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1 Introduction

There is a wide class of 2D problems where gravitational and tangent mixing both sep-
arately and in the aggregate must be accounted. The use of direct numerical simulation
using 2D gas-dynamic codes for solving such problems is possible but not always yield
acceptable results. Therefore, currently a most real way is to use within 2D gas-dynamic
methods the codes implementing semi- empirical models of turbulent mixing. Nowadays
there are many papers devoted to numerical simulation of turbulent mixing (the review
of these papers can be found, for example, in [1]). Here the greatest application was
found by the two-parameter k − ε — models owing to their fair simplicity. Only a few
papers consider the gravitational and tangent turbulent mixing in combination (see, for
example, [2]). This paper suggests the two-parameter k− ε model describing turbulent
mixing in the general case of 2D compressible flows. The model is implemented in the
EGAK program complex [3] basing on the Lagrangian-Eulerian gas-dynamic method
[4]. The initial version of the model is described in paper [5].

2 Turbulent mixing model

The model relies upon the following assumptions: a) the Reynolds number is great; b)
each mixture component (fluid, gas) is described by the complete set of thermodynamic

∗This work was supported by ISTC, Contract No 029.

402



Yanilkin, Nikiforov, et al. 403

parameters : mass (αi = Mi/M) and volume (bi = Vi/V ) fractions as well as by specific
energies (per mass unit) ei = Ei/Mi; c) the mixture is isotropic.

The equations for averaged values in Lagrangian-Eulerian coordinates have the fol-
lowing form for the above assumptions: equation of motion

d

dt
(ρ~u) = −∇P + divσT , (1)

continuity equation for components

d

dt
(αiρ) = cαdiv(ρD∇αi), (2)

volume conservation law for components

d

dt
(βi) = DIF(βi), (3)

energy equation for components

d

dt
(αiρei) = cαdiv(ρD∇αiei)− (P + PT )div~u + αiρe. (4)

The above notation is as follow: PT — turbulent pressure, σT — Reynolds stress

tensor, ε — turbulent energy k dissipation rate, ρ = 1/
N∑

i=1

αi
ρi

— average density, ~u —

velocity, ~w — turbulent mass flow, i — component number, i = 1, 2, . . . , N , the term
DIF (βi) in equation (3) is responsible for relative change of component volumes due
to the mass diffusion.

The differential equations for turbulent quantities have the form: turbulent energy
equation

∂k

∂t
= G1 + G2 − 1

ρ
divρk(~u− ~w)− ε− 2

3
k div(~u− ~w) + ck

1
ρ
divρD∇k, (5)

dissipation rate equation

∂ε

∂t
=

ε

k
(cε1G1 + cε2G2 − cε3ε)− 1

ρ
divρε(~u− ~w)− 4

3
εdiv(~u− ~w)

+cε
1
ρ
divρD∇ε− 2

3
cε4ε(~w ~A), (6)

where G1 = D
∂uj

∂xk
(
∂uj

∂xk
+

∂uk

∂xj
), G2 = ~w

∇P

ρ
— generation term of turbulence.
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To close the system (1)–(6) the following relations are used: for Reynolds stress
tensor and turbulent pressure

σT = ρD

(
∂uj

∂xk
+

∂uk

∂xj

)
− 2

3
ρkδjk, PT =

2
3
ρk, (7)

for turbulent diffusion coefficient

D = cD
k2

ε
, (8)

for turbulent flow ~w

~w = D ~A, (9)

where

~A =
∇P(

ρλ1 + T
ρCV

λ2
2

) − ∇ρ

ρ
, λ1 =

∂P

∂ρ

∣∣∣∣
T

, λ2 =
∂P

∂T

∣∣∣∣
S

, Cv =
∂k

∂T

∣∣∣∣
ρ
,

in the case of perfect gas

~A =
∇P

γP
− ∇ρ

ρ
, (10)

where γ is the adiabatic gas index.
The above equation system contains several coefficients: ce, ck, cα, cD, cε1, cε2, cε3,

cε4, which can be evaluated either from some theoretic considerations or basing on test
computations. These coefficients are selected basing on known experimental data on
evolution of gravitational and tangent mixing. However, owing to the wide scatter of the
experimental data selection of the coefficients depends on intuition and predilections of
authors of the models. We make use off two sets of coefficients with one being selected
at gas tests of Vasilenko et al. [6] on gravitational mixing and the other at the tests of
Kucherenko et al. [7] with immiscible fluids (see Table 1). In addition, at selection of
the coefficients it was also necessary to secure an acceptable result for tangent mixing.

