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In studying Rayleigh-Taylor instability setting up the problem of periodic constant
wavelength perturbations [1, 2, 3, 4] is in wide use. In this setting up the problem of
instability evolution at the non-linear stage reduces to stationary at large times and
this circumstance facilitates its analysis [2, 3].

Localized perturbations studied in [5, 6] are another type of perturbations whose
evolution is universal in its character. A possible type of perturbations of no character-
istic size are those in the form a dihedral angle which were studied in [6, 7] (as a special
case of such a perturbation type for an angle equal to π, localized perturbations in a
plane problem can be considered, i.e. perturbations in the form of a straight line plot-
ted on fluid surface). The problem of evolution of such perturbations can be of interest
both on its own for practical applications and as auxiliary for model construction.

The basic feature of evolution of perturbation in the form of a corner is non-linearity
as the perturbations are not small (the perturbation amplitude is of the order of the
characteristic wavelength). The problem can be essentially simplified by considering
self-similar solutions, but also in this case the problem remains quite complex since
self-similar solution, generally speaking, is two-dimensional by two spatial coordinates.
Therefore this paper considers cases allowing further simplifications and, but as an
example, numerical solution of the problem of localized perturbation evolution for the
plane case. Density of light fluid which supports heavy one is assumed to equal zero.

Consider potential flow of ideal incompressible fluid for which the equations of mo-
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Figure 1

tion are written in the form
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where φ(~r, t) is the velocity potential (~v = ∇φ), p the pressure, ρ the density, g the
acceleration of gravity, X, Y the Lagrangian coordinates of the boundary, and the
subscript s denotes that the corresponding value is taken on the free surface. Since on
the free surface the pressure is p =const, and the potential φ is defined within arbitrary
function of t, then on the free surface the Eq. (2) takes the form

∂φ

∂t
+

1
2
(∇φ)2 + gy|s = 0. (4)

The system of Eqs. (1), (3), (4) completely specifies fluid flow.

1 Acute Angles

The simplest is the case of acute angles θ0 < π
2 (Figure 1), considered earlier [6].

Consider this case here for generality. Expand the potential φ by powers x − x0(t),
y−y0(t), where x0, y0(t) - the angle vertex coordinates. The velocity potential satisfying
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(1) will be written in the form

φ(x, y, t) = φ0(t) + φx(t)(x− x0) + φy(t)(y − y0)

+
φyy(t)

2
[(y − y0)2 − (x− x0)2]

+ φxy(t)(x− x0)(y − y0) + o(r − r0)2.

(5)

By substituting (5) in Eqs. (3), (4) and expanding the surface equation by powers of
distance from the corner point we obtain

dφ
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=

φ2
x + φ2

y

2
− gy0,

dφx

dt
= 0,

dφy

dt
= −g, (6)
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=

1−AB

1 + AB
(φ2

yy + φ2
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dφxy
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=
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1 + AB
(φ2
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xy),

dA

dt
= 2φyyA + φxy(1−A2),

dB

dt
= 2φyyB + φxy(1−B2),

(7)

where A = tgα, B = tgβ.
The system of Eqs. (6), (7) shows that, first, the flow in the vicinity of acute angles

is independent on other fluid mass flow since the characteristics of other region flows
are not involved in it. Second, the corner point motion is uniformly accelerated with
-g acceleration which results from the pressure gradient equal to zero in it, hence, the
corner point freely falls. Third, the corner point motion and angle side rotation are
independent since the systems (6) and (7) are disjointed. Fourth, angle rotation and
compression depend only on initial conditions and if at the initial time fluid was at rest
(φ(~r, 0) = 0) then from (7) it follows that the corner will continue neither to rotate nor
compress and will freely fall down like a solid whose side angles α and β will be rigidly
fixed in space.

2 Self-similarity for angles larger than π
2

Now consider the case of angles θ0 < π/2. Assume that at the initial time fluid is at
rest. Then at the next times while nonlinear terms are yet small and the surface has
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not had time to displace much the flow in the bulk of the fluid will be determined by
the linear problem

∆φ = 0, (8)
∂φ

∂t
+ gy|s = 0.

Thereby in the potential expansion by powers of the distance from the corner vertex at
a sufficient distance from the vertex where non-linear terms are yet unessential, besides
the powers (5) the terms of the form

Cgt|~r − ~r0|n cosnθ, (9)

n = kπ/θ0, k - integer, θ - angle counted from the angle bisector, will be present and
play an essential role. Indeed, such types of terms satisfy Eq. (8), and the lowest power
n making the principal contribution to the expansion is n = π/θ0. When π

2 < θ0 < π
the terms of the form (9) will be larger than quadratic but less than linear in the
expansion (5). Therefore, the corner point motion continues to follow the Eq. (6), i.e.
constitutes free fall, however in the next approximation the angle motion will be already
related to the motion of remaining fluid through the coefficient C, which is determined
by solution of the linear problem for entire fluid. When θ0 > π, the terms of the form
(9) are larger than linear and the motion induced by them becomes principal. In any
case θ0 > π

2 after subtraction of linear terms of the expansion (5) from the potential
the motion induced by the asymptotic (9) will be symmetric about the bisector which
remains therewith immovable.

