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Abstract. The diffusion of some admixture in compressible media showing
an homogeneous,isotropic and stationary turbulence is considered. The tur-
bulent diffusivities DT are calculated from the exact numerical solution of
nonlinear DIA-equation for the averaged Green’s function for the ensemble
of chaotic shock waves in infinite medium. It was studied the dependence
of DT on the degree of compressibility,turbulent Strouchal number and
space-scales of turbulent motions.

1 DIA equation for compressible turbulence

Since the averaged number density 〈n(r, t)〉 and the fluctuating part n1(r, t)(〈n1(r, t)〉 =
0) depend on each other, the separate equation for the averaged Green’s function
〈G(1, 2)〉 ≡ G(1 − 2) ≡ G(R, τ) is nonlinear one and takes the form of hierarchy of
nonlinear equations with increasing degree of nonlinearity. The first equation of this
hierarchy with the second order nonlinearity is called the equation in direct interaction
approximation (DIA). It has the form (dn = drndtn, etc.):

G(1− 2) = Gm(1− 2)+∫
d3

∫
d4Gm(1− 3)∇(3)

i 〈ui(3)G(3− 4)∇(4)
j uj(4)〉G(4− 2) (1)

Here ui(1) ≡ ui(r1, t1) is the turbulent velocity of the basic gas, 〈u〉 = 0, and Gm(1−
2) ≡ Gm(R, τ) is the molecular Green’s function with the molecular diffusivity Dm;
R = r1−r2, τ = t1− t2. It was shown by R.Kraichnan [4] for incompressible turbulence
that the DIA-equation describes the turbulent diffusion very satisfactory. Therefore,it
is natural to use eq. (1) also in the case of compressible medium. The Fourier transform
of two-point velocity correlator 〈un(1)um(2)〉 ≡ Bnm(R, τ) for compressible turbulence
without helicity has the form (Batchelor [1]):

Bnm(p, τ) = (δnmp2 − pnpm)f(p, τ) + pnpmW (p, τ) (2)
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The first term coincides with the correlator in the case of incompressible medium
(divu= 0) and is characterized by the generalized spectrum Einc(p, τ) = π−2p4f(p, τ).
The second term describes the compressible motions (rotu = 0) and is characterized by
the spectrum Ecompr(p, τ) = π−2p4W (p, τ)/2. The total spectrum is the sum of these
independent spectra. The Fourier transform of eq. (1) in variable R depends on these
spectra. The turbulent diffusivity DT is related with the transformed Green’s function
G(p, τ) (Dolginov and Silant’ev [2]):

D
(0)
T = (1/3)

∫ ∞

0
dp

∫ ∞

0
dτ [Einc(p, τ)− p ∂Ecompr(p, τ)/∂p] G(p, τ) (3)

The first term in (3) is always positive and the second one may be negative. So,
in general,the compressibility decreases the turbulent diffusivity. The qualitative dis-
cussion of this phenomenon was given by Silant’ev [5]. It should be stressed that due
to nonlinearity of eq. (1) the expression (3) give the contribution to DT of all the
forms and degrees of the two-point velocity correlators. The contribution of remain-
ing four-order irreducible correlators, i.e. of the form 〈ui(1)un(3)〉〈uj(2)um(4)〉 with
t1 > t2 > t3 > t4, grows from zero for ξ = u∗τ0p0 = 0 up to value of the order 10% for
frozen turbulence having ξ À 1 (Silant’ev [6]). Here u2∗ = 〈u2(r, t)〉, τ0 and p0 = 1/R0

are characteristic life-time and wave number of turbulent motions. Such good efficiency
of DIA expression (3) is quite natural because the main contribution to turbulent diffu-
sivity DT give the most large-scale motions which are described by two-point velocity
correlators. Four-point and higher correlators describe the fine structure of turbulence
with small space-scales which give relatively small contribution to DT .

2 Simple model of turbulence

The generalized spectra Einc(p, τ) and Ecompr(p, τ) are presented in (1) and (3) as
integrated quantities. For this reason,the behavior of the Green’s function and turbulent
diffusivity DT depend mostly on the values of dimensionless parameters ξ = u∗τ0p0 and
other parameters,such as p0/p1 ,τ0/τ1 etc. In any case, the qualitative behavior of DT

as function of these parameters may be studied using the most simple model of chaotic
compressible turbulent motions:

E(p, τ) = Einc(p, τ) + Ecompr(p, τ)

= u2
∗[aδ(p− p0)exp(−τ/τ0) + (1− a)δ(p− p1)exp(−τ/τ1)]

(4)

Here u2∗ = 〈u2(r, t)〉, a is the part of turbulent energy involving into solenoidal (in-
compressible) motions. We shall use also the notations u2

0 = au2∗, u2
1 = (1 − a)u2∗,

so u2∗ = u2
0 + u2

1. The model (4) may be considered as representing the ensemble of
chaotic shock waves. We do not consider the ensemble of acoustic waves where DT is
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extremely small, of the order of kinematic viscosity. The time of statistical relaxation
τ1 of compressible chaotic motions is directly related with the relative change of the
volume element and may be estimated from the expression:

〈(∆V/V τ1)2〉 ' 〈div2u(r, t)〉 =
∫ ∞

0
dp p2Ecompr(p, 0) ' u2

1p
2
1 (5)

