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Abstract. Single-mode experiments have been conducted on the Nova
laser to examine the effect of perturbation shape on ablation front Rayleigh-
Taylor growth. The perturbations investigated had the same magnitude
wave vector k = (k2 + k2)'/? and the same initial amplitude. The shapes
corresponded to 2D A = 50 pym, 3D square k;, = k,, and stretched k, = 3k,
perturbations. We observed that the 3D perturbations grew more than the
2D perturbation. Numerical simulations in 2D and 3D are in agreement,
showing the most symmetric modes growing the largest.

1 Introduction

Understanding the Rayleigh-Taylor (RT) instability is of critical importance to inertial
confinement fusion (ICF) because large RT growth on imploding capsules can degrade
implosion performance. In direct drive, non-uniformities in laser illumination imprint
non-uniformities onto the capsule pusher ablation front. In indirect drive, residual
capsule surface imperfections lead to perturbations at the ablation front. In both cases,
the ablation front is RT unstable and perturbations grow. In the linear regime, the
perturbation growth in the steady state is exponential,

n=ne" (1)

where 7 represents perturbation amplitude and the growth rate v can be written ap-
proximately as [1 2, [3]

1= ) " 2)
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Here g is acceleration, k = 27/ is perturbation wave vector, L is the density gradient
scale length, (§ is a constant between 1 and 3, and v, is ablation velocity. When
the perturbation spatial amplitude is non-negligible compared to its wavelength, the
RT evolution enters the nonlinear regime. For semi-infinite, incompressible fluids, the
bubble approaches its terminal velocity, corresponding to the buoyancy being exactly
balanced by kinematic drag [4, 5]. In this limit the bubble amplitude is just n(t) =
J updt, with bubble velocity

ug = a(g)\)l/2 (3)

where a = 0.23 in 2D and 0.36 in 3D, and we have assumed an Atwood number of 1
for simplicity. Notice that for the same perturbation wavelength (bubble diameter) A,
the bubble velocity is larger in 3D, since the kinematic drag per unit volume is less.

Perturbation growth is sensitive to perturbation shape. The transition to the non-
linear regime occurs approximately when the bubble velocity in the linear regime equals
the nonlinear terminal bubble velocity, namely, when jpear = Y7 = up. Since ugp is
larger in 3D than in 2D from Eq. 3| the transition to the nonlinear regime happens
later in 3D. Hence, in 3D the linear regime exponential growth phase lasts longer and
the asymptotic nonlinear growth rate is higher. Single-mode perturbations therefore
are expected to grow larger in 3D than the equivalent perturbation in 2D. This simple
qualitative picture is supported by 3rd order perturbation theory [6], recent work with a
potential flow model [5], and full numerical simulations [7,8,/9]. Until recently, however,
experiments in the ICF regime have been lacking due to their complexity. We present
here new results of an experimental and computational investigation of 2D versus 3D
single-mode perturbation growth at the ablation front in planar, indirectly driven foils
[10]. Recent advances in target fabrication [11] and diagnostic development [12] have
made this experiment possible.

The experimental configuration is shown in Fig. 1(a) and is described in more detail
elsewhere [13]. A 750 pm diameter, 60 pm thick CH(Br) planar foil (C50Hy7Bs,p =
1.26 g/ cm?’) is mounted across a diagnostic hole on a 3 mm long, 1.6 mm diameter gold
cylindrical Hohlraum. Eight of the 10 Nova laser beams [14] are used to generate a 3.3
ns low-adiabat, shaped drive, as shown in Fig.1(b). Two 3 ns square beams are delayed
relative to the drive and focused onto a Sc backlighter disk to generate 4.3 keV He-a
x-rays to back-illuminate the accelerating planar foil. Random phase plates with 5 mm
diameter hexagonal elements are inserted as the last optic in the two backlighter lasers
to generate a smooth 700 pm diameter x-ray spot. Typical timing of the backlighter
lasers relative to the drive lasers is illustrated in Fig. [I(b). On each laser shot, two-
dimensional gated x-ray images were obtained with a new flexible gated x-ray pinhole
camera [12]. Four pinhole images are obtained for each strip on the MCP, and the
inter-strip delay was set to 700 ps. The pinholes were filtered with 12.5 um of Ti to
eliminate higher energy backlighter x-rays such as from He-§ and He-v transitions in
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Figure 1: (a) The experimental configuration consists of a Au cylindrical Hohlraum with the
modulated CH(Br) foil mounted on the wall. The laser beams convert to x rays in the Hohlraum,
which ablatively accelerate the foil. Two additional laser beams generate backlighter x rays used
for in-flight diagnosis of the foil. (b) Power versus time of one of the eight 0.351 pum wavelength
drive laser beams (curves starting at t = 0) and one of the two 0.528 um wavelength backlighter
beams (curves starting at t = 2.4 ns).

