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Abstract. This paper presents a description of 2D and 3D Euler code
“NUT” which is intended for numerical modeling of hydrodynamic in-
stabilities (Rayleigh-Taylor [1, 2] and Richtmyer-Meshkov [3] instabili-
ties). The results obtained for a number of the instability modeling
problems are presented. The comparison with the experiment made at
G. M. Krzhizhanovsky Power Institute, Moscow is also given.

1 Introduction

The Richtmyer-Meshkov instability (RMI) develops near contact boundaries when a
shock wave comes through the disturbed interface between two gases. The numerical
modeling of RMI is presented for 2D and 3D contact boundary perturbations.

2 Short Description of the NUT Code

To describe physical processes in the shock tube there has been used a model of non-
viscous non-heat-conduction ideal gas which is presented by a system of Euler equations.
In vector form, it may be written as follows:

∂U
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= 0 (1)

∗The authors are grateful to S. G. Zaytsev and his colleagues who participated in the discussion of
the calculation results, and made available the results of their shock tube experiments for comparison
with the our data.
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The system is closed by the equation

p = (γ − 1)ερ. (2)

Here, ρ is the density, u, v, w the components of the velocity V ; ε the specific internal
energy per unit volume, p the pressure, and γ the adiabatic index.

To approximate the system of gas-dynamic equations, we propose using a nonlinear
conservative quasi-monotonic explicit difference scheme of a high order of accuracy
(analogous schemes for 2D codes have been considered in [4]). The boundary conditions
in this scheme are given according to the law: x = 0, x = L, then u = −u (reflection
condition). The shock wave moves along the Z-axis, z = Zbdry, the parameters of the
shock wave and shocked gas are calculated from the given Mach number and unshocked
gas density and pressure.

The heat conductivity process is described by the following equation:
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where T is the temperature, Cv the heat capacity at constant volume, and κ is the heat
conductivity coefficient. The effect of thermal conductivity is very important for the
modeling of laser plasma phenomena (see Section 4). The solution of this equation is
obtained by means of the local one dimensional approximation method. We solved it
using an implicit scheme and the marching method.

3 Modeling of the Richtmyer-Meshkov Instability. Comparison with
the Shock Tube Experiment

By using the NUT code, we have performed a series of simulations modeling shock
tube experiments made at G. M. Krzhizhanovsky Power Institute Moscow [5]. We
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(a) (b)

Figure 1: Density peaks near the Ar-Xe contact boundary after the transmission of the shock
wave, (a) the grid 20× 250, (b) the grid 40× 500 (the first figure denotes the number of knots
in the transverse direction, the second one in the longitudinal direction).

have modeled the development of a perturbation of the contact boundary between two
gases (argon and xenon) when the shock wave with the velocity corresponding to Mach
number of 3.5 is passing through (i.e. the shock wave velocity is equal to 3.5 of the
sound velocity in the given medium). The first calculation was done in a 2D geometry,
with initial sinusoidal perturbation of wavelength λ = 24mm, and amplitude a0 = 5mm
(the distance from the bottom to the top of a spike is 10 mm). The initial pressure
was equal to 0.5 atm. The calculations of the contact boundary perturbation were
performed by making use of different grids. It was shown that as soon as the number
of grid nodes in the form of the “mushroom-like perturbations” increases there appear
so called “additional details”, so one is able to simulate small-scale perturbations. The
temporal dependence of the amplitude growth is practically the same for the 20× 250
and 40× 500 grids. Figure 1 illustrates the shape of perturbation contact boundary at
t = 170 mks obtained with the 20× 250 and 40× 500 grids.

In the next test, we compared our results with the results of the other group from
the Moscow Institute of Physics and Technology [6]. Figure 2a illustrated the growth
of perturbations of the contact boundary between Helium and Xenon gases. The initial
pressure was 0.5 barr, Mach number 2.5, and initial disturbance wavelength 8 mm.
We have obtained good agreement in the speed of the perturbation growth. Figure 2b
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(a) (b)

Figure 2: (a) The comparison of perturbation speed growth. Series 1–NUT, Series 2–MPTI,
p0 = 0.5 barr, Mx = 2.5. (b) The contact boundary perturbation amplitude growth versus the
time for the wavelength λ = 36 mm and λ = 18 mm. The “cross” denotes the perturbation
amplitude obtained in the shock tube experiments for the case λ = 36 mm.

shows the calculated growth of the amplitude (here and hereafter an “amplitude” means
the distance from the “bottom” to the “top of the spike” of the contact boundary) for
different perturbation wavelengths. The calculations showed good agreement between
the amplitude growth velocity and the experimental data.

