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Abstract. We present analytical and numerical studies of the RM insta-
bility in finite- thickness fluid layers for which experimental data has been
recently available.

1 Introduction

We present analytical and numerical studies of the RM instability in finite-thickness
fluid layers for which experimental data has been recently available.[1] They involve a
layer (gas curtain) of SF6 driven in a shock-tube, an A/B/A configuration for which we
had derived an analytic expression[2]

η1(τ) = η1(0) +
∆vΓ2

cos(θ)
[η1(0)− sin(θ)η2(0)] τ, (1)

η2(τ) = η2(0) +
∆vΓ2

cos(θ)
[η2(0)− sin(θ)η1(0)] τ. (2)

Here τ stands for time and η1 and η2 refer to the first and second interface perturbations
which are shocked in that order; i.e., interface 1 is the upstream side of layer B and
interface 2 is its downstream side. The definitions of the other quantities are given in
Ref. [2].

Three different patterns were observed in the experiments: “sinuous” (S for short),
“upstream mushroom” (UM), and “downstream mushroom” (DM). S is found to result
from varicose (V) initial conditions which, in our notation, can be described as η1(0) =
−η2(0). UM is found to result from η2(0) = 0, and DM results from η1(0) = 0.

Equations 1,2 were derived by applying Richtmyer’s technique to a finite-thickness
fluid layer. The form of Eq. 1,2 is enough to explain qualitatively the behavior described
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Figure 1: Evolution of S, UM, and DM in SF6 gas curtains calculated from Equations 1,2.

above: When η1(0) = −η2(0) (initially varicose or V) we have η̇1 = η̇2 for any value of
sin(θ) or Γ2. This implies that the initial perturbations will evolve into an S pattern.
When η2(0) = 0 we have η̇2 = sin(θ)η̇1 which implies that as η1 grows so will η2 with
the same sign, albeit slower. Similarly, when η1(0) = 0 we have η̇1 = sin(θ)η̇2 which
implies that as η2 grows so will η1, slower but again with the same sign. The last two
cases describe the early stages of UM and DM respectively. In Fig. 1 we plot the above
three cases using Eq. 1,2. Details can be found in Ref. [3].

We now turn to numerical simulations with Livermore’s two-dimensional hydrocode
CALE. A Mach 1.2 shock in air drives an SF6 layer with density perturbations at one or
both interfaces. To compare with the experimental results we show in Fig. 2 the initial
configurations and the late time configurations for all three cases discussed above. The
times for the late snapshots were chosen following Fig. 1 of Ref. [1], with which our
Fig. 2 must be compared. Clearly, there is very good agreement with the experimental
results.

We have not yet discussed a fourth and perhaps most natural and interesting case:
η1(0) = η2(0), i.e., an initially sinuous configuration. Just as Eq. 1,2 implied that
V → S, it also implies that S → V, a conclusion which can again be deduced purely
from the form of Eq. 1,2 because when η1(0) = η2(0) we have η̇1 = −η̇2 for all θ and
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Figure 2: CALE calculations of the SF6 gas curtain experiments reported in Ref. [1].

Γ2. This is the one case where the growth rates have opposite sign.
Experiments with an initially sinuous configuration have not been performed. Our

predictions for such experiments are shown in Fig. 3 for both an SF6 and a Helium gas
curtain. We see that opposite mushrooms (OM) develop for both gases. Note that the
Helium case is shifted by λ/2 relative to the SF6 case (the same happens with S, DM,
and UM configurations) and indeed Equations 1,2 can be used to evolve the Helium
case analytically and explain the shift of the pattern by λ/2 (See Ref. [3]).

In conclusion, Eq. 1,2 can be used to understand analytically, but not quantitatively,
the evolution seen in the experiments and to predict new patterns associated with new
initial configurations. Full code calculations are necessary to account for nonlinearity,
compressibility, and density gradients, elements missing from Eq. 1,2. Our code calcu-
lations (Fig. 2) agree well with the experiments. A new pattern, OM, is predicted to
evolve from initially sinuous SF6 or Helium layers (Fig. 3). Code calculations for other
configurations, including reshock, are given in Ref. [3]. We hope these predictions can
be verified in future experiments.
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Figure 3: CALE predictions for the evolution of SF6 (upper row) and helium (lower row) gas
curtains into opposite mushrooms (OM).
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