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Abstract. A new formula for the growth rate of the Richtmyer-Meshkov
instability is proposed in the framework of the impulsive model. It allows
us to predict the growth rate in heavy-light or light-heavy configurations.
This expression reduces to the Richtmyer or the Meyer & Blewett formulas
in specific cases. Extension to viscous flows has also been carried out.
Comparisons are performed against numerical simulations.

1 Introduction

When two materials are impulsively accelerated into each other by a shock wave, small
perturbations of the interface grow, first linearly and then into nonlinear structures.
Under some circumstances, these nonlinear structures evolve towards a turbulent state.
In a simplified picture of turbulence, the turbulent energy cascades up to a wavenumber
small enough so that the dissipation acts. On the contrary, the behavior of the large
scales is usually inviscid. The problem described above is a Rayleigh-Taylor (RT) type
instability. It was discovered and analyzed by Richtmyer [1], and confirmed experimen-
tally by Meshkov [2]. Richtmyer first established [1] a formula that gives the growth
rate of the instability during its linear phase. It reads

da

dt
= k [u] A+

t a(0+), (1)

where a is the amplitude of the perturbation, k its wavenumber, [u] the velocity
jump across the shock wave, a(0+) the amplitude immediately after the shock passage
and A+

t the Atwood number after the interaction. The expression (1) gives relatively
good results for light to heavy accelerations. For heavy to light acceleration, Meyer &
Blewett found, on empirical grounds, that the term a(0+) in Eq.(1) has to be replaced
by (a(0−) + a(0+))/2 where a(0−) is the preshock amplitude [3]. A more sophisticated
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approach has been proposed by Fraley [4] and used by Mikaelian [5]. Recently, Yang
et al. compared Richtmyer’s impulsive model to a small amplitude theory and noticed
disagreement between the two [6].

In this paper, we present a new formula for the growth rate of the Richtmyer-
Meshkov (RM) instability in the framework of the impulsive model. It allows us to
predict the growth rate in heavy-light or light-heavy configurations, as long as com-
pressibility effects are weak. This formula is first applied to inviscid flows and then
generalized to viscous mixing flows with diffusion between species. Both formulas have
been validated against numerical simulations performed with the code CADMEE [7].

2 Inviscid Richtmyer’s model revisited

2.1 Derivation of the model

The linear analysis of the RT instability gives the differential equation for the amplitude
of a perturbation in inviscid, incompressible fluids,

d2a

dt2
= kgAta(t), (2)

where g is the acceleration. The RM instability, which is characterized by a jump
velocity [u] of the interface imparted by the shock, is usually treated by the impulsive
model [1]. In this approach, the shock is considered as an instantaneous acceleration
of incompressible fluids, i.e., replacing g in Eq.(2) by [u]δ(t) where δ(t) is the Dirac
function. However, it appears an ambiguity in the initial conditions. Richtmyer’s recipe
is to choose a(0) and At after the shock passage. If we model the temporal evolutions
of the amplitude and the Atwood number during the shock passage, we can obtain the
following formula for the RM instability growth rate:

da(t)
dt

=
1
2

(
a(0−)A−t + a(0+)A+

t

)
k [u] . (3)

In situations where a(0−)A−t ≈ a(0+)A+
t , we find Richtmyer’s classical result given by

Eq.(1). In situations where the Atwood numbers, before and after the interaction, are
very close to each other, i.e., A−t ≈ A+

t , Eq.(3) reduces to Meyer & Blewett’s result.

