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Abstract.
The nonlinear evolution of the Rayleigh-Taylor instability from multi-mode
initial perturbations is studied using a modal model, in which nonlinear
mode coupling and saturation are included in an equation for effective
modes that describe the mixed region. The importance of mode coupling
in the generation of large structure that dominates the late stage evolution,
and the relative importance of long-wavelength components in the initial
perturbation spectra on the late-stage evolution are studied. Multi-mode
RT instability in three dimensions is also studied by both full-scale sim-
ulations and the modal model. The effect and late-stage memory loss of
different aspect-ratios in the initial perturbation are demonstrated.

1 Introduction

The evolution of a multi-mode perturbation is quite different from the single mode
case: instead of a periodic array of bubbles rising at a constant velocity, the late stage
multi-mode bubble front penetration goes as h ∼ αgt2, where α = 0.04−0.06 [1, 5]. An
inverse cascade occurs, by which larger and larger structure is continually generated [1].
The fundamental mechanism responsible for the inverse cascade in RT mixing fronts

∗UA and DO thank the Laboratory of Laser Energetics for their hospitality and partial support. It is
a pleasure to thank S.W. Haan, B.A. Remington, M. Rosen and D.H. Sharp for stimulating discussions.

66



Shvarts, Alon, et al. 67

is mode competition caused by the reduced drag of large structures. In the absence
of a fixed single-mode periodicity, large structure expands and grows faster, sweeping
smaller neighbors downstream. This large structures production mechanism may be
viewed either as real-space bubble competition or wavenumber-space mode coupling
and saturation. The multimode RT mixing process can therefore be studied using
two, complementary, viewpoints: one approach, described elsewhere in this volume,
utilizes single-mode bubble and spike evolution, together with two-bubble competition,
as basic “particles” and ”pair-interactions” in a non-equilibrium statistical-mechanics
model of the mixing front [6, 2]; the other approach utilizes single-mode growth and
saturation, together with two-mode couplings, to arrive at an evolution equation for
effective modes that describe the mixed region. The modal approach is useful for
predicting the evolution of complex initial perturbations. It is briefly described here
and applied to RT mixing problems in 2 and 3 dimensions.

2 Modal model

The modal-model approach is based on analysis of the nonlinear coupling of modes that
describe the front structure. The Fourier decomposition of the interface at early times is
carried over to late times as a modal description of the mean mixing-zone structure. This
approach was pioneered by S.W. Haan [7] who proposed a modal model of the mixing
front, in which each of the initial modes grows exponentially with its linear growth rate,
until a saturation amplitude is reached. After a mode reaches its saturation amplitude,
its velocity is kept equal to the velocity at saturation. The saturation criterion for mode
k, applicable for a multi-mode case, is that the root mean squared (RMS) amplitude of
a narrow band near k (typically of order 0.1−0.5 k) reaches 0.1λ [7]. This is due to the
constructive interference of nearby modes, which enhances the local structure size and
causes earlier saturation than that of an isolated mode. As shown below, Haan’s model
adequately describes situations with a wide and continuous initial spectrum. However,
in situations where the initial long-wavelength modes have only very small amplitudes,
the inverse cascade is expected to correspond to long-wavelength modes generated by
nonlinear couplings between the short-wavelength modes. We thus present a modal
model that includes mode-coupling, which is an extension of Haan’s model. Here we
describe the model’s essential features, while a detailed presentation is given in Ref
[3]. The nonlinear interactions used are based on an equation of motion obtained by
expanding the flow equations to second order in the mode amplitudes [8]

Z̈k = γ2(k)Zk

+ Ak
∑

k2

[Z̈k2Zk′2(1− k̂2 · k̂) + Żk2Żk′2(1/2− k̂2 · k̂ − 1/2k̂2 · k̂′2)] (1)
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where k̂ = k/k is a unit vector, k′2 = k − k2 and γ(k) is the linear growth-rate.
This treats the first harmonic generation accurately, and all higher order couplings as
combinations of two-mode couplings. This equation was employed in a recent work
[8] to estimate the importance of mode-coupling in the early nonlinear stages. After
the early nonlinear stages, however, Eq. (1) displays a fast divergence. In order to
continue the analysis beyond the early stages, in the spirit of Haan’s original model
[9], the remaining nonlinear terms are effectively included in the present model through
saturation to a constant velocity. This may be viewed as a form of nonlinear closure.
A mode Zk is saturated when (

