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1 Introduction

The instability of point (Sedov) blast wave propagating through a uniform perfect
gas with low adiabatic index γ (γ < γ0 = 1.20 ) was shown earlier theoretically in
[1, 2, 3]. Later on [4] the experimental proof of this result was obtained so there
are reasons to apply technique improved in [1] to other similar cases. The case of
blast wave in non-uniform density gas (initial density ρ0 is a power function of radius
(ρ0 ∼ rk) is considered in this paper. According to [1] stability is considered in respect to
small (linear) perturbations expanded in spherical harmonics Ynm(χ, ϕ), components of
expansion being represented in self-similar form (only the case of m = 0 is considered):

f(t, ξ, χ) =
∞∑

n=0

tλfn(z)× Yn(χ), (1)

where λ = λ(n) - complex index, ξ - Lagrange radius, R - shock wave front radius
(R ∼ t

2
k+5 ), z = ξ/R - self-similar argument.

The considered self-similar functions describe an asymptotic mode of perturbations
development corresponding to large time values (much higher than those needed for
sound wave crossing an explosion area). In this case :

- perturbations are independent on initial conditions;
- front values perturbations (for example, front radius perturbation R1 have power

time dependence ( R1 ∼ t(λ+1) 2
k+5 or R1

R ∼ Rλ).
It is natural to suggest that pressure in the explosion center has no divergences and

hence [1, 2] pressure perturbations are zero in the center.
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2 System of self-similar equations for perturbations

According to [1] we derive linear equations for perturbations using linearization of
hydrodynamic equations (2) written in Lagrangian form.

∂

∂t
(P/ργ) = 0 (2)

ρ00

ρ
=

D(r3, cos θ, ϕ)
D(ξ3, cosχ, ψ)

(3)

1
ρ00

∂P

∂ηi
+

3∑

j=1

∂xj

∂ηi

∂2xj

∂t2
= 0 (4)

where i = 1, 2, 3; t, η1 = ξ, η2 = χ, and η3 = ψ stand for Lagrangian variables;
x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, P , and ρ stand for unknown values
describing three dimensional motion behind the shock front; ρ00 = ρ00(ξ) ∼ ξk is the
gas density before shock front.

Corresponding 1-d (spherical) self-similar solution of (2) is well-known [5]. It can
be written with functions x(z), P (z), ρ(z):

r0(t, ξ) = Rx(z)

P0(t, ξ) =
2

γ + 1
ρ00Ṙ

2P (z)

ρ0(t, ξ) =
γ + 1
γ − 1

ρ00ρ(z),

θ0 = χ, ϕ0 = ψ

where x,P , ρ - satisfy to following system of equations:

ρ =
γ − 1
γ + 1

zk+3

wx3
, (5)

P = ργ/z3+kγ , (6)
P ′

P
= −γ

ab

w
x(1) = P (1) = ρ(1) = 1

Here and below we have:

w =
x′

x
=

zdx

xdz

b =
γ + 1
2γ

wzk+3

Px

a = w′ + (w +
k + 3

2
)(w − 1)
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According to [1] we write variables in (2-4) in terms of small self-similar perturba-
tions (here ρ00 = ρ00(t) ∼ Rk):

r(t, ξ, χ) = r0(t, ξ) +
2

γ + 1

∑
n

R1n(t)x1n(z)Yn(χ) (7)

P (t, ξ, χ) = P0(t, ξ) +
2

γ + 1
ρ00

Ṙ2

R

∑
n

R1n(t)P1n(z)Yn(χ) (8)

ρ(t, ξ, χ) = ρ0(t, ξ) +
γ + 1
γ − 1

ρ00
1
R

∑
n

R1n(t)ρ1n(z)Yn(χ) (9)

θ(t, ξ, χ) = χ +
2

γ + 1
1
R

∑
n

R1n(t)ν1n(z)
dYn(χ)

dχ
. (10)

After linearization we get a system of ordinary differential equations for functions:

P2(z) =
xP1

zk+3+λ
, x2(z) =

x1

xzλ
, ν2(z) =

ν1

zλ

bP2 + (D̂ + 3w + λ)x2 − n(n + 1)wν2 =
γ + 1
2γ

(2λ + k + 5) (11)

wP2 + ax2 − (D̂ +
k + 1

2
)D̂ν2 = 0 (12)

(D̂ − w + k + 3 + λ)P2 + ((D̂ +
k + 1

2
)D̂ − a)x2

+n(n + 1)aν2 = 0
(13)

( where D̂ stands for differential operator:

(D̂ +
f ′

f
)F (z) =

1
f

zd

dz
(fF )

Boundary conditions on the shock front (z = 1) are set in a usual manner:

ν2(1) = 0, D̂ν2(1) = 1, x2(1) = 1

P2(1) = 2λ +
k(γ + 1) + 5− 3γ

(γ + 1)2
(14)

System (12-14) has the 4th order so four boundary conditions (15) are the complete
necessary set of boundary conditions. Hence one more (the fifth) condition specified on
the other (center) edge:

P1(0) = 0

reduces the problem of solving the system (12-14) to the eigenvalue problem. The prob-
lem is solved numerically, and complex exponents λ(n) are calculated as eigenvalues.
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3 Results discussion

The considered problem has an analytical solution in case of γ being close to unity. For
γ = 1 eigenvalues λ(n) satisfy a simple equation:

(λ + k + 3)2(λ +
k + 5

2
)
2

− (9 + k)
2

(λ + k + 3)(λ +
k + 5

2
)+

n(n + 1)
(k + 3)2

4
= 0

(15)

In general case (γ > 1 ) the problem should be solved numerically. The complex values
of λ(n) thus found and calculated for γ = 1.2 and γ = 1.667 in a wide range of n are
presented in Tab.1 as functions of n for k = −2,−1, 0, 1. The function γ0(n) which is
satisfying the condition Reλ(γ0(n), n) = 0 is presented in Tab.2 This function shows
the boundary of instability region in the (n− γ) plane.

