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Abstract. This paper covers modeling efforts at the CEL-V Applied Maths
Dept. Several items are discussed, including spectral transport modeling
of turbulent mixtures, LES and DNS simulations of instability induced
mixing, and analysis of geometrical patterns in such flows.

1 Introduction

ICF related flows are highly non stationary and, when turbulent, cannot be described
with models that rely on an spectral equilibrium assumption. The spectral transport
model developed by Besnard and al. [9] was generalized to multimaterial flows to
address this problem. Part 1 of this paper emphasizes some of the features of this new
model.

LES modeling is a promising complement to transport models for simulating mixing
processes. The sensitivity of results to the choice of numerical schemes and models was
explored. A massively parallel version of a 3D Navier-Stokes solver was developed, to
which was added a LES capability. Some early results are discussed in Part 2.

Very little is known about the geometrical structure of mix layers. Based on numer-
ical simulations, a model was developed that gives the probability distribution function
of the materials in a layer induced by Rayleigh-Taylor instability. From this pdf, av-
erage variables may be deduced; we concentrate here on the calculation of an effective
opacity in the mix region.

2 Spectral transport model for turbulence

Classical mixing turbulence models are based upon spectral equilibrium assumption,
leading to a small number of equations in the flow description. But these models are
not well suited for non stationary flows. Consequently, models giving information on
the turbulence spectrum itself have to be developed. The case of the incompressible
turbulence has been studied in a collaboration with the LANL T3 group. We recall
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the BHRZ equations system which depends on time t, space variable x, and spectral
variable k :
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part of U .
First, we have shown some results of coherence of this system of equations, then

extended it to the compressible turbulence modeling at variable density and for small
turbulent Mach numbers.

1: E represents an energy density, and then must stay positive. We have shown that,
without the coupling term −2 ∂un

∂xm
Ẽnm in the first equation, this property is confirmed.

We now consider the coupling term −2 ∂un
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Remark : the coupling term follows this approximation at first order.
Then, we have shown that, if the turbulence is located in a bounded domain and if

u is analytic, we have the following estimate :
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2: We derived a model for compressible flows at variable density which is a gen-
eralization of the previous one. We proved that div u′ = 0, if a small turbulent Mach
number is assumed. This estimation has been used, but no constraint on the main flow
has been assumed. We considered evolution equations for the Fourier transforms of the
following terms :

Rij(x1; x2) = ρ(x1)+ρ(x2)
2 u′′i (x1)u′′j (x2), Aiα(x1;x2) = u′′i (x1)ρ(x2)C ′′

α(x2),

ai(x1; x2) = u′′i (x1)ρ(x1)ν(x2), aα(x1; x2) = ν(x2)ρ(x1)C ′′
α(x1),

b (x1; x2) = −ρ′(x1)ν ′(x2).

For instance, comparing with the incompressible case, the equation of Rij(x1, x2) is
given by :
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∂ũj(x)
∂xn

Rin(x, k)
)

−2
3
CB

[
1 +

b(x)
2

]
δij
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Current efforts pertain to the reduction to one-point equations such as “K − ε”.
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Figure 1: Section at x2 = Lx2/2 for t = 5.75ms (left) and t = 6.83ms (right) for a (2, 2) order
calculation; the denser fluid (left) penetrates the less dense one by developing the well-known
mushroom shape, secondary instabilities are observed at the interface.

3 Three-dimensional simulations of Rayleigh-Taylor instability

3.1 Physical issues and numerical choices

We briefly recall the importance of Rayleigh-Taylor instability in inertial confinement
fusion (I.C.F.) experiments and the crucial issue of its numerical simulation. From a
phenomenological point of view, Rayleigh-Taylor instabilities develop on shell interfaces
of targets which symmetry is thus degraded.

Their simulations require numerical methods, robust enough to treat sharp gradients
(e.g. discontinuity in concentration) and compressible effects, and able to let small scales
develop freely during transition to turbulence.
Towards a L.E.S. formulation of the problem: as shown by [7], the projection of the
governing equations on a grid acts as a convolution by a sharp cut-off low pass filter
(noted ¯). Density-weighted filtered variables are defined in the same manner (φ̃ =
ρφ/φ), leading to the following low pass filtered complete Navier-Stokes equations in
their conservative form:
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ρũi

(p− 1
3Tll) δi1 + ρũiũ1
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Figure 2: Isosurface c1 = 0.6 for t = 3.84ms (left) and mono-dimensional energy spectrum of
c1 on x1 for t = 1.44, 3.26, 4.91, 6.46, 8.00, 9.52, 1.10, 1.27, 1.43, 1.60 ms (the eventual curve is
marked with points) plus a k−5/3 slope of reference (right).

The gas mixture obeys a simplified filtered stiffened gas approximation law:

ε̃ =
p + γ p0

(γ − 1)ρ̄
.

T is the subgrid scale tensor, Tij = −ρuiuj − ρ̄ũiũj and Sij = 1
2( ∂ũi

∂xj
− ∂ũj

∂xi
)− 2

3
~∇~̃u δij .