∑
|k−k′|<0.25k Z2

k′)
1/2 = 0.1 · 2π/k. For a mode with

no close neighbors this equation reduces to saturation at 0.1λ. The mode’s velocity is
Żk = ŻSAT

k when Zk > ZSAT
k , where ZSAT

k and ŻSAT
k are the mode’s amplitude and

velocity at saturation. The saturation applies both to modes in the initial spectrum,
and to modes generated via mode-coupling. In the present model, after a mode has
saturated, it ceases to participate in further mode-coupling. The phases of saturated
modes may, however, change at late stages, when they correspond to harmonics of
dominant long-wavelength modes. In this sense, the modes carry information relevant
to the mixed zone structure at early stages, when the interface is more-or-less single
valued, and at late stages when they represent either periodicities not much smaller
than the dominant modes, or harmonics of these modes.

In order to demonstrate the effects of the initial perturbation and the importance
of mode coupling in the instability evolution, we applied the model to initial spectra
with varying amplitudes of long-wavelength components. The case of very small initial
amplitudes, shown in Fig. 1, corresponds to the “classical” RT configuration [2, 8].
Thus, when all modes are still in their linear stage, the spectrum becomes dominated
by the high-k modes around the wavenumber of maximum linear growth kmax. These
modes later begin to generate low-k modes. In this case, the self-growth of the initial
long-wavelength modes becomes negligible compared to their seeding by mode coupling.
In Fig 1b, the mean wavenumber 〈k〉 and the standard deviation of the spectrum σ =
(〈k2〉−〈k〉2)1/2 are plotted. The inverse cascade to low k’s is seen. The spectrum width
increases at early times due to the generation of harmonics of the initial modes, and
at late times the spectrum approaches a scaled form with nearly constant σ/k. Haan’s
model [7] can not follow the mode-coupling induced inverse cascade in this case. On the
other hand, when the low k modes have a large initial amplitude, at the time that mode
coupling comes into play, they have already attained a significant amplitude through
their own single mode growth. This case, shown in Fig. 2, may correspond to optimized
ICF pellets, in which the acceleration time-scale is of the same order as the saturation
times [8]. For this case, Haan’s model [9] applies, and the spectrum cascade toward
low k’s is caused primarily by the sequential saturation of initial modes of increasing
wavelength. We note that in both cases the bubble front penetration goes as αgt2,
with α ≈ 0.06, suggesting that the dependence of α on the initial spectrum is not very
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Figure 1: 2D “classical” configuration. The initial spectrum considered is of the form
|Zk(0)/L2| = ε/(1 + η(kL2), where L is the domain width, and ε and η are dimensionless
parameters. Here ε = 3e − 20 and η = 1.5e − 5. The units used are typical of a rocket-rig
experiment L = 9cm and g = 3 ·104 cm/s2. (a) Spectra at t = 5, 10, 20, 45 ms, simulation (bold
full line), Haan’s model (dotted line) and present model (dashed line), saturation amplitude
(full line), (b) The mean wavenumber 〈k〉 (simulation- bold full line, present model - dashed
line, Haan’s model -full line), and the standard deviation of the spectrum.

strong.

3 3D Rayleigh-Taylor Instability

We now turn to the RT instability in 3D [10, 9]. Here we present preliminary results on
the instability evolution in 3D from initial spectra with varying degrees of anisotropy.
This complements studies that suggest that the initial anisotropy can affect the growth
of single-mode initial perturbations [11, 14]. We performed numerical simulations of
3D RT mixing using LEEOR-3D [12], a 3D version of the 2D code used above. The
simulated fluid region was of size 1 × 1 × 2 with free-slip boundaries, with a resolu-
tion of 48 × 48 × 96 cells. The interface between the fluids was at z=1, with A=1
and g=1. An initial velocity perturbation was imposed, as a sum of harmonic modes
with random phases of ±1 : u =