In the frame of reference connected to the freely falling point the motion at large
distances from the corner point will be determined by the potential (9). The nonlinear
terms in the equation (4) and the change of the boundaries (3) will become essential
at distances estimated by the relation r ∼ vt ∼ φ

r t ∼ Cgt2 · rn−1 (from this point on
we denote r = |~r−~r0|). Thus the non-linear solution determining the angle region flow
will be self-similar with the self–similar variable

r2−n

Cgt2
(10)

and potential asymptotic (9) at large distances.

3 Equations describing flow for angles close to right

Simplifications of the angle region fluid flow problem are possible for angles close to
π
2 . In this case one can seek the solution of the problem (in the frame of reference
connected to falling angle vertex) in the form

φ =
a(r, t)r2

2
cos(2 + δn)θ, (11)
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s = rA(r, t),

where a(r, t) - the function slowly varying depending on r, δn << 1, s - surface boundary
offset from right angle sides which is taken to be small (A << 1, A > 0 corresponds to
compression). From the Laplace equation (1) it follows that δn must satisfy the relation

δn =
d ln a

d ln r
. (12)

Substituting (11), (12) in Eqs. (3), (4) obtain the equation system

A
∂a

∂t
− π

8
r

∂2a

∂r∂t
+

a2

2
= 0,

∂A

∂t
= a. (13)

Thus, if for acute angles the problem reduced to ordinary differential equations,
then for the angles close to π/2 simplification is also possible, though less essentially,
so that the two-dimensional problem reduces to the one-dimensional.

4 Self-similar solution for angles slightly larger than right

If an initial angle θ0 slightly exceeds π/2, then to describe its collapse one can
continue to use Eqs. (13). Let at initial time the angle offset from the right angle be
A = −A0, A0 << 1. Then, according to (9), (10) the solution of the problem of collapse
of such an angle will be self-similar a = 2Cgt

r
8 A0

π

u(ξ), A = A0w(ξ), where ξ = Cgt2

A0r
8A0

π

.

Eqs. (13) in these variables transform into the system of ordinary differential equations
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with initial conditions u(0) = w(0) = 1. The angle collapse picture determined by the
self - similar solution of these equations is shown in Figure 1 for the case of the angle
θ0 = 2π/3, A0 = π/12, (as the problem is symmetric about bisector, a half of the angle
is shown, coordinates x, y, are measured in the units (Cgt2/2A0)π/8A0). If ξ >> 1
w ∼ −ξ1/3, i.e. at large times the angle collapses according to the law t2/3 and at
large times, owing to weak dependence on r, one can use formulas (7) to describe angle
collapse for each r.

5 Localized initial perturbation

The case θ0 = π (localized perturbation) is special since in this case there are no angle
at all and perturbation evolution does not depend on geometry of whole fluid. However,
due to especial importance of this case because any perturbation initially occupying a
limited region must “forget” its initial form during sufficiently large time period, discuss
it in more detail.

We assume the unperturbed fluid surface as horizontal from the equilibrium condi-
tions [8]. From dimension considerations it follows that φ = gt3

2 ψ( 2x
gt2

, 2y
gt2

). Eqs. (1),
(3), (4) for function ψ in the self- similar variables denoted below with the same letters
2x/gt2, y = 2y/gt2 are written in the form

∆ψ = 0, (14)

3ψ − 2r∇ψ + (∇ψ)2 + Y |s = 0, (15)

dY

dX
=

Y − ∂ψ
∂y

X − ∂ψ
∂x

∣∣∣∣∣
s

, (16)

where Y (X) - the free surface equation (note that in the axisymmetric case self-similar
equations describing localized perturbation evolution coincide with Eqs. (14)-(16) for
polar coordinates r, z with the difference that Laplacian is written in polar coordinates,
z, r are substituted instead of y, x). Since the particles which came to motion at early
stages will freely fall at large times it means that the coordinates of the spike tip will
be X = 0, Y = −1. At infinity the fluid is at rest. Then the surface shape must be
expected to be like it is shown in Figure 2 (as the problem is symmetric about the
replacement x → −x, a half of the surface is shown).

Solution of the problem (14)-(16) is shown in Figure 2. The bubble top coordinate
is Y0 = 0.248, the bubble diameter -0.400. Computed bubble diameter agrees with the
measured result [5] where it was 0.46. At the same time the computed depth of bubble
penetration into fluid is essentially less then experimentally measured: Y0 = 0.4. The
same situation takes place for axisymmetric local perturbation evolution: the bubble
diameter obtained in numerical computations [6] agrees with the experiment while the



Garanin 39

depth of its penetration does not. It may be related to measurement errors since in
the experiments the height of bubble rising was counted from the surface which being
unstable was covered with sheet of spikes and, therefore, its coordinates were hard to
estimate.

Thus, for the self-similar solution we have arrived at the surface shape shown in
Figure 2. However one can put a question: how will the localized initial perturbation
set in the shape of a projection rather than a hole transfer to the shape of Figure 2?
One can imagine that the initial projection would yield a spike surrounded from both
sides with bubbles and with time thickness of this spike would increase slower (if any)
than bubble sizes and in the increasing problem scale the role of the spike will trend to
nil with time. Such an evolution dynamics is confirmed by experimental data (see, for
example, [5]) which show that adjacent bubbles merge and make up a single bubble.

Opening of angles θ0 > π (internal) can be studied using the same technique of
solving 2D self - similar equations as given above for θ0 = π, but already with account
of asymptotic (9). The flow picture may be similar to that shown in Figure 2, i.e. spikes
may be generated which will remain in the place of the initial angle vertex.
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