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Abstract. A new formulation of the Lagrangian equations for the evolution
of Rayleigh-Taylor instability in inviscid incompressible fluids is presented.
A set of exact coupled mode equations which govern the evolution of the
velocity field and the nonlinear motion of the surface is derived. Unlike the
traditional Eulerian mode expansion, which requires an infinitely growing
number of modes at the nonlinear stage, the present expansion converges
very rapidly. The use of the formalism for analyzing the nonlinear stage of
the instability is demonstrated by analytical and numerical solutions.

1 Introduction

The Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occur when a
light fluid supports a heavier one against gravity, or pushes it in a constant acceleration
(RT instability), or after a shock has passed through the interface between two fluids.
(RM instability). Initially, random perturbations at the interface grow exponentially
in time. In the nonlinear stage of the instability, the interface is strongly distorted.
Round “bubbles” of light fluid enter the heavy fluid and narrow “spikes” of heavy fluid
penetrate the lighter one. Eventually the “bubbles”-“spikes” structure brakes down
and a turbulent mixing of the two fluids occurs. The present work concentrates on the
linear and nonlinear stages of the instability before turbulence takes over.

Linear and nonlinear theories and as well as analyses of numerical simulations and
experiments rely on the expansion of the interface and the velocity field in Fourier
modes. It is well known, from theoretical work[2][3], that this expansion converges
only at the very early stage when the bubbles amplitude is smaller than 10% of the
wavelength.

Kull[3] attempted to solve, numerically, the nonlinear fluid equations by expanding
the velocity potential and the interface in terms of Fourier modes. He has found that,
during time evolution, the convergence of the series becomes increasingly worse until
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the ”Fourier ansatz ceases to be an appropriate representation”. The divergence of the
expansion occurs as the bubbles amplitude approaches 10% of the wavelength.

In perturbation expansions[1],[2], the nonlinear coupled mode equations are solved
by an iterative process starting with the linear solution. In view of Kull’s results it is not
surprising that also the perturbation expansion converges only at the very beginning of
the nonlinear stage when the mode amplitude is smaller than 10% of its wavelength[2].
The Layzer model[4] does not encounter this difficulty, however, it is limited to the
description of the near vicinity of the bubble’s top.

The purpose of the present work was to find alternative theoretical framework and
mode expansion which do not suffer from the shortcomings described above, and can
describe also the nonlinear stage of the instability. In the rest of the manuscript I will
show that Lagrangian formulation of the problem, naturally suggests the appropriate
mode expansion, and that the resulting mode coupling equations may be solved by a
perturbation expansion which converges very rapidly. The method may be viewed as
an extension of Ott’s treatment of RT instability in a thin Layer [5].

2 General formulation in three dimensions

Consider an incompressible fluid which is supported by a mass-less fluid. Denote the
initial position of a fluid element by ~r0. At later times, the location of the element
depends on ~r0. Denote the x, y, z components of ~r0 by ξ, η, α. For incompressible fluid,
the Jacobian of the transformation from ξ, η, α to x, y, z is constant i.e.

(~rξ × ~rη) · ~r a = const. (1)

(We denote the derivatives of ~r with respect to ξ, η, α and t by subscripts). For
irrotational motion, the matrix ~∇~v (where ~v is the Eulerian velocity) is symmet-
ric.Consequently, the relation ~rξ · ~∇~v · ~rη − ~rη · ~∇~v · ~rξ = 0 and similar relations for
the ξ, α and η, α elements should hold. Using the chain rule for derivatives, these rela-
tions are converted to a set of three differential equations which involve only Lagrangian
variables:

~rξ t · ~r η − ~r η t · ~r ξ = 0, ~rξ,t · ~rα − ~rα t · ~rξ = 0, ~rη t · ~r α − ~r α t · ~r η = 0 (2)

The above equations 1,2 should be supplemented by boundary conditions. Assuming
periodicity in the ξ,η variables and demanding that the fluid velocity will vanish as α →
∞ supply part of the conditions. We still have to determine the boundary conditions
at the fluid surface. At t = 0 the surface is at ~r = (ξ, η, 0), denote its location at later
times by ~R(ξ, η, t) (i.e. ~R(ξ, η, t) ≡ ~r(ξ, η, 0, t)). Multiplying the equation of motion of
a fluid element which is at the surface; ~Rtt =

{
~∇P (~r, t)

}
~r=~R(ξ,η,α,t)

+gẑ , by ~Rξ and ~Rη,

taking into account the fact that the pressure gradient is normal to the fluid surface
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and that the vectors ~Rξ and ~Rη are tangential to the surface we get the boundary
conditions:

~Rξ · ~Rtt = g ~Rξ · ẑ, ~Rη · ~Rtt = g ~Rη · ẑ (3)

(g is the gravitational acceleration).
Equations 1,,2 together with the boundary conditions at α = 0 (equations 3 ) and

at α → ∞, and the periodicity conditions in the ξ,η variables uniquely determine the
motion of the fluid.

3 Coupled Mode Equations

In the following we shall limit our treatment to systems in which no motion occurs in
the y direction. In this case: ~r = (x, η, z), and ~rξ = (xξ, 0, zξ).

