
Originally published in Proceedings of the Fifth International Workshop on
Compressible Turbulent Mixing, ed. R. Young, J. Glimm & B. Boston.
ISBN 9810229100, World Scientific (1996).

Reproduced with the permission of the publisher.

Physics of the Strong Shock

Richtmyer–Meshkov Instability∗

Ravi Samtaney1,2 and Daniel I. Meiron1

1 217-50, Applied Mathematics
Caltech, Pasadena, CA 91125

2 Graduate Aeronautical Laboratories
Caltech, Pasadena, CA 91125

Abstract. The Richtmyer-Meshkov instability is numerically investigated
for strong shocks i.e. for hypervelocity cases. To model the interaction
of the flow with non-equilibrium chemical effects typical of high-enthalpy
flows, the Lighthill-Freeman ideal dissociating gas model is employed. For
large Atwood numbers, dissociation causes significant changes in density
and temperature, but the change in growth of the perturbations is small.
A Mach number scaling for strong shocks is examined. A local analysis is
used to determine the initial baroclinic vorticity generation on positive and
negative Atwood number interfaces.

1 Introduction

Recently, the Richtmyer-Meshkov instability [5, 3] has been the subject of extensive
research, including laboratory experiments and numerical simulations [2]. Hitherto,
most investigations of the Richtmyer-Meshkov (RM) instability have been confined to
shocks of Mach number, M ≤ 4. In this paper, we present results for the case of
hypervelocity RM instability. The term “hypervelocity” is used in distinction with the
term “hypersonic”. Hypervelocity implies not only high Mach number but also large
velocities and therefore high total enthalpy. Thus, in hypervelocity RM instability, the
shocks are of strength sufficient to activate dissociation/recombination chemistry and
related gas-chemistry interactions.

2 Physical Parameters, Equations and Chemistry Model, and Numer-
ical Method

2.1 Physical Parameters

The physical domain is a two-dimensional rectangular shock tube of dimensions [xl, xr]×
[0, λ/2]. A vertical interface separating two gases is perturbed sinusoidally with wave-
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Figure 1: Schematic of the physical domain and parameters.

length λ ≡ 10cm, and initial amplitude A0 = 0.1λ (see Fig. 1). The interface used is
hydrogen-nitrogen (low-high acoustic impedance). The gases are initially in thermal
(T0 = Tb = 298 K) and mechanical equilibrium (p0 = pb = 0.1 atm). Although for
chemically active flows, the Mach number is an ill-defined quantity, for convenience we
define a Mach number by M ≡ U0/c0, where U0, c0 are the shock speed and the frozen
sound speed in the unshocked hydrogen. In fact, for T0 = Tb = 298 K the frozen and
equilibrium sound speeds are identical.

2.2 Equations and chemistry model

Consistent with previous studies of the RM instability, the governing equations of mo-
tion are the compressible Euler equations in two dimensions. In this paper we examine
two limits: (a) frozen (Damkohler number Ω = 0); and (b) equilibrium (Ω → ∞). For
Ω →∞, we assume that the equilibrium chemical reactions are adequately modeled by
the Lighthill Ideal Dissociating Gas (IDG) model ([1]). The law of mass action for the
IDG model is

α2
k

1− αk
=

ρd,k

ρk
exp

(−θd,k

T

)
. (1)

In Eq.(1), ρk is the density of the kth gas (k = 1, 2); αk is the mass fraction of the
monatomic constituent of the kth gas; θd,k is the dissociation temperature of the kth
gas, and ρd,k is the characteristic density. The IDG properties for hydrogen and nitrogen
are: ρd = 1800, 130000 kg/m3 and θd = 51900, 113200 K. Note that in the IDG model
the gas is always in a state of vibrational excitation which implies an incorrect limit of
the ratio of specific heats, γ → 4/3 at low temperatures.

2.3 Numerical method

The numerical method employed here is a second-order accurate Equilibrium Flux
Method (EFM) ([4]). For equilibrium chemistry computations, we employ operator
splitting, i.e. the hydrodynamical equations are solved and then the law of mass action
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Figure 2: Density contours for an M = 10 shock interaction with a H2−N2interface at t =
0.167, 0.88 for frozen (left column, ρ = (6.6, 122.0)) and equilibrium chemistry (right column,
ρ = (8.8, 220)).

(for Ω →∞, Eq. 1) for each gas is solved in every computational cell. The physical do-
main is subdivided into a uniform 2000×200 grid. A message-passing parallel code was
implemented on 512 node Intel Paragon which is a message-passing parallel machine,
and achieved roughly 1.4 GFlops performance.

