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This paper presents the results of direct (without empirical models) numerical sim-
ulation of turbulent mixing at the plane interface of two incompressible fluids (gases)
with various densities moving with a constant acceleration.

The first similar studies were carried by Anuchina at al. [1] using the particle-in-cell
method in 2D approximation. Then this approach was used by the authors of this paper
to simulate the shear mixing [2]. The turbulence in these computations was treated
as the result of random perturbations initially applied to the interface of two flows.
The numerical simulation used 2D EGAK code [3]. The computational results were
compared with the corresponding results obtained with the variant of semi- empirical
turbulence theory with isotropic Reynolds tensor (model 1). In [4] similar computations
were run to simulate the gravitational mixing.

This paper continues the studies in [4], using the direct numerical simulation with
2D and 3D methods [5],[6]. The data interpretation uses the version of semi-empirical
theory (model 2) accounting for the anisotropy of Reynolds tensor.

1 Computation setup

The setup is similar to that of [4]: at initial time two half- spaces separated by the
plane z = zc = 11 are filled with perfect gases (γ = 1.4) at rest with the densities
ρ1 = 3(z > zc) and ρ2 = 1(z < zc) the Atwood number is A ≡ (ρ1−ρ2)/(ρ1 +ρ2) = 0.5.
The gravity acceleration is directed from the heavy material to the light one, g = 10.
At initial time random density perturbations δρ1 = ±ρ1δ, where δ = 0.05 (δ = 0.1
in one of 2D computations) were applied to the interface (in a layer one cell thick).
The computational domain is a cube with the side Λ = 20. The periodicity condition
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Figure 1: TMZ width as a function of time, (a) 3D calculation: ◦ fit to the semi-empirical profile
ρ, × fit to the semi-empirical profile k, ∗ for the level 0.01psi (ψ ≈ abs[(ρ − ρ1,2)/(ρ1 − ρ2)]);
by experiment [9] (b) 2D calculations on the grid (N1 × N1): ∗ ∗ ∗ N1 = 45; · · · N1 = 100,
—— N1 = 100, – – – N1 = 200, − · − N1 = 200, δ = 0.1; − · ·− by experiment [9].

with the period Λ = 20 was applied to outer domain boundaries parallel to the ~g while
the rigid wall was taken for the others. The computational grid for 3D computations:
45× 45× 45; the 2D grid (N1 ×N1) was varied from N1 = 45 to N1 = 200.

Note that the pressure value (P ≈ 103) is such that for the turbulence the incom-
pressibility condition was approximately met: k = ξLg ¿ γP/ρ, where ξ = const ¿ 1,
L < Λ, L — is the turbulent mixing zone (TMZ) width, k — is the turbulent energy.

2 Computational results

The flow evolution observed in 3D computations is generally similar to that of 2D
computations [4]. The vortices grow with time and conversion to the self-similar mode
is observed which for this problem is characterized by the linear variation law for

√
L(t)

(Figure 1). Here L(t) was defined as the width of the self-similar profile (see below)
closest to that obtained from the numerical calculation (Figure 2); profiles for ρ(z) ≡<
ρ > and k(z) ≡< k > were taken from the numerical computations. Here and further
the averaging (<>) was performed in the plane z = const parallel to the interface plane.

The 3D structure of this flow is illustrated by the isolines of volume fraction β = 0.5
at time t = 3.6 located on various cross- sections z = const (increases from the right
to left and upward, ∆z = const) in Figure 3. A similar pattern is shown for the
cross-sections x = 0.25 and y = 0.25 (Figure 4).

As is seen from Figure 2 the relative profiles of k, ρ agree well with two versions
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Figure 2: Turbulent energy profile (a) and density profile (b), ∗ 3D calculation, t = 2.8, η =
(z−zc)/L; ◦ 2D calculation, t = 3.25, η = (y−yc)/L; semi-empirical models: —— [2] – – – this
paper; coefficients: β = 0.1; cd = 0.25; c2 − 0.56; c3 = 0.65; k = 0.45; b = 1/6; a = 0.75.

of semi-empirical theory; one of them [7] describing the isotropic turbulence within
k − D (a version of standard k − ε model called model 1 below) and the other (see
below) accounting for the anisotropy of Reynolds tensor using k − D model (model
2) in the equilibrium approximation for k. Here the time t = 2.8 was chosen at the
self-similar fragment of the mixing zone evolution. The self- similarity criterion can not
be represented only by the linearity of

√
L(t) because of low accuracy of its evolution.

The additional criterion is where E(t) = km/(Lg) because fixed in time; here km ≡
max(< k > (z)). As is seen from Figure 5, showing this quantity as a function of
s ≡ (t/tmax)2(tmax = max(t)) one can suggest that the self-similar mode also exists for
s ≥ 0.25(t ≥ 1.8).

