Originally published in Proceedings of the Fifth International Workshop on Compressible Turbulent Mixing, ed. R. Young, J. Glimm & B. Boston. ISBN 9810229100, World Scientific (1996).

Reproduced with the permission of the publisher.

Stability of Point Blast Wave in Gas with Density Having Power Dependence on Radius

V. M. Ktitorov

Russia Federal Nuclear Center Institute of Experimental Physics Arzamas-16, Nizhegorodsky region, Russia, 607200

1 Introduction

The instability of point (Sedov) blast wave propagating through a uniform perfect gas with low adiabatic index γ ($\gamma < \gamma_0 = 1.20$) was shown earlier theoretically in [1, 2, 3]. Later on [4] the experimental proof of this result was obtained so there are reasons to apply technique improved in [1] to other similar cases. The case of blast wave in non-uniform density gas (initial density ρ_0 is a power function of radius ($\rho_0 \sim r^k$) is considered in this paper. According to [1] stability is considered in respect to small (linear) perturbations expanded in spherical harmonics $Y_{nm}(\chi, \varphi)$, components of expansion being represented in self-similar form (only the case of m = 0 is considered):

$$f(t,\xi,\chi) = \sum_{n=0}^{\infty} t^{\lambda} f_n(z) \times Y_n(\chi), \qquad (1)$$

where $\lambda = \lambda(n)$ - complex index, ξ - Lagrange radius, R - shock wave front radius $(R \sim t^{\frac{2}{k+5}}), z = \xi/R$ - self-similar argument.

The considered self-similar functions describe an asymptotic mode of perturbations development corresponding to large time values (much higher than those needed for sound wave crossing an explosion area). In this case :

- perturbations are independent on initial conditions;

- front values perturbations (for example, front radius perturbation R_1 have power time dependence ($R_1 \sim t^{(\lambda+1)\frac{2}{k+5}}$ or $\frac{R_1}{R} \sim R^{\lambda}$).

It is natural to suggest that pressure in the explosion center has no divergences and hence [1, 2] pressure perturbations are zero in the center.

46 Stability of Point Blast Wave ...

2 System of self-similar equations for perturbations

According to [1] we derive linear equations for perturbations using linearization of hydrodynamic equations (2) written in Lagrangian form.

$$\frac{\partial}{\partial t}(P/\rho^{\gamma}) = 0 \tag{2}$$

$$\frac{\rho_{00}}{\rho} = \frac{D(r^3, \cos\theta, \varphi)}{D(\xi^3, \cos\chi, \psi)} \tag{3}$$

$$\frac{1}{\rho_{00}}\frac{\partial P}{\partial \eta_i} + \sum_{j=1}^3 \frac{\partial x_j}{\partial \eta_i}\frac{\partial^2 x_j}{\partial t^2} = 0$$
(4)

where i = 1, 2, 3; $t, \eta_1 = \xi, \eta_2 = \chi$, and $\eta_3 = \psi$ stand for Lagrangian variables; $x_1 = r \sin \theta \cos \varphi, x_2 = r \sin \theta \sin \varphi, x_3 = r \cos \theta, P$, and ρ stand for unknown values describing three dimensional motion behind the shock front; $\rho_{00} = \rho_{00}(\xi) \sim \xi^k$ is the gas density before shock front.

Corresponding 1-d (spherical) self-similar solution of (2) is well-known [5]. It can be written with functions x(z), P(z), $\rho(z)$:

$$r_0(t,\xi) = Rx(z)$$

$$P_0(t,\xi) = \frac{2}{\gamma+1}\rho_{00}\dot{R}^2 P(z)$$

$$\rho_0(t,\xi) = \frac{\gamma+1}{\gamma-1}\rho_{00}\rho(z),$$

$$\theta_0 = \chi, \quad \varphi_0 = \psi$$

where x, P, ρ - satisfy to following system of equations:

$$\rho = \frac{\gamma - 1}{\gamma + 1} \frac{z^{k+3}}{wx^3},\tag{5}$$

$$P = \rho^{\gamma} / z^{3+k\gamma}, \tag{6}$$

$$\frac{P'}{P} = -\gamma \frac{ab}{w} x(1) = P(1) = \rho(1) = 1$$

Here and below we have:

$$w = \frac{x'}{x} = \frac{zdx}{xdz}$$
$$b = \frac{\gamma + 1}{2\gamma} \frac{wz^{k+3}}{Px}$$
$$a = w' + (w + \frac{k+3}{2})(w-1)$$