The experimental data were obtained at the G. M. Krzhizhanovsky Power Institute.
Moreover, it is possible to reproduce the form of the perturbation at the nonlinear stage
of the instability development (a so-called “mushroom”-like structure) [5]. Figure 3
illustrates the form of the contact boundary at time t = 100 mks obtained by experiment
(a) and in the calculation (b).

A series of 3D experiments have been carried out. The initial perturbation of the
contact boundary (argon-xenon) had the form:

Zpert
c = Z0

c + a0 cos(kxx) cos(kyy)

where a0 = 5 mm, kx = 2π/λx, ky = 2π/λy, λx = λy = 36 mm. An incident shock wave
was propagating along the axis Z, and its velocity corresponded to the Mach number
of 3.5. As follows from [1], at a linear stage the perturbations in 2D and 3D geometry
have the same velocity provided the following condition is fulfilled:

k2D = 2π/λ2D = k3D =
√

(2π/λx)2 + (2π/λy)2
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(a) (b)

Figure 3: (a) The experimental data borrowed from [5]. (b) The isodensity lines obtained in
the calculation at the same moment, t = 100 ms for λ = 24 mm.

wherefrom λ3D =
√

2λ2D, if λx = λy = λ2D.
From this follows that in 3D geometry, the perturbations with λ3D = 36 mm should

be compared to the 2D perturbations with λ2D ≈ 24 mm. Figure 4 shows the growth
of the perturbation amplitudes for both 3D and 2D geometries. It is seen that at the
nonlinear state (ka > 3, where k is the wave number and a the current amplitude) the
perturbations in 2D grow more slowly. This may be explained by the fact that, due to
the growth of Kelvin-Helmholtz instability near the top of the spike, the processes of the
vortex structure formation and the “blurring” of such a spike are faster (see e.g. [7]).
In order to investigate the influence of the period on the development and formation of
the vortex structures, we have performed a calculation of the Ar-Xe contact boundary
perturbation development in the case where

1. initial perturbation is the sinusoid with wavelength λ = 24 mm;

2. the calculated region of the X axis is twice as high and the initial perturbation
has the form:

Zc(x, y) =

{
Z0 + a0 cos(kxx), if 0 ≤ x ≤ λx/2;
0, if λx/2 ≤ x ≤ λx,
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Figure 4: The contact boundary perturbation amplitude growth versus time for 3D perturbation
(λ = 36 mm) and 2D perturbation (λ = 24 mm).

that is, “an absolutely elastic wall” (i.e. u = −u) is placed at x = λ = 24 mm;

3. the case of “free flow through a wall” (du/dx = 0, at x = λ/2). The dependence
of the perturbation amplitude growth is close to that which is observed when the
“wall” is located at the point x = λ/2, but there are some differences.

The shape of the perturbation (second case) at time t = 170 mks, is shown in
Fig. 5a, while Fig. 5b illustrates the amplitude development of the contact boundary
corresponding to all three cases. One can see that “solitary perturbation” has a bigger
amplitude at t = 200 mks.

Together with professor S. G. Zaitsev’s group from Krzhizhanovsky Power Institute,
we have studied the problem of two wave perturbation interaction at the RMI. Now we
are demonstrating the first results of such simulations. We calculated until two variants
for the case of He-Xe interface, initial pressure 0.5 barr, Mach number 2.5 (Figure 6a,b):
1) λ1 = 18 mm, a0

1 = 10 mm, and λ2 = 9 mm, a0
2 = 5 mm with the distance between

the tops 0.5(λ1 + λ2); 2) λ1 = 18 mm, a0
1 = 10 mm, and λ2 = 9 mm, a0

2 = 5 mm, but
the distance between the tops is 1.5λ1 + 0.5λ2.

One can see the development of perturbations in variant 1 and variant 2. The speed
of perturbation growth in variant 1 is bigger than in variant 2 (Figure 6c).
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(a) (b)

Figure 5: (a) The density isolines near the Ar-Xe contact boundary for the case of a “soli-
tary perturbation (case 2) λ = 24 mm, a0 = 5 mm. (b) The contact boundary perturbation
amplitude growth for the cases 1. an elastic wall at x = 12 mm, 2. “distant elastic wall” at
x = 24 mm, 3. the boundary conditions of the “free flow through a wall”.

4 Richtmyer-Meshkov Instability in a Laser Target

In contrast to the shock-wave experiments, the development of instabilities in laser
targets is essentially influenced by the electron heat conductivity. The heat conductivity
process is described by equation (3). A one-temperature approximation that is true in
the dense compressed target (where the electron-ion exchange time is small due to high
plasma density) is considered.