Sc.

The foils were made using a new laser ablation technique to make molds in substrates
of either kapton or mylar [11]. We prepared perturbed foils all with the same magnitude
wave vector k = (k:%—l—ki)l/ 2 and nominally the same amplitude. The “2D” foil (1D wave
vector k = k,) was a simple A = 50 pm sinusoid with initial amplitude 7, = 2.5 ym. One
of the “3D” foils [2D wave vector k = (ky, ky)| corresponded to a “stretched” k, = 3k,
perturbation, and the other was a square k; = k, mode. Characterization of the three
foils was done using a contact radiography system, the resulting images of which are
shown in Fig. 2(a-c), and contact profilometry. The radiographs were converted to
spatial amplitudes using a step wedge of the same material, CH(Br). Images from the
Nova shots at 4.3 ns, which is near peak growth, are shown in Fig. 2(d-f). The gated
x-ray pinhole camera for these images was run at 8x magnification with 10 yum pinholes,
and 150 pym Be filtering. The backlighter was scandium at 4.3 keV.

Each image from the Nova shots is converted to In(exposure) x —OD = — [ prdz.
Hence, modulations in In(exposure) correspond to modulations in foil areal density.
The images are Fourier analyzed, and the amplitudes corresponding to the fundamen-
tal mode are extracted. For a purely experimental demonstration of the effects of
dimensionality on perturbation growth, we did three shots where the only change made



268 Single-Mode RT Ezxperiments in 2D and 3D

(a)

Figure 2: Contact radiographs of foils identical to those used in the Nova experiments are
shown in (a)-(c). The perturbations correspond to (a) 2D A = 50 pm,n, = 2.5 um, (b) 3D
ky = 3ky, Ay = 53 pm, Ay = 158 pm, 1, = 2.4 pum, and (¢) 3D k; = ky, Ay = Ay = 71 pm, 7, =
2.7 pm. The corresponding images from the Nova shots taken at 4.3 ns are shown in (d)-(f).

between shots was the target (2D A = 50 pm versus 3D k, = k, and k, = 3k,). The
total laser energy for these shots was similar, and the timing and filtering of the diag-
nostic were identical. The results for the evolution of the fundamental mode is shown
in Fig. 3(a). The k; = k, square 3D mode grows the largest, the A = 50 pm 2D mode
grows the least, and the k, = 3k, stretched 3D mode falls in between.

Shape effects on perturbation evolution can be examined under identical conditions
with computer simulations. This is shown in Fig. 3(b) using the new 3D radiation-
hydrodynamics code HYDRA [10]. The perturbations, in order of decreasing peak
growth, correspond to k, = ky, k, = 2k, k; = 3k,, and 2D A = 50 pm. Our simulations
clearly show that the most symmetric perturbations grow the largest, as has been
reported by others [6, 7, [§]. This is qualitatively in agreement with our experimental
observations; quantitative comparisons are currently underway.
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Figure 3: (a) Results of the evolution of the fundamental mode Fourier amplitude of In(exposure)
for the 3D k, = k, (solid circles), k, = 3k, (open diamonds), and 2D A = 50 um (solid squares)
perturbations. The connecting lines are meant only to guide the eye. Experimental conditions
were kept the same for theses shots to best illustrate the effect of shape on perturbation growth.
The diagnostic setup was the same as described in Fig. [1]. (b) Predicted Fourier amplitude
of In(exposure) from 3D simulations for the evolution of four different perturbation shapes all
with the same magnitude k = (k2 + kZ)l/ 2 wave vector, for drive conditions slightly different
from those of (a). The most symmetric (k, = k,) mode is predicted to grow the largest, the
2D A = 50 pm mode grows the least, and the 3D stretched cases fall in between, in agreement
with the experiments.
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