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Abstract. We present a two-phase flow formulation for the statistical evo-
lution of fluid mixing via Rayleigh-Taylor instability. Our main results are
a new first-order closure for the ensemble-averaged two-phase flow equa-
tions, its validation against computational data for compressible flows, and
an exact renormalization-group fixed-point solution of this model in the
incompressible limit. We do not fully solve the closure problem, as the
boundary conditions at the most penetrating edges of the fluid mixing layer
are left unresolved in our model.

1 Introduction

The Rayleigh-Taylor (RT) instability [14] of an interface separating fluids of distinct
density is driven by an acceleration across the interface (typically gravity). Initial
random disturbances at the interface lead to the formation of a chaotic mixing layer
between the light and heavy fluids. Past studies of RT instability have focused on
the rate of expansion of the mixing zone. In this paper, we present a model for the
statistical evolution of physical quantities inside the mixing zone.

Ensemble averaging is a conventional and useful mathematical tool to determine
the statistical behavior of chaotic fluid mixing. For nonlinear equations, ensemble av-
eraging leads to a closure problem—namely, new unknowns emerge in the analysis. An
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attempt to derive governing equations for these new variables leads to an endless hier-
archy of equations for moments of increasing order. This hierarchy is usually broken at
the level of first- or second-order moments by a closure hypothesis, which relates the
higher-order moments occurring in the equations to products of lower-order moments.
Here, we present a new way to resolve the closure problem for RT mixing. Our ap-
proach is a new first-order closure for compressible multiphase flow, which has been
validated by comparison to full numerical simulations. In addition, we have obtained
its renormalization group (RNG) fixed-point solution in the incompressible limit.

2 Analysis of Two-Phase Turbulence Moments

In this section, we propose a new two-phase closure hypothesis for RT mixing. To
begin, we consider a two-phase flow in two space dimensions (x, z) at time t, with no
microscopic mixing; i.e., there is a well-defined characteristic function Xk for phase k,

Xk(x, z, t) =
{

1 if (x, z) is in phase k at time t,
0 otherwise.

Let the operation 〈·〉 be a combined ensemble average and average over the transverse
(x) direction. Then βk(z, t) ≡ 〈Xk〉 is the volume fraction of phase k. The absolute
volume, phase volume, and mass-weighted averages of a quantity a(x, z, t) are

a = 〈a〉 , ak =
〈aXk〉
〈Xk〉 =

〈aXk〉
βk

, ãk =
〈Xkρa〉
〈Xkρ〉 =

(ρa)k

ρk

,

respectively. We also define the absolute and phase volume fluctuations, δa = a − a
and δak = a− ak.

To derive a closure model for the turbulent second-moments, we express second
moments of the absolute fluctuating quantities in terms of second moments of the
phase fluctuating quantities plus an expression involving only two-phase first moments,
i.e., phase volume averages. For a computational data set derived from RT mixing, we
then show that the first contribution is small, and therefore that the absolute second
moments are effectively given as functions of the two-phase first moments.

The following absolute second moments appear as additional dependent variables
in the ensemble-averaged Euler equations (see, for example [1]),

B = 〈δρδρ〉 , A = 〈δρδv〉 , R = 〈ρvv〉 − 〈ρv〉 〈ρv〉
〈ρ〉 ,

S = 〈ev〉 − 〈e〉 〈ρv〉
〈ρ〉 = 〈ρεv〉 − ρε̃ṽ, G = 〈δρδε〉 ,
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where ε is the specific internal energy and e = ρε. One can show that [4]

F = β1F1 + β2F2 + Ftwo-phase, (1)

where F = B, A, R, S, and G, Fk is the average of F over phase k, and

Btwo-phase ≡ β1β2(ρ1 − ρ2)
2, Atwo-phase ≡ β1β2(ρ1 − ρ2)(v1 − v2),

Rtwo-phase ≡ β1β2
ρ1ρ2

ρ
(ṽ1 − ṽ2)2, Stwo-phase ≡ β1β2

ρ
(ρ2e1 − ρ1e2)(ṽ1 − ṽ2),

Gtwo-phase ≡ β1β2(ρ1 − ρ2)(ε1 − ε2).