Note that the coefficient cε3 is selected from theoretic consideration based on the
experimental data on uniform isotropic turbulence decay.

ce ck cα cD cε cε1 cε2 cε3 cε4

at tests [6] 3 3 3 0.75 2 1.55 1.25 2 1
at tests [7] 3 3 3 0.12 2 1.3 0.9 2 1

Table 1: Values of the coefficients for the turbulence model
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3 Equation approximation

Eqs. (1)–(10) are approximated in Lagrangian-Eulerian variables on a moving arbitrary
quadrangular computational grid in several stages with the method of fractional steps
being involved. At the first stage changes in velocities due to deviator terms of the stress
tensor, the values of the diffusion coefficient D, as wells the values ~w, A are defined.

At the second stage the gas dynamics equations are solved in Lagrangian variables
with account of turbulent pressure P̃ = P + PT . The implicit method from paper [5]
with appropriate modifications is used for this purpose.

At the third stage the equations for turbulent energy and rates of dissipation without
diffusion terms, as well as terms of energy equations for components related with tur-
bulent flow and turbulent energy dissipation are approximated. At the approximation
the schemes are used which secure solution positivity.

At the fourth stage the convective terms of Eqs. (1)–(5) are approximated. For this
purpose the modified code [5] is used. The modification is related both to the need to
update additional values and to the need to change computation of component mass
flows from mixed cells containing a mixture of several components. For the problems
under consideration it is assumed that from a mixed cell to a mixed cell mixture with
thermodynamic parameters of the donor cell always flows.

At the fifth stage the diffusion terms of Eqs. (1)–(5) are approximated. The differ-
ence scheme used is described in paper [5]. After computation of diffusion component
asses their volume fractions are updated to smooth component pressures using the al-
gorithm close to that given in paper [8]. On the whole the scheme is of the first order of
approximation in time and space. The number of the components is not limited both
on the whole over the computational domain and in a separate mixed cell.

4 Choice of initial conditions

When the computations used the k − ε model, the problem is to set initial data for
initial values of turbulent energy dissipation rate ε and turbulent energy k. The com-
putation results are usually assumed to depend slightly on “reasonably” selected initial
values. We propose a specific “reasonable” restriction on the choice of initial data. The
evaluation of initial data for k and ε in some cases can restrict to consideration of flow
with uniform deformation and turbulence. The asymptotic properties of solutions were
studied for the above conditions. It was found that in most cases the solutions have the
asymptote in (k, ε)-plane so that initial conditions may be chosen at this asymptote.

Assumption 1. First, we assume that the main gas- dynamic flow is the flow with
the uniform deformation that is all characteristics of gas- dynamic flow influencing the
turbulent energy k and the dissipation rate of turbulent energy ε, do not depended on
the space point. Second, we neglect potential time and space dependence of thermo-
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dynamic gas parameters (density, pressure, temperature etc.). Third, we assume that
the turbulence generation rates G1 and G2 are fixed and do not depend on space and
time. Fourth, we assume that the turbulent energy and the dissipation rate of turbu-
lent energy do not greatly influence the gas-dynamic (averaged parameters) of the flow
considered.

The above assumption permit to consider only the equation for turbulent energy k
and dissipation rate ε where the variability of all parameters is determined only by the
variability of k and ε, so that we may not involve the gas- dynamic equations.

Assumption 2. For further simplification, we suppose that we deal with the uni-
form turbulence, that is k and ε may depend only on time and are independent on
spatial coordinates.