2.2 Numerical results

Two configurations helium/air and air/helium, borrowed from Ref.[3], were simulated.
It turns out that Richtmyer’s formula and Meyer & Blewett’s recipe are in good agree-
ment with the simulations for the light-heavy and the heavy-light configurations, re-
spectively. However, let us note that in the heavy-light configuration, the Atwood
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Figure 1: (a) Evolution of the perturbation amplitude a(t) versus time for the heavy-light
CO2/argon configuration (run 1 in Table 1). Crosses correspond to values obtained from sim-
ulation. The formula proposed in this paper (bold line) agrees much better than Meyer &
Blewett’s result (line). (b) Same curves as in (a), for the light-heavy argon/XX configuration
(run 2 in Table 1). As in (a), the formula proposed in this paper (bold line) agrees much better
than Richtmyer’s result (line).

number does not vary across the shock wave. For the light-heavy situation, this is the
product aAt that does not vary. In both cases, Eq.(3) gives good values of the growth
rate. Other configurations have been designed to enhance differences between classical
expressions and the new formula (3). Here, we present two of them. The incident
shock Mach number is equal to 1.6. The wavelength and the initial amplitude of the
perturbation are: λ = 6.283 cm and a(0−) = 0.8 cm. The first one is a CO2/Ar case
to compare with Meyer & Blewett’s prescription (see Fig.(1a)). The other one is an
Ar/XX case, where XX is a fictitious gas, (γ = 1.9, M = 44 g/mol) and Richtmyer’s
formula should apply (see Fig.(1b)). In Table 1, the different growth rates and the
parameters

(
A−t /A+

t

)
and

(
a(0−)A−t /a(0+)A+

t

)
are given.

It can be verified that when the Atwood number is not constant, Meyer & Blewett’s
growth rate is far from the one given by the simulation, even for a heavy-light configura-
tion. In the same way, when the product aAt is not constant, Richtmyer’s prescription
fails to give the good result for the light-heavy case. On the other hand, Eq.(3) is in good
agreement with CADMEE simulations, whatever the studied configuration (light-heavy
or heavy-light) is. Comparisons with Yang et al.’s theory consolidate this conclusion:
formula (3) gives good results provided that the shock strength is not too large and the
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run da/dt da/dt da/dt da/dt A−t /A+
t

a(0−)A−t
a(0+)A+

t

CADMEE M&B Richtmyer Eq.(3)
1 −9 −18.6 (−12.1) −10.3 0.337 0.7
2 3.5 (0.59) 0.43 4.44 11.25 19.9

Table 1: Growth rates of the runs, given by the code CADMEE, Meyer & Blewett, Richtmyer
and the formula (10). Brackets indicate situations where the corresponding formula does not
apply.

two γ not too different, i.e in incompressible flows.

3 Extension to viscous flows

3.1 The linear Rayleigh-Taylor instability theory

The growth rate of the RT instability in presence of viscosity [8] and diffusion [9] is
given by the expression:

n = (
Atgk

Ψ
+ ν2k4)1/2 − (ν + D)k2. (4)

where Ψ = Ψ(α, At) with α = (kl)−1 and l = 2(Dt)1/2. The kinematic viscosity ν is
equal to (µ2 + µ1)/(ρ2 + ρ1) and D is the diffusion coefficient.

3.2 Generalization to the Richtmyer-Meshkov instability

As it was done in the inviscid case, the relation of dispersion (4) can be generalized to
the RM instability. We have to solve the differential equation:

d2a

dt2
+ 2(ν + D)k2 da

dt
+

[
D(D + ν)k4 − Atgk

Ψ

]
a = 0, (5)

where Ψ is supposed to be constant and where g is replaced by [u]δε(t) as in the inviscid
case. The solution of this equation is, for t ≥ ε:

a(t) =
[
a1 + (a(ε)− a1)e−2νk2(t−ε)

]
e−Dk2(t−ε)

a1 = a(0−) + a(0+)− a(ε) +
[u]

4νkΨ

(
a(0−)A−t + a(0+)A+

t

)
(6)

+
D

2ν

[
2 (a(0−) + a(0+)− a(ε))− a(ε)− (2ν + D) k2ε (a(0−) + a(0+))

]
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Figure 2: (a) Evolution of the amplitude of a perturbation for λ = 10 cm, with and without
viscosity. The points correspond to the simulations and the full lines to the models. (b)
Dispersion curve, at a given time. Each symbol is the result of a numerical simulation and the
full lines correspond to the models.

