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Abstract. A multi-scale closure model for compressible mixing flows is
developed. Transport equations for the turbulent kinetic energies and the
energy transfer rates are attached to each domain of the turbulent spec-
trum. The model accounts for the enthalpy production. A Rayleigh-Taylor
configuration, and a shock tube experiment, where mixing is induced by
Richtmyer-Meshkov instabilities, have been simulated.

1 Introduction

When a shock wave impinges an interface between two different materials, small per-
turbations of the interface grow, first linearly, then into complex structures, and, under
some circumstances, towards a highly evolving and anisotropic turbulence. Then the
characteristic length scales, such as the integral scale, the Taylor and the Kolmogorov
scales, undergo very rapid changes. Afterwards, turbulence relaxes to an isotropic state
until a new process enhances it again. Several single-scale models have already been
built to simulate these flows [1, 2, 3]. Since only one spectral scale is considered, these
models do not account for the spectral character of the turbulence. In the situations
described above, the production mainly occurs in the large scales, then the energy
cascades down to the small scales where dissipation acts. As opposed to single-scale
models, multi-scale models contain several time and length-scales, which make them
well suited to describe non-equilibrium and unsteady situations. In view of this, a
multi-scale turbulent model has been derived by partitioning the turbulent kinetic en-
ergy spectrum into two regions (section 2). In this paper, we present the preliminary
results obtained with this model on simple experimental devices : a Richtmyer-Meshkov
induced turbulence in a shock tube in section 3, and a Rayleigh-Taylor flow in section
4. A shock / turbulence interaction in a wind tunnel [4] has also been studied. It will
be reported elsewhere.
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2 A Two-Scale Model for Compressible Flows

In this section we focus on the derivation of the evolution equations for turbulent
quantities. To this end, the spectra of the fluctuating quantities are split into two
regions through the definition of a partition wavenumber K1. The filtering operation is
proceeded in the Fourier space. Then for any quantity φ, and under the hypothesis of
local homogeneity, the correlations of quantities of different spectral domains, such as
φ1 and φ2, are equal to zero, i.e. φ1φ2 = 0 [5]. Here, we use the Favre averaging and
we introduce the quantity wi =

√
ρui where ρ is the density and u the velocity. Then

we have the property ρu1iu2i = w1iw2i = 0 . As a result, the turbulent kinetic energy
k̃ is the sum of two terms k̃ = (ρu1iu1i + ρu2iu2i)/2ρ = k̃1 + k̃2 .

The transport equations for k̃1 and k̃2 are obtained by statistical treatment. These
equations contain extra terms which express the energy exchanges between the different

regions of the spectrum. The partition wave number is defined as K1 = F̃ / k̃1
3/2

[6], where F̃ is the energy flux from the first zone to the second one. The transport
equation for F̃ is derived from the above definition [6]. In accordance with [5], the main
production is located at the large scales, where the dissipation is neglected. The energy
cascade is expressed by the transfer term F̃ and the viscous dissipation by ε̃. Then the
set of equations is
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∂Ũi

∂xj
− CF2

ρF̃ 2

k̃1

,

ρ
Dk̃2

Dt
= − ∂

∂xj
ρk′2u′j − χu′i

∂P

∂xi
− ρu2iu2j

∂Ũi
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The turbulent correlations are modeled with one-point closures. For the Reynolds
stress tensor, we modeled the turbulent viscosity by CDρk̃2/F̃ and we suppose turbu-
lence to be isotropic in the small scales region (ρu2iu2j = 2/3ρk̃2δij). In the enthalpy
production term, we use the classical closure u′i = −(CD/σρ)(k̃2/ρF̃ ) (∂ρ/∂xi) and
χ controls the spectral distribution. The model coefficients are determined from the
results of simple experiments. This model has been embedded in a 1D hydrocode.