For the RT two-phase mixing data that we have studied, we have found that the
dominant contribution to the turbulent second moments comes from the two-phase first
moments (the mean flow quantities). In this approximation, we have

F ≈ Ftwo-phase. (2)

As an example, we validate this two-phase approximation against an ensemble of five
simulations. Each member of the ensemble has an initial randomly-perturbed interface
with Atwood number At = (ρ2− ρ1)/(ρ2 + ρ1) = 2/3 and dimensionless compressibility
M2 = λg/c2

2 = 0.5, where λ is the average perturbation wavelength, g is the gravita-
tional acceleration, c is the sound speed, and the indices 1 and 2 refer to the light and
heavy fluids, respectively. We assume that each fluid is a polytropic gas. In Figure 1,
we see that the closure approximation (2) is nearly exact for B, A, and S (as it is also
for G, not shown), and it captures most of the variation in R. A more detailed study,
with systematic variation of both At and M2, is included in [3].

Based on these comparison studies, we conclude that two-phase mean flow gives a
good description of the turbulent second moments, and thus that the fluid mixing is
dominated by two-phase behavior rather than by turbulence phenomena.

3 Effective Equations for RT Mixing

Equations for two-phase flow are derived in two steps. The first step is a mathematically
exact averaging procedure which, due to the nonlinearity of the equations, introduces
new unknowns. The second step is a modeling step, in which some of the unknowns
are declared to be new dependent variables, for which new equations (not closing) are
derived as above, while the remaining unknown quantities are approximated in terms
of the original and new dependent variables. For incompressible flows, this process
is described very elegantly by Drew [6]. Examples of compressible multiphase flow
equations are given in [10] and [12]. We follow Drew’s formalism, which was introduced,
in part, in the previous section as well. A systematic description of the modeling of
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Figure 1: A comparison between Eq. (1) and its approximation, Eq. (2), for F = B, A, R, and
S. In these simulations, At = 2/3 and M2 = 0.5.
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multiphase fluid equations can been found in [7], which presents a detailed discussion
of local balance, averaging, jump conditions at interfaces, and constitutive equations.
Other examples of turbulence and multiphase flow models that have been proposed to
describe interfacial fluid mixing are given in [11, 2, 5], and [15].

The averaged Lagrangian interface satisfies the equation ∂βk/∂t+ 〈vint · ∇Xk〉 = 0,
where vint is the velocity of the interface. Contained in this equation as well as in the
averaged Euler equations are terms which are proportional to∇Xk, namely 〈vint · ∇Xk〉,
〈p∇Xk〉, and 〈pv · ∇Xk〉. Since ∇Xk is a δ function in the direction normal to the
material interface, these terms represent the coupling between the phases. They are
intrinsically defined in higher dimensions only, and therefore cannot be determined
exactly in the effective one-dimensional dynamical equations without knowing the exact
solution in higher dimensions. To complete our closure for the effective dynamical
equations, we now model the interfacial terms.

The three interfacial terms can be expressed as 〈f∇Xk〉, where f = vint, p, and pv.
We define an effective interfacial quantity feff as

〈f∇Xk〉 = 〈fint∇Xk〉 ≡ feff∇〈Xk〉 , (3)

where fint is f evaluated at the interface, due to the δ function property of ∇Xk.
As fluid of phase 1 (2) penetrates phase 2 (1), the frontier portion of that fluid

occupies a small volume and is near the interface. Therefore, in that region f1 (f2) is
a good approximation for feff. Interpolating with the volume fraction, we obtain

feff ≈ β1f2 + β2f1 ≡ f∗. (4)

Therefore the interfacial terms are approximated as follows,

〈f∇Xk〉 ≈ (β1f2 + β2f1)
∂βk

∂z
≡ f∗

∂βk

∂z
. (5)

This equation, written for f = vint, p, and pv, represents the interchange of volume,
momentum, and energy, respectively, between the two phases. In Figure 2, we validate
the approximations veff ≈ v∗ and peff ≈ p∗ using the results of numerical simulations
with At = 2/3 and M2 = 0.5 (the approximation for (pv)eff is as good as that for veff).
In these figures, as well as in the more detailed study [3], we see that the approximations
agree very well with their corresponding exact expressions.