3.3 Theory and numerical simulation comparisons

To assess the effects of molecular viscosity and diffusion, we compared the solutions
given by formula (6) with the results of numerical simulations on air/helium shock tube
flow at Mach 1.5. The initial amplitude of the interface perturbation is 2 mm peak to
peak and we consider several values for the wavelength λ. To avoid too long runs, the
values of the viscosity and diffusion coefficients have been multiplied by 104.

- Viscosity effects: Fig.(2a) presents the evolution of the perturbation amplitude
a(t) when λ = 10 cm, with and without viscosity. These curves show that there is a
good agreement between the simulations (points) and the theory (lines), in both cases.
Others simulations were performed with several values of the perturbation wavelength.
Here again, we note that the expression (6) fits well the simulation results. Fig.(2b)
presents the variation of the growth rate versus the wavelength, at a given time when
all perturbations are still in linear phase. As we can see in Fig.(2b) there is a very satis-
factory agreement between the model proposed in Eq.(6) and the numerical approach.
In this figure, we also mentioned the straight line corresponding to the perturbation
growth rate without viscosity. These curves clearly show that the main effect of viscosity
is to attenuate the growth rate of the perturbations.

- Diffusion effects: we also compared the diffusive model given by Eq.(6) with nu-
merical simulations. We verified that theoretical and numerical results agree. This
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work will be reported in a forthcoming paper.

4 RM Instability with a Multimode Interface

In order to understand physical phenomena involved in shock tube mix experiments,
three preliminary simulations have been performed with the code CADMEE. A multi-
mode interface is accelerated by a 1.4 Mach number shock wave moving from xenon to
air, as in the experiments carried out in the shock tube laboratory at Vaujours. The
characteristics of these three runs are summarized in Table 2.

Fig.(3) shows the xenon concentration contour plots at three different times. These
contour plots are used to calculate the mixing zone width. Fig.(4a) displays the evo-
lution versus time of the mixing zone. The compression due to the interaction of the
shock wave with the mixing zone can be seen. The mixing zone width obtained from
the coarse run is at any time larger than those obtained from the two other simulations.
This is principally due to the initial amplitudes of the perturbation ( 8.5mm for the
coarse run and only 2mm and 2.5mm for the medium and the fine runs respectively).
The evolution of the average vorticity in the mixing zone is displayed in Fig.(4). We
clearly see the strong generation of vorticity at each interaction with a reshock. The
important result is that the medium and fine runs converge when the number of zones
is increased. This point may be seen in the evolution of the mixing zone and in the
average vorticity. The differences in the maxima of vorticity at each reshock may be
partially due to different temporal resolutions.

5 Conclusion

A new formula for the growth rate of the RM instability is proposed within the incom-
pressible inviscid impulsive model. It reconciles all the recipes available in the literature
for inviscid flows. It has been validated against numerical simulations. This formula
holds for shock strength not too large and γ not too different. Richtmyer’s and Meyer &
Blewett’s prescriptions appear to be particular cases of this new formula. The success
of these recipes is due to the fact that either the Atwood number or the product aAt

run number zone initial initial
of zones sizes(mm2) amplitude(mm) wavelengths(mm)

coarse 144000 1× 0.25 a = 2. 3.5, 3, 2.5, 2
medium 236800 0.5× 0.25 a = 0.5 3.5, 3, 2.5, 2, 1

fine 551000 0.35× 0.25 0.3 ≤ a ≤ 0.4 3.5, 3, 2.5, 2, 1, 0.64

Table 2: Characteristics of the three multimode calculations.
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Figure 3: Contour plots of the concentration at: (a)t = 0, (b) t = 1 µs and (c) t = 1.7 µs. Two
isovalues are displayed. c = 95% on the left and c = 5% on the right.
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Figure 4: (a) Evolution of the mixing zone width versus time. The medium and fine runs are
almost converged. Note the compression of the mixing zone at each reshock. (b) Evolution of
the average vorticity in the mixing zone versus time. The quantity increases at each reshock on
a very short time scale.
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were fortunately time-independent. Extension to viscous flows has also been achieved.
Comparisons with numerical simulations show a remarkable agreement. Preliminary
high-resolution calculations of the RM instability with a multimode interface have also
been presented.
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