∑
u(kx, ky), where the z-component of u(kx, ky) is

|uz(kx, ky)| = u0(kx, ky)cos(kxx)cos(kyy)exp(−k|z|) with k =
√

k2
x + k2

y. We consider

first an isotropic spectrum, where u0(k) = a0exp[−(k − k0)2/σ2], i.e. a ring with a
Gaussian cross-section in k-space. In the present example, a0 = 1e − 3, k0 = 8π and
σ = 2π were used. The vertically integrated heavy fluid volume fraction is plotted in
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Figure 2: 2D ICF-like configuration, with initial spectrum parameters ε = 10−12 and η =
1.5 · 10−5. Units are typical of ICF applications, with L = 900 µm and g = 3 · 1015 cm/s2. (a)
Spectra at t = 5, 10, 20, 45 ns, simulation (bold full line), Haan’s model (dotted line), present
model (dashed line), saturation amplitude (full line). (b) 〈k〉 (simulation- bold full line, present
model - dashed line, Haan’s model -full line) and σ (simulation- bold dashed line, present model
- dot-dashed line).

Fig. 3 at several times. It is seen that initially, the perturbation is composed of ridges of
bubbles with contorted, worm-like shapes. These shapes have roughly the same mean
characteristic size, but have widely varying orientations and aspect ratios. At first,
these shapes grow in amplitude, and their tips become round. Bubble competition sets
in at around t = 2.0, with the larger bubbles rising faster and overtaking their smaller
neighbors. This is clearly seen in the smaller neighbors of the central bubble, which are
swept down-stream at t = 2.5−3.0. Finally, the front is dominated by a few very large,
rounded-tip bubbles. This illustrates a distinct 3D feature: the bubble shapes not only
grow in size, but also tend to become round [14, 15, 13]. This is plausible on the basis
of the principle that the structures seek the shape that minimizes the kinematic drag.
We applied a 3D version of the modal-model described above to this case. The model
spectra are shown in Fig 4(b). At early times the initial perturbation is seen, a ring in
k-space. Gradually, the ring becomes noisy, due to the generation of modes via non-
linear mode-coupling. Both short-wavelength (outside the ring) and long wavelength
(inside the ring) modes are generated. The ring fills in towards kx = ky = 0 (at the
center of the ring), corresponding to the generation of large structure. At late times, all
traces of the initial ring are wiped out, and the spectrum becomes increasingly peaked
towards lower k’s.
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Figure 3: 3D isotropic initial spectrum (ring). (a) Simulation results for the vertically integrated
heavy fluid volume fraction at t = 1, 2, 2.5, 3 (b) Modal-model spectra. The point kx = ky = 0
is at the center of the ring.
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Figure 4: 〈kx〉 and 〈ky〉 : simulation (from spectrum of vertically integrated volume fraction)
-bold full line, model- dashed line. (a) Isotropic case (Fig. 3), (b) Anisotropic case (Fig. 5)
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Figure 5: 3D anisotropic initial spectrum with ky = ±1, ±2 only. (a) Simulation results for the
vertically integrated heavy fluid volume fraction at t = 1, 2, 2.5, 3. (b) Modal-model spectra.

In order to quantitatively compare the model and the simulation, the first moments
of the spectrum are plotted in Fig 4(a). The mean wavenumber 〈kx〉 and 〈ky〉 initially
increase due to high-harmonic generation, and then decrease in time, due to the inverse
cascade process. At all times the spectrum is nearly isotropic, and 〈kx〉 ≈ 〈ky〉. It is
seen that the modal-model is in good agreement with the simulation results throughout
the evolution.

We now consider the evolution of an initial perturbation that consists of a very
anisotropic perturbation. The initial spectrum is a slice along the ky axis of the above
ring spectrum, containing modes with ky = ±1,±2 only. The interface from the sim-
ulation and the modal-model spectra are shown in Figs. 5(a)-(b). At early times, the
interface is perturbed in the shape of long strips roughly parallel to the x axis. The small
3D perturbation, added by the modes with small ky, introduces the long-wavelength
ripples and modulations of these strips. At t = 1.0, elongated bubbles have formed, and
most of the bubble competition is along the x-axis. The front behaves as a 2D front,
with competition along only one direction. Competition along the y-axis begins only at
late times. At the last time shown, t = 3.0, apart from traces of the y-axis modulation,
the front resembles the previous isotropic front, composed of large, rounded bubbles.
The initial anisotropy has been largely forgotten at late times. These effects are also
clearly seen in the modal-model spectra shown in Fig. 5(b) and in Fig. 4(b).
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