In this case, equation (5) and (6) yield the system of ordinary differential equations
for k and ε.

dk

dt
= (G1 + G2)

k2

ε
− ε + σk; (11)

dε

dt
=

ε

k
(cε1G1 + cε2G2)k − cε3

ε2

k
+ 2σε− c0k

2. (12)

where the following notation is used for constants:
c0 = 2

3cε4cD

〈
~A; ~A

〉
; σ = 2

3div~u;
In most cases, the system for the variables k and ψ = e/k has a special (stationary)

point with the coordinate

ψS ≡ σ +
√

σ2 + 4G3(cε3 − 1)
2(cε3 − 1)

≥ 0.G3 = (cε1 − 1)G1 + (cε2 − 1)G2

in the first quadrant.
This stationary point, if unique, is repulsive. If there are some stationary points

then the given point is the only attracting one. Therefore the recommendation is to
select initial conditions as close to the stationary point (ψs, ks) as possible, namely from
the formula

ε(0)
k(0)

= ψ2 ≡ σ +
√

σ2 + 4g3(cε3 − 1)
2(cε3 − 1)

. (13)

Then we will have more time to achieve computational consistency of gas-dynamic
processes with diffusion and turbulence generation.

Formula (13) determines initial values for the relations ε/k. At this point we do not
propose the formula for the selection of the initial “amplitude” for the turbulent energy
k and dissipation rate of the turbulent energy e. Formula (13) may be useful for some
elementary flows allowing to automate the specification of initial data; however we can
not expect it to be a universal solution for this problem.
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5 Some computations

The above features of the turbulent mixing model and the gas-dynamic method on
whose basis it is implemented allow to use it to model a wide spectrum of gas-(and
hydro-) dynamics problems. The method was used to perform numerous test and
methodological computations which were used as the basis for selection of the two sets
of coefficients given in Table 1. Some computed results are given below. Unless stated
otherwise, the computations were performed with the first set of the coefficients. In
some cases for comparison the computed results for the second set of the coefficients
are also given.

Problem 1. Rayleigh-Taylor instability. The described method was used for
computations for δ = 1.66, 3, 7, 20.

The computed results are in good agreement with those using the TOGA method
[9]. Figure 1 shows the dependencies of TMZ width L on deceleration path value
S = 0.5 gt2. The zone width was estimated as a distance where volume fraction of one
of the fluids varied from 0.01 to 0.99. From the figure it is seen that the dependencies,
as they showed be, are linear. They can be represented in the L = F (A)S, where
A = (δ − 1)/(δ + 1) — the Atwood number, S = gt2/2. The graph of the function
F obtained in the computations by the TOGA method is given in Figure 2; the same
figure gives the results of our computations and those of direct 2D numerical simulation
from paper [10].

The self-similar nature of flow is also confirmed by the profile ρ̃(x̃), where ρ̃ =
(ρ − ρ1)/(ρ2 − ρ1), x̃ = x/(x0.9 − x0.1). For the length unity the distance is taken
between points x0.1 and x0.9, where ρ̃ is ρ̃ = 0.1 and ρ̃ = 0.9 respectively. Note that in
these variables the profiles do not practically depend on the value δ which is illustrated
by Figure 3 which gives dependencies ρ̃(x̃) for δ = 3 and δ = 20.

Problem 2. Tangent mixing. At the plane interface is a tangent velocity disconti-
nuity ∆u = 6. The normal velocity component is taken to equal zero. The computations
are performed for ρ2 = ρ1 and ρ2 = 3ρ1.

Figure 4 gives TMZ width as function of time. The zone width L was estimated
as the distance where volume fraction of one of the fluids varied from 0.01 to 0.99.
It is seen that in some time this dependence for the case of δ = 1 transfers to the
self-similar mode, in doing to the value ∂L/∂t/∆u is located between the results of
the phenomenological models [11] and paper [12]. As δ increases, zone growth rate
decreases.

The given figures show rather good agreement between our computed results and
the semi- empirical theory predictions which, as it is mentioned in paper [11], in their
turn, are in good agreement with the experimental data.

Problem 3. Tangent-gravitational mixing. Two incompressible fluids with a
plane interface have a discontinuity of the velocity tangent component ∆u0 and move
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Figure 1: TMZ width L vs. decelera-
tion path S in the gravitational mixing
problem.

Figure 2: Function F vs. the At-
wood number in the gravitational mix-
ing problem, —— the TOGA method;
4— k−ε model; ∗— direct simulation
[10].

Figure 3: Self-similar profile of den-
sity ρ̃ vs. y in the gravitational mix-
ing problem, —– TOGA method; ∗ —
k − ε model(δ = 3); 4 — k − ε model
(δ = 10).