The stability condition is Reλ < 0 so the stability condition with respect to all
self-similar perturbations is γ > γcr = max(γ0(n)).

This critical value γcr of adiabatic exponent turns out to be a slight function of k.
For k equal to -2, -1, 0, 1, 2 corresponding values of γcr are equal to 1.12, 1.17, 1.20,
1.21, 1.22.

Let us consider separately the case of the first harmonic number (n = 1). We have
two eigenvalues λ1(1), λ2(1) in this case, both real and negative. The greatest (of the
greatest modulus) of them does not depend on γ; it is determined with formula:

λ2(1) = −k + 3
2

,

and corresponds to explosion direct motion with momentum conservation.
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Harmonic k = −2 k = −1 k = 0 k = 1
number n Reλ Imλ Reλ Imλ Reλ Imλ Reλ Imλ

1 -0.3 0 -0.62 0 -1 0 -1.55 0
1 -0.5 0 -1 0 -1.5 0 -2 0
2 -0.24 0.64 -0.64 0.86 -1.04 1.03 -1.48 1.26
3 -0.29 0.89 -0.51 1.25 -0.86 1.5 -1.28 1.69
4 -0.27 1.14 -0.4 1.57 -0.71 1.88 -1.1 2.12
5 -0.28 1.38 -0.32 1.86 -0.58 2.21 -0.94 2.5
6 -0.3 1.61 -0.25 2.12 -0.47 2.52 -0.79 2.84
7 -0.34 1.84 -0.2 2.37 -0.38 2.8 -0.67 3.15
8 -0.4 2.08 -0.17 2.61 -0.3 3.07 -0.55 3.45
9 -0.48 2.31 -0.15 2.85 -0.23 3.32 -0.45 3.73
10 -0.57 2.56 -0.14 3.08 -0.17 3.57 -0.36 4
12 -0.81 3.1 -0.15 3.53 -0.09 4.06 -0.21 4.52
14 -1.06 3.76 -0.19 3.99 -0.04 4.52 -0.1 5.01
16 -1.22 4.49 -0.27 4.44 -0.02 4.98 -0.01 5.49
18 -1.32 5.21 -0.39 4.9 -0.02 5.43 0.049 5.96
20 -1.39 5.92 -0.53 5.38 -0.06 5.89 0.084 6.42
24 -1.49 7.28 -0.9 6.38 -0.19 6.79 0.089 7.33
28 -1.57 8.62 -1.35 7.52 -0.41 7.72 0.02 8.23
32 -1.64 9.95 -1.79 8.85 -0.69 8.68 -0.12 9.14
36 -1.69 11.3 -2.1 10.3 -1.06 9.69 -0.31 10.1
40 -1.74 12.6 -2.31 11.7 -1.48 10.8 -0.57 11

Table 1: Eigenvalues λ(n, γ, k), γ = 1.2.
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Harmonic k = −1 k = 0 k = 1
number n Reλ Imλ Reλ Imλ Reλ Imλ

1 -0.7 0 -1 0 -1.45 0
1 -1 0 -1.5 0 -2 0
2 -0.8 1.02 -1.13 1.24 -1.55 1.51
3 -0.84 1.55 -1.07 1.83 -1.45 2.06
4 -0.93 2.05 -1.07 2.33 -1.39 2.61
5 -1.04 2.56 -1.11 2.81 -1.37 3.11
6 -1.17 3.1 -1.19 3.29 -1.39 3.59
7 -1.29 3.68 -1.28 3.78 -1.44 4.06
8 -1.38 4.28 -1.39 4.28 -1.5 4.53
9 -1.44 4.88 -1.51 4.8 -1.59 5.02
10 -1.48 5.48 -1.63 5.34 -1.68 5.51
12 -1.51 6.65 -1.85 6.47 -1.9 6.53
14 -1.52 7.78 -2.02 7.65 -2.12 7.6
16 -1.53 8.88 -2.13 8.84 -2.33 8.72
18 -1.53 9.97 -2.2 10 -2.52 9.87
20 -1.53 11.1 -2.23 11.2 -2.67 11.1
24 -1.52 13.2 -2.27 13.5 -2.86 13.4
28 -1.52 15.3 -2.28 15.7 -2.95 15.7
32 -1.51 17.4 -2.28 17.8 -3 18
36 -1.51 19.5 -2.28 20 -3.02 20.3
40 -1.51 21.6 -2.28 22.1 -3.03 22.5

Table 2: Eigenvalues λ(n, γ, k), γ = 1.667.
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Harmonic k = −2 k = −1 k = 0 k = 1
number n

4 1
5 1.08
6 1.10 1
7 1.12 1.11
8 1.12 1.14 1
9 1.12 1.16 1.11
10 1.12 1.17 1.15 1
11 1.12 1.17 1.17 1.11
12 1.11 1.17 1.18 1.14
13 1.11 1.17 1.19 1.17
14 1.11 1.17 1.20 1.18
15 1.11 1.17 1.20 1.19
16 1.10 1.16 1.20 1.19
17 1.10 1.16 1.20 1.20
18 1.10 1.16 1.20 1.21
20 1.16 1.20 1.21
22 1.19 1.21
24 1.21

Table 3: Adiabatic exponent values γ0(n, k) limiting the region of instability: Reλ(γ0, n, k) = 0;
if γ < γ0 then Reλ(γ, n, k) > 0