At the same time, the absolute mixing rate dL/dt differs in two models by about one
order of magnitude which is shown by Figure 6 presenting the quantity Λ1 ≡ I

tmax

√
L1
Ag

as a function of (t/tmax). The derivative gives the quantity
√

α1 in expression for the
coordinate of the mixing zone in heavy material: L1 = a1Agt2 [7]. The same figure
shows the results of both of our computations and of similar 3D computations (two
curves) [8]. In addition, the figure contains a straight line with the slope corresponding
to the experimental data that are the most representative for the majority of known
experiments. Globally our 3D calculations are close to this line though in the self-
similar phase (see above) the slope is closer to the model 2. Youngs [8] believes that
the self-similar mode is determined by the slope at later times which gives the value of
the α1 much lower that in experiments (note that it is close to model 1 data). However
at this stage, the dimensions of the mixing zone are comparable with the distance to
the computational domain boundary; at the same time at the initial stage the slope
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Figure 3: Isolines of volume fraction β = 0.5 in the
planes z = const at time t = 3.6, ∆z = const.

(a)

(b)

Figure 4: Isolines β = 0.5 in the planes:
a) x = 0.25, b) y = 0.25.

of his curve is closer to data from [9] as shown by Figure 6. A motivated estimate of
the self-similar stage position could be obtained if the function E(t) is available. The
same is true for the experimental data. For example, reference [10] reports the value
of α1 two times higher than in [9] (and this is close to results of model 2), however,
because of non-constant g, the existence of the self- similar mode is still a question. In
the experiment N422 from [11] where g is relatively constant α1 is also close to [10];
however since the value of n is significantly higher (by orders of magnitude) as compared
to our case, the question arises whether α1(n) is constant.

The 3D computations clearly demonstrate the anisotropy of Reynolds tensor Rik ≡<
u′iu

′
k > and the longitudinal component of the turbulent energy (that is the diagonal

portion of Reynolds tensor Eii = Rii/2 is much longer than each transversal component
(Figure 7) and on average corresponds to the results of semi-empirical theory (model 2).
However in this theory one has to take the coefficient b = 1/6 two times higher than in
[12]. For shear flows, the difference is even greater (see below) that is b is non-universal
parameter depending on Reynolds number. We also computed the quantity:

E
(i)
jr =

〈(
u

(i)
j

)2
〉∣∣∣∣

r
−

〈
u

(i)
j

〉2
∣∣∣∣
r
; j = x, y, z; i = 1, 2, . . . , N

Ejr = E
(i)
jr

∣∣∣
r
; r = 2, 3, . . . , N.

(1)
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Figure 5: Maximum turbulent energy as a
function of time, —— 3D calculation; 2D cal-
culations: — · — N1 = 100, – – – N1 = 100,
◦ N1 = 200, ∗ N1 = 200, δ = 0.1

Figure 6: Coordinate of the light material in
the heavy one, —— by experiment [9] 3D cal-
culations: ∗, ◦,× this paper, · · · results [8]
semi-empirical models: – – – [2] — · —this
paper.

Here the averaging 〈〉 is accomplished in the i layer (z) in the square with the side r
and further proceeds over all squares with the given r for the entire i layer; the results
are shown in Figure 9 (where K = 2π/l, l ≡ rh, h — is the cell size) versus the
Kolmogorov spectrum.

It is seen that in the mixing zone the spectrum of total energy El = Elx+Ely +Elz is
very close to Kolmogorov value

(
lg El(k) = −2k/3 + const

)
for the small scale, however

the anisotropy is retained till the least scales.
The 2D computations lead to a lower mixing rate as compared to three dimensions

(Figure 1a, b). For the coarse grid (N = 45) the self-similar mode is achieved somewhat
later when the mixing zone width L is comparable to the computational domain size.
For a finer grid (N = 100, two runs with different realizations of initial disturbances),
the origin of the self-similar mode corresponds to a relatively small width of the mixing
zone, this is especially pronounced for the computations where the increase in amplitude
of initial fluctuations (δ = 0.1, N = 200) leads to faster turbulence evolution. This is
confirmed by Figure 5 for the function E(t) = km/(lg); its constant value E0 is achieved
much earlier in this calculation. Note also that in 2D computations E(t) is initially great
(> E0 — see Figure 5); accordingly, the slope of L(t) in also great; later it decreases;
in 3D case initially E(t) < E0 and the slope of L(t) increases.