We assume that the displacement of a fluid element x(ξ, α, t)− ξ and z(ξ, α, t)− α
may be expanded in a Fourier series, i.e.:x(ξ, α, t) = ξ +

∑
k

Xk(α, t)eik·ξ and z(ξ, α, t) =

α +
∑
k

Zk(α, t)eik·ξ Using the expansion in equations 1,2 and combining them we get:

U̇ ′
k(α, t)− kU̇k(α, t) =

∑

k′
ik′

(
U̇k′(α, t)V ′

k−k′(α, t)− Vk′(α, t)U̇
′
k−k′(α, t)

)
(4)

and its complex conjugate. In the above equation Uk(α, t) ≡ Xk(α, t) + iZk(α, t) and
Vk(α, t) ≡ Xk(α, t)− iZk(α, t) and the derivatives of Zk Uk Vk and Xk with respect to t
is denoted by by a dot and with respect to α by a prime. Similarly, equation 3, yields:

Ẍk(0, t)− gikZk(0, t) = −
∑

k′
i
(
k − k′

)
Xk−k′(0, t)Ẍk′(0, t) (5)

−
∑

k′
i
(
k − k′

)
Zk−k′(0, t)Z̈k′(0, t)

We have to solve these equations with the requirement that, as α →∞, the velocity
field vanishes, i.e. lim

α→∞ Ẋk(α, t) = lim
α→∞ Żk(α, t) = lim

α→∞ U̇k(α, t) = lim
α→∞ V̇k(α, t) = 0.

In the following section I will present solutions of these equations in the linear and
nonlinear regimes.

4 Solutions

The solution of equation 4, for X0(α, t) and Z0(α, t) is: Ẋ0(α, t) = 0, Z0(α, t) =
−∑

k′
2ik′Xk′(α, t)Z−k′(α, t). An exact solution in the case k 6= 0 was not obtained,
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however linearizing equation 4 one can immediately see that a solution with vanishing
Ẋk, Żk at α → ∞ is possible only if at α = 0 (i.e. at the interface) Ẋk and Żk are
related by: Żk(0, t) = i k

|k| Żk(0, t) (zero order). Using this result in equation 5 yields a
reduced set of ordinary differential equations of the form

Ẍk(0, t)−
∑

k′
Γ2

k,k′Xk′(0, t) = 0 (6)

where Γ2
k,k′ depends on the amplitudes Xk and velocities Ẋk of all the modes in the

system.
Note that equation 6 has the same form as the standard linear equation for RT

instability, but with the linear growth rate replaced by an effective nonlinear ”growth
matrix” Γk,k′ which depends on the amplitudes and velocities of all the modes in the
system. A detailed analysis shows that equation 6 does not allow generation of new
modes in the system. For example an initial sinusoidal perturbation with an amplitude
x0 and velocity v0 and a wave number k will evolve as a single Lagrangian mode i.e.
;x(ξ, 0, t) = 2Xk(0, t) cos(kξ), z(ξ, 0, t) = −2iZk(0, t) sin(kξ)−2ikXk(0, t)Zk(0, t). Solv-
ing equation 6, using the relations between Xk and Zk, substituting in the above rela-
tions for x(ξ, 0, t), z(ξ, 0, t) we can now plot the surface z(x, t) at various times. In figure
(1a) we show a case with gravitational acceleration g = 1. The system is initiated with a
single mode with k = 1 x0 = 0.005 and v0 = 0. ( plot (A) corresponds to t = 4.2825,and
(B) to t = 4.96). At late times the surface has a falling down spike at kξ = π/2 and
a rising bubble with a tip at kξ = 3π/2. Higher orders in the perturbation expansion
are obtained by iterating the zero order result in equations 4. For example, in the first

order, for a single mode, we get :Zk(0, t) = 1
3 i k
|k|Xk(0, t)

[
3−3kXk(0,t)+k2X2

k(0,t)+k3X3
k(0,t)

1−kXk(0,t)−k2X2
k
(0,t)+k3X3

k
(0,t)

]
.

As we shall see, the first order is sufficient for an accurate description of the bubble
velocity at all times. In figure (1b), the bubble velocity is plotted as a function of time
(line A). For comparison I have added on this plot also the bubble velocity predicted
by the Layzer model [4] (line B) and by second and third order Eulerian perturbation
expansion[1] (C and D), and the result obtained by using the zero order solution of
equation 4, in equation 5 (E).

The Layzer model[4] is not capable of describing the whole interface, nevertheless its
prediction for the velocity of the bubble’s tip is known to be accurate. Note that, also
the first order in the present approach (line (A) in figure (1b)) describes correctly the
velocity of the bubble both in the linear stage and at saturation. More detailed results
for more complicated cases may be obtained by a numerical solution of equations 4, 5,
discretizing the variables α and t. In contrast to the conventional Eulerian mode expan-
sion which requires an infinitely growing number of modes[3][2], in the present method
a bubble-spike structure is described by few modes. Also, since the discretization of the
equations in the direction parallel to the interface is obtained by mode expansion and



44 Lagrangian Treatment of the RT Instability

0 5 10
-1

-0.5

0

0.5

x

z

A

B

a

0 5
0

0.5

1

1.5

time

ve
lo

cit
y/

sq
rt(

g/
3k

)

D A

B

C E

b

Figure 1:

not by a spatial grid, the numerical solution of equations 4, 5 does not suffer from the
problem of mesh distortion which is typical of Lagrangian codes. These results indicate
that the Lagrangian approach developed in the present work is a useful tool for the
analysis of the nonlinear stage of the RT and RM instabilities.
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