3 Richtmyer-Meshkov Induced Turbulence

Since our final aim is to study hydrodynamic instabilities in ICF context, we simulate
Meshkov’s experiment in a helium/air shock tube [1]. To initialize the turbulent mixing
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Figure 1: Meshkov’s shock tube experi-
ment. Thickening of the TMZ : (a) ex-
perimental data of Andronov et al., simu-
lations with (b) the k − ε model and with
the two-scale model: (c) χ = 0 and (d)

χ = 1−
√

k̃1/k̃.
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Figure 2: Meshkov’s shock tube exper-
iment. Evolution of the characteristic
lengths in the two-scale simulation (χ =
0) : (a) TMZ width, (b) integral length
Lµ = k̃3/2/F̃ , (c,d) upper bounds of the
two spectral regions, (e,f) Taylor and Kol-
mogorov scales.

zone after the incident shock, we use experimental data for the mixing length and
Mikaelian’s analysis of the turbulent energy [7].

Fig. 1 displays the experimental data of the turbulent mixing zone (TMZ) thickness,
with the results of both single-scale and two-scale models. In these experiments, the
turbulent energy is mainly provided by the enthalpic production term during the trav-
elling of shock waves through the mixing zone. The coefficient σρ is calibrated to the
value 0.85 against the experiment. Two simulations were carried out with the two-scale

model: one with χ = 0; the other with χ = 1 −
√

k̃1/k̃. Numerical results are close
to each other. However the distribution of enthalpic production in the two spectral
regions (χ 6= 0) seems to increase the mixing length. The comparison on the mixing
length does not allow us to decide between the models.

The length scales available with the two-scale turbulence model, where χ = 0, are
displayed in Fig. 2.

Fig. 3 shows the evolution of energy fluxes. An interesting feature is the differences
in the behaviour of the dissipation terms. After the first reshocks, ε̃ is lower in the
two-scale model than in the classical k − ε model. Moreover, an important delay (40
µs when χ = 0, 70 µs when χ 6= 0) exists between the maxima of F̃ and ε̃ after the
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Figure 3: Meshkov’s shock tube experi-
ment. Comparison of the energy trans-
fer and the dissipation rates : (a) ε̃ with
the k − ε model, F̃ and ε̃ with our two-
scale model : (b,c) χ = 0 and (d,e) χ =

1−
√

k̃1/k̃.
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Figure 4: Rayleigh-Taylor configuration.
Evolution of (a) the ratio between the tur-
bulent kinetic energies (k̃1/k̃2) and (b) the
ratio of the energy transfer with respect to
the dissipation (F̃ /ε̃).

first interaction between the shock wave and the turbulent mixing zone. This delay
expresses the expected departure from equilibrium. At the contrary, at the end of the
simulation, the three dissipation rates are almost equal, meaning that turbulence has
reached an equilibrium state.

4 Rayleigh-Taylor Induced Turbulence

We investigate the turbulent mixing flow at a boundary between two fluids due to
Rayleigh-Taylor instability. Similar configurations have been studied experimentally by
Read and numerically by Youngs [8, 9], among others. Here, we simulate the mixing
of two gases (helium and air) with a constant acceleration γ = 107cm/s2. Youngs’
relation [9] is used to initialize the turbulent zone. The main interest of this test is that
turbulence is continuously fed as opposed to the impulsive production in shock tubes.

The main characteristics of an energy spectrum in which production exceeds dissi-
pation are approximately achieved. Indeed, the proportion of energy in the large scales
increases continuously (Fig. 4), and so does the mixing length and the characteristic
length of energy containing eddies Lµ. Moreover, as the Kolmogorov length decreases
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slowly, the inertial range widens, essentially in the lower part of the spectrum. As we
take χ = 0 in these simulations, the small scales region is only supplied with the flux F̃ .
The ratio between F̃ and ε̃ quickly reaches the asymptotic value 1.1 (Fig. 4), indicating
a persistent non-equilibrium turbulent state.

5 Conclusion

This study shows that two-scale models give extra informations with respect to a clas-
sical k − ε model, for unsteady configurations where the spectrum is often far away
from equilibrium. These models may be supplemented with equations for second order
quantities.
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