Our derivation of the averaged Euler equations follows [6], with the following ap-
proximations. As in Sec. 2, we set Rk = Sk = 0. We also set ṽk = vk and drop a
small truncated correlation term in the conservation of energy equation, approxima-
tions which have been tested and demonstrated to be highly accurate [3, 4]. Using our
model for the interfacial terms, Eq. (5), we obtain the following effective equations,

∂βk

∂t
+ v∗

∂βk

∂z
= 0, (6)
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Figure 2: A comparison between the interfacial terms 〈vint · ∇Xk〉 and 〈p∇Xk〉 (solid curves)
and their respective approximations as (β1v2 + β2v1)(∂βk/∂z) and (β1p2 + β2p1)(∂βk/∂z)
(dashed curves). In these simulations, At = 2/3 and M2 = 0.5.
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∂βkρk

∂t
+

∂βkρkvk

∂z
= 0, (7)

∂βkρkvk

∂t
+

∂βkρkvkvk

∂z
= −∂βkpk

∂z
+ βkρkg + p∗

∂βk

∂z
, (8)

∂βkρk ε̃k

∂t
+

∂βkρk ε̃kvk

∂z
= −pk

∂βkvk

∂z
+ (pv)∗

∂βk

∂z
, (9)

for k = 1, 2, and
β1 + β2 = 1. (10)

To complete the system of equations, we need an effective equation of state for each
phase, but not for the mixture. Considering the internal energy εk as a function of
density ρk and pressure pk, we approximate the single-phase equation of state from the
microscopic (pre-averaged) equation of state as follows,

εk = εk(ρk, pk) −→ ε̃k ≈ εk(ρk, pk). (11)

In this approximation, we assume that pressure and density variations within a phase are
small relative to variations in these quantities between phases. This simplification avoids
the difficulties commonly associated with composing equations of state for mixtures.

Altogether there are ten equations, Eqs. (7)–(9) and (11) for k = 1, 2, Eq. (6) for
one of the phases, and Eq. (10), and ten unknowns, βk, vk, ρk, pk, and ε̃k for k = 1, 2.
For 0 < βk < 1, our system of equations is closed, with no free parameters.

Equations (6)–(10) are hyperbolic, with characteristic speeds vk and vk ± ck for
each phase and β1v2 + β2v1 for the volume fraction mode. Therefore, the number of
independent modes of the system changes across any surface on which one of the volume
fractions vanishes, as there is no incoming sound wave for the phase of vanishing volume
fraction. In this sense, our closure model is incomplete, but it has reduced the closure
problem from a volume to a surface condition, and has given it an improved physical
basis.

4 RNG Fixed Point Solution

We now present the RNG fixed-point solution of the two-phase model for RT mixing
in the incompressible limit [8]. Introducing the new variables z′ = z/Atgt2, t′ = ln(t),
v′ = v/Atgt, p′ = p/(Atgt)2, and ε′ = ε(Atgt)2, we re-write Eqs. (6)–(8) in terms of
these scaled variables, let ρk = const., and take the fixed-point limit by setting all
t′-derivatives equal to zero, resulting in (after dropping the primes)

(v∗ − 2z)
∂βk

∂z
= 0, 2z

∂βk

∂z
− ∂βkvk

∂z
= 0, (12)
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2z
∂βkvk

∂z
− ∂βkv

2
k

∂z
− βkvk =

1
ρk

∂βkpk

∂z
− p∗

ρk

∂βk

∂z
− βk

At
. (13)

We can first solve for the volume fraction and velocity independent of the pressure.
According to accepted scaling relations for the mixing layer, the distance from the
original undisturbed interface position to the edge of the mixing layer has the form
αAtgt2, where α = αB at the bubble (penetration of the light fluid) edge, and α = αS

at the spike (penetration of the heavy fluid) edge of the mixing zone. In the present
scaled variables, these positions are independent of time, and are z = −αB (bubble
edge) and z = αS (spike edge), at which β1 = 0 and β1 = 1, respectively. Using these
boundary conditions and Eq. (10), Eqs. (12) have the following exact solution in the
interior of the mixing region,