Figure 4: TMZ width vs. time, numer-
ical computation using the k−ε model:
◦ — first set of coefficients, ∗ — second
set of coefficients; semi-empirical mod-
els: —— [11], - - - [12].
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at acceleration g in the normal direction (Figure 5). By its setting-up the problem
combines the two first problems. It can be show that at g > 0 the mixing zone growth
should be faster than in each individual case, while at g < 0 the zone growth should
stop with time. In the latter case the zone width should be proportional to ∆u2

0/g, i.e.
L = A∆u2

0/g. The proportionality coefficient A can be determined from computations.
Five computations were performed. The initial data for the computations are given

in Table 2.
The computations entirely confirm the theoretic conclusions regarding TMZ (see

Figure 6). For all three computations with g < 0 the coefficient A was practically
constant, A = 5/6, i.e. it is universal. For g > 0 the TMZ width growth much faster
than in each individual case considered above.

Problem 4. Turbulent mixing at acceleration at an angle to the interface.
The EGAK method with the k − ε model of turbulence was used in computations of
experiment [13] on turbulent mixing development on an inclined interface. The problem
is formulated as follows. In an ampule of rectangular cross section (64×120mm) moving
at a constant acceleration there are two fluids separated with a plane. The plane is
directed at a angle to the acceleration vector. In the experiments the angles of interface
inclination, ampule acceleration, as well as a fluids being accelerated were varied.

In the computations the interface inclination angles were varied. Ampule acceler-
ation was 730 g, the fluid density ratio was 1 : 3, the incompressibility condition was
satisfied approximately by appropriate section of sound speed.

Among other results in the experiments it was found that with time the TMZ width
stabilized and then begins to decrease. The stabilization time is therewith dependent on
the discontinuity plane inclination problem angle. Note that earlier a similar problem
was numerically modeled by Youngs [14], and, though the TMZ width is also stabilized
in his computations, however, he did not find decrease in the zone.

The result [13] on stabilization and reduction of the TMZ width was confirmed
in all performed computations. A characteristic flow pattern in the form of volume
fraction isolines is given in Figure 7 for several times obtained by calculating with the
interface angle ϕ = 5◦46′. Figure 10 shows the function L(S∗) for the TMZ width

Computation N0 g ∆u0

1 0 6
2 +10 6
3 −10 6
4 −20 6
5 −10 4.24

Table 2: Initial data of the computations.
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Figure 5: Initial computational geome-
try in the tangent-gravitational mixing
problem.

Figure 6: Mixing Zone width depen-
dence in the tangent-gravitational mix-
ing problem,1 — g = 0, u0 = 6; 2 —
g = +10, u0 = 6; 3 — g = −10, u0 = 6;
4 — g = −20, u0 = 6; 5 — g = −10,
u0 = 4.24.

were S∗ = 0.5 gt2 cosϕ. As is seen from the figure the theoretical and experimental
curves agree qualitatively though they greatly differ quantitatively. The some pattern
is observed in all computations.

Problem 5. A jet from a reservoir. For various applications, it is interesting
to consider the jet flowing from a reservoirs and the mixing with environment. In this
connection a computation was performed where a nitrogen jet with the Mach number
M = 3(u = 1020 m/s) effused. This problem was experimentally studied in paper [15].
The initial system geometry is given in Figure 8, input diameter was d = 1.25 cm. The
equation of state of gases are P = (γ − 1)ρE with γ1 = γ2 = 1.4.

Figure 10b shows nitrogen volume fraction isolines obtained in the computation for
three times. It is seen that rather severe jet washing-out takes place, the apex angle
being close to the experimental value (tgα ≈ 0.09). The length of the initial jet portion
L/d ∼= 14 is also close to the experimental value. In the computation L defined as the
length of the portion where nitrogen fraction on the symmetry axis β > 0.95.

Figure 9 gives the profile of the nitrogen volume fraction in the cross section x/d =
21.6 at the latest time (t = 2.8) when the flow in this cross section is already close to
steady. The same figure also gives the experimental data for the cross section x/d =
19.2.

On the whole it can be noted that the computed results at the steady flow portion
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Figure 7: Isolines of volume fraction β = 0.01, . . . , 0.99.

Figure 8: TMZ width vs. S∗, + — ex-
periment [13], ¦ — computation.

Figure 9: Nitrogen volume fraction pro-
file in jet cross section.
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Figure 10: Isolines of volume fraction β of nitrogen jet into air.

are in good agreement with the experimental data.
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