Qualitatively such relation is natural. Indeed, during the process of compression
or decompression of a gas there exists a distinct correlation of velocities in some fixed
points of space. So, we have the estimation τ1 ' (∆V/V )/u1p1. This means that the
Strouchal number ξ1 = u1τ1p1 ' ∆V/V . The mean change of the volume element
∆V/V depends on particular physical processes which take place in medium. It is
important that this parameter is restricted. So, for adiabatic motions one has (Katz
[3]) ∆V/V < 2γ/(1 + γ), with γ being the adiabatic constant. Thus, for mono atomic
gas (γ = 5/3) one has ξ1 < 5/4, and for two atomic - ξ1 < 7/6. This means that the
regime of frozen turbulence (ξ1 À 1) does not exist for pure compressible (potential)
motions. This is due to the fact that in free unbounded space the compressible chaotic
motions of type some eddy with many numbers of revolution do not exist. Every act of
compression and decompression looks like pure volume effect.

3 Results of calculation

First of all let us consider two limiting cases - pure incompressible (a = 1) and
pure compressible (a = 0) turbulence. In these cases the dimensionless diffusivities
D(ξ0) = (u0/p0)−1DT and D(ξ1) = (u1/p1)−1DT depend on one dimensionless pa-
rameter ξ0 or ξ1 ' ∆V/V ,respectively. For these limiting cases we have calculated
also the contribution D

(1)
T to turbulent diffusivity of four-order velocity correlators (by

assumption that the ensemble of realizations is Gaussian). For small values of ξ0 or
ξ1 the diffusivities (3) increase linearly : DT (ξ0) ' ξ0/3 and DT (ξ1) ' ξ1/3. Linear
increasing occurs up to ξ0 ' 1 for incompressible turbulence and up to ξ1 ' 0.5 for
pure compressible one. But later on the diffusivities D

(0)
T (ξ0) and D

(0)
T (ξ1) differ drasti-

cally. The D
(0)
T (ξ0) curve grows monotonic and near ξ0 ' 5− 10 reaches its maximum

value 0.622 (this is the limit of frozen turbulence).The contribution of four-order ve-
locity correlators grows from zero at ξ0 = 0 up to value ( -0.069) for ξ0 À 1. The
D

(0)
T (ξ1)-curve grows up to ξ1 = 1.4, where D

(0)
T = 0.235, and then begin decrease.

At ξ1 ' 3.7 it is equal to zero. For ξ1 > 3.7 the solution of DIA equation (1) gives
the negative values for turbulent diffusivity. The contribution of four-order velocity
correlators changes the situation. For ξ1 < 3.7 the D

(1)
T (ξ1) is negative and decreases

the value of total diffusivity ( DTmax = 0.169 at ξ1 = 0.9). At ξ1 = 3.7 the total
diffusivity is practically equal to zero (DT = D

(0)
T + D

(1)
T ' 0.002), but then the total
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diffusivity increases very rapidly (at ξ1 = 9 one has DT = 0.815 ). The D
(1)
T (ξ1) may

be considered as a small correction to DIA-value of DT only up to ξ1 ' ∆V/V ¿ 1
where it gives 25% of DIA value. The solutions of DIA-equation (1) become unstable
for ξ1 > 10. It seems that the real turbulent diffusivities DT (ξ1) correspond to the
values of parameter ξ1 ' ∆V/V ≤ 1 where DIA values of DT with correction D

(1)
T

give quite satisfactory exactness. For intermediate case it were calculated the dimen-
sionless diffusivities D

(0)
T (ξ, a, η,∆V/V ) = (u∗/p0)−1D

(0)
T for the values a = 0, 0.1, ...1,

η = p0/p1 = 0.5, 1, 2, 5 and ∆V/V ≡ ξ1 = 1, 1/3. The basic parameter ξ = u∗τ0p0

was taken in the interval 0 < ξ < 10. It was found that D
(0)
T (x, a, η,∆V/V ) depends

strongly on all the parameters. The obtained results allow to estimate the turbulent
diffusivities in very large interval of parameters. For ξ −→ 0 the diffusivity due to
incompressible motions tends to zero linearly and the total diffusivity is determined by
compressible motions only. Therefore, one has

DT (ξ = 0) = (p0/p1)
√

(1− a)DTcompr(ξ1 = ∆V/V ) (6)

The values of DTcompr(ξ) are due to pure compressible motions. For considered

cases ∆V/V = 1 and 1/3 one has D
(0)
Tcompr(1) = 0.22317 and D

(0)
Tcompr(1/3) = 0.10528.

For larger values of parameter ξ the total diffusivity is determined by both types of
motions. The calculations show that this diffusivity is less than the sum of diffusivities
of compressible and incompressible motions considered as independent ones. This is very
natural. Indeed,the existence of two types of motions makes the turbulence less regular
than by the acting some one of these motions and,as a result,the turbulent diffusivity
decreases. Let us give one characteristic example going out from our calculations: for
a = 0.5, ξ = 10 and η = 1, ∆V/V = 1 the decreasing consists of 25%.If η = 2
this difference is greater ' 35%. According to (6) for p0/p1 > 3 and ∆V/V = 1 the
constant (a = 0) diffusivity due to compressible motions will exceed the maximum value
(D(0)

T = 0.622u0/p0) of diffusivity due to incompressible motions.
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