3 Simulation Results

In this section we present results for a M = 10 shock interaction with a H2−N2 interface
perturbed sinusoidally with A0/λ = 0.1. For the results presented, the density, velocity,
time, and length are normalized by ρ0, c0, λ/c0 and λ respectively. Note that λ/c0 is
the time taken for an acoustic wave to travel one wavelength. The extent of physical
domain in the x-direction is [xl, xr] ≡ [−0.2λ, 4.8λ]. The first interaction between the
shock and the interface is the very rapid shock refraction process. In this case the
transmitted and the reflected waves are both shock waves. The transmitted shock
moves at a slower speed relative to the incident shock while the reflected shock moves
to the right in the laboratory frame of reference. In Figs. 2 and 3 density and vorticity
contours are shown at “early” and “late” times during the interaction. During the
refraction process, negative vorticity is generated due to baroclinicity. As the curved
reflected and transmitted shocks straighten, triple points form on the shock fronts
due to the nonlinear interactions. Associated with these triple points are shear layers
with positive vorticity. As time increases, these triple points traverse the reflected (or
transmitted) shock fronts and further reflections from the top and bottom boundaries
cause the appearance of shear layers (with alternating signs of vorticity). The contact
rolls up and gives rise to the familiar mushroom shaped morphology of the interface.
The bubble rapidly assumes a nearly flat shape. This implies that the growth of the
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Figure 3: Vorticity contours (dashed negative), ω = (−78, 78) for frozen (left column) and
equilibrium chemistry (right column).

perturbation is mostly due to the relative velocity of the intense spike. The main effect
of the endothermic dissociation reaction is to increase the gas density and lower the
temperature. The ratio of the peak density (temperature) in the equilibrium chemistry
to the frozen chemistry case is approximately 1.7 (0.4). The maximum dissociated
fraction of hydrogen (nitrogen) is about 20% (36%). At any instant, the growth rate
dA/dt is different for both cases while the amplitude A of the perturbation shows a very
small reduction due to dissociation (see Fig. 4). The growth rate given by the impulse
model ([5]) over-predicts the true growth rate significantly. In fact, no “linear” period
of growth is observed for this case or even for the case with A/λ = 0.01 (not shown).

The first slope change in the total circulation Γ and the total interfacial circulation
Γi, (see Fig. 5) occurs when the incident shock has completely traversed the interface.
The circulation at this point may be determined by means of a local analysis (see
Section 4). The circulation Γ shows strong variation with time due to the generation
of the shear layers as explained above. The interfacial circulation changes in large part
due to the strong compression waves interacting with the interface. At late times, the
difference in Γi in the two limiting cases is small.

3.1 Mach Number Scaling

Note that the hydrodynamic equations are invariant under the following transformation:

t → tM, p → p/M2, u → u/M, E → E/M2 (2)

It is also well-known that for high Mach number perfect gas flows that the pressure and
the velocity behind a shock scale quadratically and linearly in Mach number, M . We
expect that the above scaling hold for our cases and furthermore we are interested in
departure from the above scaling in the presence of chemistry.
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Figure 4: (a) Growth rate and (b) amplitude of the perturbation as a function of time. Eq:
Equilibrium, Fr: Frozen chemistry, and IM: Impulse Model. M = 10 shock; A0/λ = 0.1, H2−N2

interface.
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Figure 5: Total circulation Γ, and interfacial circulation Γi as a function of time. Γl is circulation
from a local analysis. M = 10 shock; A0/λ = 0.1, H2−N2 interface

In Fig. 6 the amplitude is plotted as a function of tM i.e. time scaled by the Mach
number of the shock for both the frozen and the equilibrium case.

4 Local Analysis

Consider a sawtooth perturbed interface inclined at an angle β0 to the plane of the
incident shock (Fig. 7). Extending previous work ([6]) for Ω = ∞ we obtain the solution
for small β0 in a small neighborhood of the node where all the waves meet.

For β0 = 30o and a H2−N2 interface the density and temperature behind the re-
flected and transmitted shocks and the vortex sheet strength for the equilibrium case,
normalized by the frozen case, are plotted in Fig. 8. The differences due to dissociation
occur at about M = 6. While the density and the temperature behind the reflected
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Figure 6: Amplitude of the perturbation as a function of scaled time (tM) for M = 5, 10, 15
shocks. The interface is a A0/λ = 0.1, H2−N2 interface. (a) Frozen flow. (b) Equilibrium flow.
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Figure 7: Schematic of a shock interaction with a sawtooth interface inclined at β0 to the plane
of the shock.
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Figure 8: Local solution for equilibrium dissociated flow normalized by the frozen solution.
Subscript ‘2’ (‘4’) are for values between the reflected (transmitted) wave and contact surface.
σ is the vortex sheet strength. β0 = 30◦, H2−N2 interface.

and the transmitted shock show appreciable differences due to dissociation, the change
in the vortex sheet strength is small. These observations are consistent with those
from the numerical simulations. For M > 15 all the diatomic species have dissociated
completely and the resulting gas behaves as a monatomic perfect gas. This causes the
reversal of the trends for the changes in density and temperature.

This analysis enables us to determine the initial baroclinic circulation generation on
a sinusoidal interface by integrating the vortex sheet strength over the original length
of the interface (see the horizontal curves in the circulation plot Fig. 5.

5 Conclusion

In this paper, we examined the effects of dissociation in the interaction of shocks with
density interfaces under hypervelocity conditions. For the high Atwood number inter-
faces examined, chemical effects reduce the growth of the perturbations. A local analysis
may be used to get the self-similar solution for weakly perturbed (small β0) sawtooth
interfaces. Furthermore, the local analysis shows that the change due to dissociation in
the primary baroclinic vorticity generation is small for high Atwood number interfaces.
A Mach number scaling was examined for strong shock cases. For the initial thermody-
namic conditions examined, use of equilibrium chemistry models appears appropriate.
The frozen limits will be achieved for extremely small, and hence impractical length
scales. As a result of this study, it is apparent that for very strong shocks the linear
regime of growth does not exist even for extremely small A0/λ ratios.
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