β1 =
z + αB

αB + αS
, β2 =

−z + αS

αB + αS
, v1 = z − αB, v2 = z + αS . (14)

Next, we assume a force balance involving form drag and buoyancy to relate the
density and velocity differences at the spike and bubble edges through the introduction
of new dimensionless (drag) coefficients, CB and CS . This information, which is a
closure hypothesis for the boundaries of the mixing region, completes the fixed-point
solution for β and v by providing the functional relations αB = αB(CB, CS) and αS =
αS(CB, CS). These relations will be studied in more detail in a forthcoming paper [9].
We emphasize that without information about the drag coefficients, our model makes
no prediction of αB and αS .

From this solution and Eq. (13), we derive simple ODEs for the pressure difference
and sum in the stationary limit,

∂(p2 − p1)
∂z

= 2(αSρ2 + αBρ1) + ρ2 + ρ1, (15)

∂(p2 + p1)
∂z

=
2(p2 − p1)
αS + αB

+ 2(αSρ2 − αBρ1) +
ρ1 + ρ2

At
. (16)

These equations can be integrated in closed form, introducing two new integration
constants, C1 and C2, into the solution.

In the absence of information about the pressures at the mixing zone boundaries, we
can make an approximation that the fluid outside the mixing zone, which is stagnant at
t = 0, remains stagnant for all t. In other words, the pressure in a pure phase region is
governed by a hydrostatic, time independent equation, and is therefore determined by
the initial data. This modeling assumption provides two boundary pressures, p1(αS) =
ρ1αS/A and p2(−αB) = −ρ2αB/A, which one would expect to determine the integration
constants C1 and C2. Actually these two boundary conditions determine a linear system
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for C1 and C2 which is degenerate. Solvability is then a constraint on the right hand
side of this system, i.e., the terms independent of C1 and C2 which, after some algebra,
can be written in the form

(1 + At)αBx2 + (2AtαB − 1)x + 1− (1−At)αB = 0, (17)

where x = αS/αB. This quadratic equation has two real roots over the interval 0 ≤
At ≤ 1, for αB ≤ 0.085. The lower root appears to be the physically meaningful one.
This root satisfies x = 1 (αS = αB) for At = 0, as should be the case. If 0 < At,
the roots depend on αB. Substituting αB = 0.06, we obtain the value x = 1.07 for
At = 0.23, x = 1.16 for At = 0.5, and x = 1.3 for At = 0.8 for the lower root, which can
be compared to the experimental values x = 1, x = 1.3, and x ≈ 1.5–1.8 respectively,
for the same At values, given by Read [13] and Youngs [15].

The agreement with experiment is promising but not perfect. The discrepancy can
be attributed to the approximation of stagnant conditions outside the mixing region.
Equation (13) contains a non-zero term, βkvk, which is not present in the t = 0,
hydrostatic equation for the (unscaled) pressure. Since v1 = αS−αB and v2 = αS−αB

in the light and heavy fluid regions, respectively, the error in the approximation is
O(αS − αB) for small A; thus it is zero at A = 0 and it increases with increasing A.
This trend is consistent with the comparison reported above. Again, we emphasize that
this approximation is made in the absence of accurate drag information and is not an
intrinsic aspect of our model.

5 Conclusion

We have proposed a new two-phase closure for chaotic fluid mixing by Rayleigh-Taylor
instability. This model has been validated by comparison with two-phase turbulent
mixing data obtained from numerical solution of the two-fluid Euler equations, which
itself is in agreement with experiment. The one-dimensional two-phase flow equations
derived from our model have a RNG fixed-point solution in the incompressible limit.
Our model is closed in the interior of the mixing zone, but not at the edges. A physical
law for the boundaries, involving form drag and buoyancy, would supply the missing
data associated with the incoming sound wave of the phase of vanishing volume fraction.
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