The mixing rate obtained from 2D computations is close to the data of experiments
from [13] (the straight line in Figure 8 with the slope

√
α1 determined by the value

α1 = 0.04 obtained in [13]) with the setup similar to the 2D case. Note that in similar
2D computations [4] the mixing rate is significantly higher (at least with a factor of 2)
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Figure 7: Reynolds-tensor anisotropy. 3D cal-
culation: Rxx/Ryy, ◦ t = 2.4, × t = 2.8, –·–
t = 3.2, · · · t = 3.6, Rxx/Rzz, ∗ t = 2.4, + t =
2.8, · · · t = 3.2, –··– t = 3.6, semi-empirical
model 2: —— Rxx/Ryy, – – – Rxx/Rzz.

Figure 8: Light material coordinate in the
heavy one, —– by experiment [13]; 2D calcu-
lations: ∗ N1 = 45, · · · N1 = 100, x− x N1 =
100, + − + n1 = 200, —— · N1 = 200,
δ = 0.1; semi-empirical models: - - - model 1,
–··– model 2.

which can indicate that it is not sufficiently close to the self-similar mode.
As shown by Figure 2, the relative profiles of k, ρ in 2D computations (with N1 =

200, δ = 0.1) demonstrate much better agreement with the version of semi-empirical
theory as compared to 3D case which can be explained by a finer grid.

Note that both 2D and 3D computations (in agreement with models 1 and 2) gives
the ratio of coordinates of heavy material in the light one and light material in the
heavy one Λ2/Λ1 ≈ 1.5 which is greater then in [8],[9] (≈ 1.15).

For the same 2D case, Figure 9 shows the spectrum of turbulent energy (more
precisely, diagonal components of Reynolds tensor) that is (1) where the averaging is
accomplished over a segment rather than over the square like in 3D case. It is seen that
for small scale the spectrum is close to the known spectrum

(
lg El(k2) = −2k + const

)
—

2D analog of Kolmogorov spectrum.

3 Semi-empirical theory (model 2)

The variant of theory of type [12],[14] accounting for Reynolds tensor anisotropy gives
the equations:

∂w

∂t
= −∂R1

∂z
(2)

R12 ≡
〈
u′yu

′
z

〉
= R1 = −DB1

∂ρ

∂z
; (3)
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(a) (b)

Figure 9: Turbulent energy spectrum, a) 3D calculation (t = 2.8), η ≡ (z−zc)/L: ◦ El, - - - Elx,
· · · Ely, . . . Elz; — El(K3). b) 2D calculation (t = 3.25), η ≡ (y−yc)/L: ◦ El, - - - Elx, −·− Ely,
—— El(K2).
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B1 =
1/3− b + 3bς

a/2
; ς ≡ 1 + 1/k

k =

√
g0zR1D

3bρ
; g0z ≡ gz − dνz

dt
=

1
ρ

∂p

∂z

(4)

the equation for the turbulent diffusion coefficient D has the form:

dD

dt
=

D

ε

c3g0R1

ρ
+

D

ρ

∂ρ

∂z

dD

∂z
+

cd

ρ

∂

∂z

(
Dρ

∂ρ

∂z

)
− 0.9c2bε (5)

where : a, b, cd, c2, c3 — are semi-empirical coefficients.
For the self-similar mode the solution is found by using the approximation:

Z ≡ (dΨ/dη) /Ψ = const, (6)

where the self-similar variable η ≈ (z/(gt2)) ; the solution has the same form as in
[7] in our case:

k̃ =
b(3c3 − 0.9c2)
3 + 2cd/B1

. (7)

4 Conclusions

The main results of this work are as follows:
The direct numerical simulation on 3D geometry was performed for the gravitational

turbulent mixing that is hydrodynamic equations were solved without any phenomenol-
ogy terms. For small scales Kolmogorov turbulence spectrum is reproduced. The TMZ
growth rate does not disagree with the experimental data of various authors.

A similar study was performed in 2D geometry; a 2D analog of Kolmogorov spectrum
is obtained for small scale. The TMZ growth rate is considerable lower than for 3D
calculation and corresponds to the experiment [13] which is close to 2D case. It is shown
that a good criterion for the solution transition to the self-similar mode, in addition to
the linearity of

√
L(t), is the constant value of E(t) = km/(Lg); this is close in 3D and

2D computations.
A variant of semi-empirical model is formulated for the calculation of the flow under

consideration with Reynolds tensor anisotropy and self-similar solution is obtained for
this model.

The variant of semi-empirical method allows to give a more representative descrip-
tion of the corresponding experiments as compared to [6] with the isotropic Reynolds
tensor; it agrees well with 3D computations.

The issues addressed in this paper need further clarification which may require
similar studies on finer grids and with other numerical methods.
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