According to [1] we write variables in (2-4) in terms of small self-similar perturbations (here $\rho_{00} = \rho_{00}(t) \sim R^k$):

$$r(t,\xi,\chi) = r_0(t,\xi) + \frac{2}{\gamma+1} \sum_n R_{1n}(t) x_{1n}(z) Y_n(\chi)$$
(7)

$$P(t,\xi,\chi) = P_0(t,\xi) + \frac{2}{\gamma+1}\rho_{00}\frac{\dot{R}^2}{R}\sum_n R_{1n}(t)P_{1n}(z)Y_n(\chi)$$
(8)

$$\rho(t,\xi,\chi) = \rho_0(t,\xi) + \frac{\gamma+1}{\gamma-1}\rho_{00}\frac{1}{R}\sum_n R_{1n}(t)\rho_{1n}(z)Y_n(\chi)$$
(9)

$$\theta(t,\xi,\chi) = \chi + \frac{2}{\gamma+1} \frac{1}{R} \sum_{n} R_{1n}(t) \nu_{1n}(z) \frac{dY_n(\chi)}{d\chi}.$$
(10)

After linearization we get a system of ordinary differential equations for functions:

$$P_2(z) = \frac{xP_1}{z^{k+3+\lambda}}, \quad x_2(z) = \frac{x_1}{xz^{\lambda}}, \quad \nu_2(z) = \frac{\nu_1}{z^{\lambda}}$$
$$bP_2 + (\widehat{D} + 3w + \lambda)x_2 - n(n+1)w\nu_2 = \frac{\gamma+1}{2\gamma}(2\lambda + k + 5)$$
(11)

$$wP_2 + ax_2 - (\widehat{D} + \frac{k+1}{2})\widehat{D}\nu_2 = 0$$
(12)

$$(\widehat{D} - w + k + 3 + \lambda)P_2 + ((\widehat{D} + \frac{k+1}{2})\widehat{D} - a)x_2 + n(n+1)a\nu_2 = 0$$
(13)

(where \widehat{D} stands for differential operator:

$$(\widehat{D} + \frac{f'}{f})F(z) = \frac{1}{f}\frac{zd}{dz}(fF)$$

Boundary conditions on the shock front (z = 1) are set in a usual manner:

$$\nu_2(1) = 0, \quad D\nu_2(1) = 1, \quad x_2(1) = 1$$

$$P_2(1) = 2\lambda + \frac{k(\gamma + 1) + 5 - 3\gamma}{(\gamma + 1)^2}$$
(14)

System (12-14) has the 4th order so four boundary conditions (15) are the complete necessary set of boundary conditions. Hence one more (the fifth) condition specified on the other (center) edge:

 $P_1(0) = 0$

reduces the problem of solving the system (12-14) to the eigenvalue problem. The problem is solved numerically, and complex exponents $\lambda(n)$ are calculated as eigenvalues.

3 Results discussion

The considered problem has an analytical solution in case of γ being close to unity. For $\gamma = 1$ eigenvalues $\lambda(n)$ satisfy a simple equation:

$$(\lambda + k + 3)^{2} (\lambda + \frac{k+5}{2})^{2} - \frac{(9+k)}{2} (\lambda + k + 3) (\lambda + \frac{k+5}{2}) + n(n+1) \frac{(k+3)^{2}}{4} = 0$$
(15)

In general case $(\gamma > 1)$ the problem should be solved numerically. The complex values of $\lambda(n)$ thus found and calculated for $\gamma = 1.2$ and $\gamma = 1.667$ in a wide range of n are presented in Tab.1 as functions of n for k = -2, -1, 0, 1. The function $\gamma_0(n)$ which is satisfying the condition $Re\lambda(\gamma_0(n), n) = 0$ is presented in Tab.2 This function shows the boundary of instability region in the $(n - \gamma)$ plane.

The stability condition is $Re\lambda < 0$ so the stability condition with respect to all self-similar perturbations is $\gamma > \gamma_{cr} = max(\gamma_0(n))$.

This critical value γ_{cr} of adiabatic exponent turns out to be a slight function of k. For k equal to -2, -1, 0, 1, 2 corresponding values of γ_{cr} are equal to 1.12, 1.17, 1.20, 1.21, 1.22.

Let us consider separately the case of the first harmonic number (n = 1). We have two eigenvalues $\lambda_1(1)$, $\lambda_2(1)$ in this case, both real and negative. The greatest (of the greatest modulus) of them does not depend on γ ; it is determined with formula:

$$\lambda_2(1) = -\frac{k+3}{2},$$

and corresponds to explosion direct motion with momentum conservation.

References

- V. M. Ktitorov, Voprosy Atomnoi Nauki i Tehniki (Atomic Science and Technique Issues), Ser. Theor. Appl. Phys, 2, p.28 (1984).
- [2] D. Ryu and E. T. Vishniac, Astrophys. J. 313, 820 (1987).
- [3] E. T. Vishniac and D. Ryu, Astrophys. J. 337, 917 (1989).
- [4] J. Grun, J. Stamper, C. Manca, et al., Phys. Rev. Let. 66,21,p.2738, (1991).
- [5] V. P. Korobeinikov, N. S. Melnikova, E. V. Ryazanov, Point blast theory, Moscow, Fizmatgiz, 1961.