In order to calculate the development of perturbations in the target we used, as
the initial data, the 2D Lagrangian code “Atlant” [8]. Note that most of the La-
grangian codes used in the target compression calculations would not allow us to ob-
tain a “mushroom-like” structure at the contact boundary, due to a strong deformation
of the calculation cells. Figure 7a illustrates a dependence of the “shell-fuel” contact
boundary velocity on the time of the shell, and Figure 7b demonstrates a distribution
of the plasma density on the radius by the moment of the retardation.

In order to calculate this problem using the NUT code, we have set three subregions.

1. The first subregion with the DT fuel of density ρF = 0.05g/cm3.
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(a)

(b)

(c)

Figure 6: (a), (b) The development of the two wave perturbation for variant 1 and variant 2
(He-Xe, M = 2.5). (c) The contact boundary perturbation amplitude growth for variant 1 and
variant 2.
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(a) (b)

Figure 7: (a) The dependence of the shell-fuel contact boundary velocity on the time obtained
by the “Atlant” code. (b) The distribution of the shell plasma density versus the radius at the
beginning of retardation.

2. The second subregion with the unevaporated part of a shell. The averaged density
and the region thickness were varied in the calculations so as to obtain ρSL =
10g/cm3.

3. The third region is the corona. In the calculations, the values of the average
corona density were ρC = 3mg/cm3 and ρC = 150mg/cm3.

The initial temperature in the corona was equal, respectively, to 1 keV and 0.02 keV.
The temperature in the subregions I and II was calculated so as to make the pressure
at t = 0 constant within the whole region. The shock wave moved from the DT fuel to
the shell with a relative velocity of 250 km/s (in one of the variants, 500 km/s).

5 The analysis of the calculation results

We performed 2D calculations of the “shell-fuel” contact boundary perturbation for
different wavelength of λ = 5 mkm, 10 mkm, 20 mkm, and the initial amplitude a0 =
2 mkm. The behavior of the instability is strongly affected by the heat conductivity.
First, the heat flow from the corona to the shell leads to the formation of a shock wave
moving from the corona to the DT fuel towards the first shock wave, which moves from
the DT to the shell. As a result, we obtain the density and temperature profiles which
are different from those which had emerged in the calculations without heat conductivity
(Figure 8). Second, the heat conductivity leads to a “blow-up” of the vortex structure
near the top of the spike, so that in variant I (where ρS = 0.1g/cm3, ρC = 3mg/cm3,
and the shock wave velocity is w = 500km/s), the “mushroom-like structure” was
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(a) (b)

Figure 8: (a) The plasma density isolines near the “shell-fuel” and the “shell-corona” contact
boundaries at t = 0.4 ns, (from the moment of the shock wave transmission through the first
contact boundary) in the case without heat conductivity. (b) The plasma density isolines near
the contact boundaries at t = 0.4 ns in the case with heat conductivity.

never formed, while in the case without heat conductivity it was clearly observed.
We performed calculations with w = 250km/s, but with a higher density of the shell
(variant 2: ρS = 0.2g/cm3, variant 3: ρS = 0.8g/cm3, variant 4: ρS = 0.8g/cm3,
ρC = 150mg/cm3).

In variant 4, the corona density was increased, and the temperature, correspond-
ingly, was decreased. As a result, the heat flow from the corona toward the shell had
been suppressed. The above calculations were made on a grid of 10× 400.

Variant 3 was repeated on a grid of 20×800. The results obtained were close to those
derived on a 10× 400 grid, that is, the hydrodynamic processes with the conductivity
can be simulated with satisfactory accuracy on the given grids. Figure 8 illustrates the
isolines of the shell density at t = 0.063 ns and t = 0.237 ns without heat conductivity.
Figure 8b shows the density isolines in the shell. The calculation was done with the
allowance of the heat conductivity effect.
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6 Conclusion

1. The NUT code allows one to numerically model the development of such compli-
cated phenomena as the Richtmyer-Meshkov instability up to its nonlinear stage,
when there occurs the vortex structures, the destruction of fluxes, and the forma-
tion of turbulent mixing zones. The comparison of numerical calculations with the
results from the shock tube experiments has demonstrated good agreement of the
amplitude growth velocity and the shape of the contact boundary perturbation.

2. The development of instability at the “shell-fuel” contact boundary has some
peculiar features in the high-temperature plasma of the laser targets. They are
due to the influence of a nonlinear heat conductivity. The heat flow at high
temperature of the fuel, can reduce the velocity of the perturbation development.
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