurate; the numerical models require a minimal amount of numerical information
from the simulation. In either case, the growth rate is defined as half the difference of
velocities of the x-extrema of the interface.

3.2 Qualitative Aspects

After shock passage, the subsequent variation of Γ of the deposited vortex sheet are
caused by secondary compression waves sweeping over the evolving interface. The
magnitude of the secondary interactions are an increasing function of (M, η,Ak).

With time, higher harmonics of the perturbation become significant (Fig. 3); later
the interface assumes a mushroom (spike-bubble) structure and the vorticity collapses
into a patch. (Figs. 1,3.2). The localization of an unstratified vortex sheet has been
studied extensively [9]: the rate of collapse and non-linearity are a function of Γ(M, η,A)
(Fig. 5). The ycentroid, normalized major-axes and aspect ratios of fitted ellipses, char-
acteristic of the localization, are shown in Fig. 6.
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The evolution can conveniently be split into four regimes (Fig. 5); (1)Very Early
Time (VET), when the incident shock and dominant compression waves sweep over the
interface for the first time, i. e. approximately three shock traversal times; (2) Early
Time (ET), when the evolution can be modeled by an evolving vortex sheet on a nearly
incompressible interface; (3) Intermediate Time (IT), when the sheet / layer localizes
into a compact structure, e. g. when the contact discontinuity becomes a multivalued
function of y ; (4) Late Time (LT), when the evolution is nearly incompressible and
driven by turbulent like collection of vortices. The transition times depend specifically
on the details of the run.

The models for VET and ET employ a stratification-modified ansatz. The growth
rate derived from a Biot-Savart formulation is corrected by 2

√
η/(η +1), a factor which

appears in the growth rate of a perturbation on a uniform vortex sheet located on a
stratified interface [7].

3.3 Numerical Biot-Savart Model (NBS)

We use this to validate the assumption of incompressibility. We integrate the instan-
taneous vorticity distribution over the instantaneous interface shape – both extracted
from the numerical simulation – to obtain the interface growth rate.
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3.4 Reduced Biot-Savart Model (SMBS)

This Biot-Savart-based model, applicable in ET, assumes incompressibility, a single
mode representation of the perturbation and a frozen spectral content of the vorticity
distribution. We get [6]

u(x, y, t) = − 1
4π

∫

S

(y − y′)Ω(y′)dy′

|~x− ~x′|2
;

Ȧ =
Γ(t)k
4π

∫ ∞

−∞

ξ sin ξdξ

k2A(t)2(1− cos ξ2)2 + ξ2

(3)

where Ω(y) is the x-integrated vorticity on the interface and ξ = ky.
To capture the initial growth rate, Γ(t) is obtained by linearly interpolating between

Γ(t1) and Γ(t2) for t1 ≤ t ≤ t2, Γ(t2) and Γ(t3) for t2 ≤ t ≤ t3 and Γ(t) = Γ(t3) for
t ≥ t3, where Γ(ti) are the numerical (simulation) values of interfacial circulation at
times of the first three local extrema after the shock has crossed the interface.

3.5 The Retarded, Stratification-Modified Biot-Savart Model (RSMBS)

We derive a model for VET from SMBS under the assumptions of M ∼ 1 and Ak ¿
1; consequently the secondary interactions are negligible and Γ(t) ∼ const. We will
approximate the circulation on the interface by the first term of the sine expansion for
circulation on a sinusoidal interface [3]. The effect of compressibility is introduced with
a retarded time, as in aeroacoustics ([10], [11]), — i. e. velocity is given by the B-S law
with retarded time.

u(x, y, t) = − 1
4π

∫

S

(y − y′)Ω(y′)H(t− r′/cs)dy′

|~x− ~x′|2
(4)

where (r′)2 = (x − x′)2 + (y − y′)2 and cs is the sound speed in the incident gas. For
M ≈ 1, P/ρ is almost unchanged and we take cs =

√
γ.The growth rate is given by

Ȧ =
2
√

η

η + 1
Γk

4π

∫ ∞

−∞

ξ sin ξH(t− r′/cs)dξ

k2A(t)2(1− cos ξ2)2 + ξ2
(5)

where (kr′)2 = k2A(t)2(1 − cos ξ2)2 + ξ2. If Ak ¿ 1, then r′ = cst ∼ y′ and the
expression simplifies to

Ȧ =
2
√

η

η + 1
(Γ′1kA|0−)Si(ξ), ξ = kcst =

√
γkt (6)

where Si(ξ) is the Sine Integral function.
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Instead of Γ′1 we use its analytical scaling result [3]

Γsc = 2
√

γ

γ + 1
(1− η−1/2) sinα(1 + M−1 + 2M−2)(M − 1) (7)

in Eqn. 6 to get

Ȧ =
4
√

γ

γ + 1
(
1 + 1/M + 2/M2

)
(M − 1)

√
η − 1

η + 1
kA|0−

π
Si(ξ) (8)

We plot ζ = Ȧ/(ΓscA|0k) from various numerical simulations and Si(ξ) versus ξ in
Fig. 5. The departure from the model with increasing interfacial circulation Γ is also
evident from Fig. 5.

Physically, the oscillations in Si(ξ) are due to the arrival of signals from vortex
images required to enforce the no–flow boundary condition, ~u.~n = 0, at y = 0 and
y = λ/2. As t → ∞, Ȧ → ȦRichtmyer. Note the model does not include changes in
circulation arising from secondary compressible waves, which also produce oscillatory
phenomena.
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3.6 The Constant–Symmetric Line Vortex Model (LVM)

This incompressible model applies at intermediate times and is analytic. We assume an
array of line vortices of constant strength (−1)nΓL and location y = (2n + 1)λ/4, n =
. . .−2,−1, 0, 1, 2, . . ., where ΓL is the first maximum in circulation and can be obtained
analytically from [3].

Summing the contribution from all the vortices,

Ȧ = − β

cosh kA(t)
; or, sinh kA(t) = −βkt + sinh kA(ts) (9)

where β = ΓLk/2π.
Asymptotically, Eqn. 9 approaches [6]

Ȧ =
Γ′1kA|0

2π
; or kA(t) = log (−βkt)

for Ak ¿ 1 and large times respectively.
For late time and large amplitude (Ak À 1, tanh(Ak) ≈ 1) we get

Ȧ =
1

kt + C
; C =

sinh kA|0
−ΓLk/2π

which is similar in form to Hecht’s model for vbubble [12].
Note from Fig. 6 that the vorticity does not collapse into point, rather it forms

a coherent structure with an aspect ratio and located at about 0.4λ/4. An elliptical
model should give better results.

4 Conclusion

Our vortex models provide a robust way of estimating the growth of a single mode
perturbation in Richtmyer-Meshkov environments. For low Mach numbers and pertur-
bations, there exists a simple model which tends asymptotically to the impulse model
result. We expect this procedure to generalize to slow-fast cases and multiple pertur-
bation.

In brief, the models and their applicability are

Time Regime Models Proposed Eqn. No.
Very Early Time Retarded Biot-Savart (RSMBS) 6

Early Time Sheet and Elliptical Models (SMBS, EVM) 3
Intermediate Time Line Vortex Models (LVM) 9

Late Times Contour Dynamical Models
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