Harmonic	k = -2		k = -1		k = 0		k = 1	
number \boldsymbol{n}	${ m Re}\lambda$	${\rm Im}\lambda$						
1	-0.3	0	-0.62	0	-1	0	-1.55	0
1	-0.5	0	-1	0	-1.5	0	-2	0
2	-0.24	0.64	-0.64	0.86	-1.04	1.03	-1.48	1.26
3	-0.29	0.89	-0.51	1.25	-0.86	1.5	-1.28	1.69
4	-0.27	1.14	-0.4	1.57	-0.71	1.88	-1.1	2.12
5	-0.28	1.38	-0.32	1.86	-0.58	2.21	-0.94	2.5
6	-0.3	1.61	-0.25	2.12	-0.47	2.52	-0.79	2.84
7	-0.34	1.84	-0.2	2.37	-0.38	2.8	-0.67	3.15
8	-0.4	2.08	-0.17	2.61	-0.3	3.07	-0.55	3.45
9	-0.48	2.31	-0.15	2.85	-0.23	3.32	-0.45	3.73
10	-0.57	2.56	-0.14	3.08	-0.17	3.57	-0.36	4
12	-0.81	3.1	-0.15	3.53	-0.09	4.06	-0.21	4.52
14	-1.06	3.76	-0.19	3.99	-0.04	4.52	-0.1	5.01
16	-1.22	4.49	-0.27	4.44	-0.02	4.98	-0.01	5.49
18	-1.32	5.21	-0.39	4.9	-0.02	5.43	0.049	5.96
20	-1.39	5.92	-0.53	5.38	-0.06	5.89	0.084	6.42
24	-1.49	7.28	-0.9	6.38	-0.19	6.79	0.089	7.33
28	-1.57	8.62	-1.35	7.52	-0.41	7.72	0.02	8.23
32	-1.64	9.95	-1.79	8.85	-0.69	8.68	-0.12	9.14
36	-1.69	11.3	-2.1	10.3	-1.06	9.69	-0.31	10.1
40	-1.74	12.6	-2.31	11.7	-1.48	10.8	-0.57	11

Table 1: Eigenvalues $\lambda(n, \gamma, k), \, \gamma = 1.2.$

Harmonic	k = -1		k = 0		k = 1	
number \boldsymbol{n}	${ m Re}\lambda$	${ m Im}\lambda$	${ m Re}\lambda$	${ m Im}\lambda$	${ m Re}\lambda$	${ m Im}\lambda$
1	-0.7	0	-1	0	-1.45	0
1	-1	0	-1.5	0	-2	0
2	-0.8	1.02	-1.13	1.24	-1.55	1.51
3	-0.84	1.55	-1.07	1.83	-1.45	2.06
4	-0.93	2.05	-1.07	2.33	-1.39	2.61
5	-1.04	2.56	-1.11	2.81	-1.37	3.11
6	-1.17	3.1	-1.19	3.29	-1.39	3.59
7	-1.29	3.68	-1.28	3.78	-1.44	4.06
8	-1.38	4.28	-1.39	4.28	-1.5	4.53
9	-1.44	4.88	-1.51	4.8	-1.59	5.02
10	-1.48	5.48	-1.63	5.34	-1.68	5.51
12	-1.51	6.65	-1.85	6.47	-1.9	6.53
14	-1.52	7.78	-2.02	7.65	-2.12	7.6
16	-1.53	8.88	-2.13	8.84	-2.33	8.72
18	-1.53	9.97	-2.2	10	-2.52	9.87
20	-1.53	11.1	-2.23	11.2	-2.67	11.1
24	-1.52	13.2	-2.27	13.5	-2.86	13.4
28	-1.52	15.3	-2.28	15.7	-2.95	15.7
32	-1.51	17.4	-2.28	17.8	-3	18
36	-1.51	19.5	-2.28	20	-3.02	20.3
40	-1.51	21.6	-2.28	22.1	-3.03	22.5

Table 2: Eigenvalues $\lambda(n, \gamma, k), \, \gamma = 1.667.$

Harmonic	k = -2	k = -1	k = 0	k = 1
number n				
4	1			
5	1.08			
6	1.10	1		
7	1.12	1.11		
8	1.12	1.14	1	
9	1.12	1.16	1.11	
10	1.12	1.17	1.15	1
11	1.12	1.17	1.17	1.11
12	1.11	1.17	1.18	1.14
13	1.11	1.17	1.19	1.17
14	1.11	1.17	1.20	1.18
15	1.11	1.17	1.20	1.19
16	1.10	1.16	1.20	1.19
17	1.10	1.16	1.20	1.20
18	1.10	1.16	1.20	1.21
20		1.16	1.20	1.21
22			1.19	1.21
24				1.21

Table 3: Adiabatic exponent values $\gamma_0(n,k)$ limiting the region of instability: $Re\lambda(\gamma_0, n, k) = 0$; if $\gamma < \gamma_0$ then $Re\lambda(\gamma, n, k) > 0$