Fi and Di are the fluxes and the diffusivity tensors in the i direction; ρ̄, ũi, ẽ, ε̃, c̃n, gi

are respectively the resolved density, velocity, total and internal energy, concentration
of the species and the gravity force; γ, µ, Re, Pr, Sci are the the specific heat ratio,
the molecular viscosity, the Reynolds, Prandtl and Schmidt numbers. We can take into
account the action of non-resolved scales on the resolved motion by means of a sub-grid
scale model based on the introduction of a turbulent viscosity νt, diffusivity of heat
νt/Prt and species νt/Scit (see [5] for details). This set of equations is resolved by a
code based on Mc-Cormack-type schemes [6] of order (2, 2) or (2, 4) in time and space,
in combination with a flux limiter [6] adapted to multi-species transport to get a TVD
scheme and implemented on CM5 [6]. Diffusive terms are treated through second order
centered differences.

3.2 Results

Let us note x3 the direction where the gravity points; x1 and x2 are the directions
perpendicular to x3. At t = 0, the density follows an exponential distribution along x3:
its values vary from ρ1 = 0.1694kg/m3 to ρ2 = 1.225kg/m3 from one side to another of
an interface Z(x1, x2). We set γ1 = 1.67, γ2 = 1.4; the pressure follows the hydrostatic
equilibrium, imposed by the gravity g = 2.5 105m/s2. Rigid wall boundary conditions
are applied at each face of the domain which dimensions are Lx1 = Lx2 = 1/2Lx3 =
1.75mm for a resolution of 64 × 64 × 128. The Reynolds number is set to 104, which
corresponds to almost non viscous flow (µ ≈ 10−7Pl).
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• Single-mode case.
We performed two simulations for (2, 2) and (2, 4) order schemes, without any turbulent
viscosity because turbulence is weak in this case. For both simulations we observe the
development of the instability up to the impact on the wall (fig. 1).

Linear stability studies show a time evolution of the penetration depth a(t) of the
form a0e

nt with n = 824s−1 for our set of parameters [8]. Our numerical estimation
gives n ≈ 731s−1 and n ≈ 802s−1 for the (2, 2) and (2, 4) calculations respectively.

• Multi-mode case.
Transition to turbulence is so abrupt in this case that the action of non-resolved scales
seems no more negligible; νt is given by the “filtered structure function model” [7], Prt

and Scit are taken equal to 0.6 on the basis of passive scalar turbulent diffusion.
An isosurface of concentration (fig. 2, left) shows the penetration of “bubbles” of the

less dense fluid (towards the top) and “spikes” of the denser one (towards the bottom):
this view is reminiscent, on one hand of many experiments, and on the other hand
of Youngs’ numerical results [8]. Moreover, a global evaluation of α = a(t)/At g t2

gives approximately α ≈ 0.09, which compares well with Youngs’ estimation. After the
filling up of all the spectrum due to transition to turbulence (fig 2, right), an self-similar
decay of the turbulent kinetic energy is exhibited from t ≈ 6.46ms to the end of the
calculation, that is before any interaction with the walls. The slope of the spectrum is
seen to match pretty well a k−5/3 behavior.

3.3 Discussions and conclusions

Even if the main features of Rayleigh-Taylor instability are captured by the simulation,
many questions remain open, among them the sensitivity to initial conditions. Nu-
merically speaking, only weak differences are observed between (2, 2) and (2, 4) order
calculations. Moreover, the real part played by the flux limiter and the subgrid model
in the global result is not clear. Eventually, we want to stress the necessity of further
diagnostics to get more precise information about the transition process (Fourier or
wavelet analysis for example).

4 Patterns in instability analysis - induced mix layers

4.1 Introduction

The passive convection of Lagrangian points by a 2D compressible two-fluids flow is
investigated numerically on a massively parallel computer. The numerical simulation
are devoted to the Rayleigh-Taylor instability. We compute the fractal dimension of a
set of tracer particles located along the interface between the two fluids. A first result
is that this dimension reaches a stationary value. Then this result is used to determine
the effective opacity of the mixture.
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In the second part we study the morphology of the mixing layer via the wavelet
transform of the density field. The multifractal analysis is discussed.

4.2 Fractal dimension

In this section, we compute the fractal dimension of the interface between two fluids
within the mixing layer induced by Rayleigh-Taylor instability. The temporal evolution
of the interface is followed with a set of (initially aligned) particles. The heavy fluid is
lying on top of the light fluid in a gravitational field. This numerical simulation of the
Rayleigh-Taylor instability solves the Euler equations for each fluid, to which boundary
conditions are imposed along the interface.

In our calculations (ρ1 = 0.1694 kg/m3, ρ2 = 1.6 kg/m3, and the Atwood number
is equal to 0.81, see fig.3) between the time t = 2.4430 ms and the time t = 3.0373 ms
the fractal dimension takes values between 1.73 to 1.69, for a large range of scales [1].

From these simulations, one may want to obtain average values for the mixture
properties. We address here the problem of the effective opacity of the medium. Van-
derhaegen [2] starts with the probability to find in the flow a scale x where the flow is
homogeneous and considered a random medium constituted of spherical grains. For the
species A and B, the distribution function of the chord Xi is Qi (i = A, B), the mean
chord length is li, and the opacity is σi. The species A and B are weighted respectively
by the probabilities pA and pB. Vanderhaegen derived an effective opacity σeff of the
media by the following formulas





1
σeff

= l̄ − (σA−σB)2

σAσB(lA+lB)(
σA
qB

+
σB
qA
−σAσB)

,

qi =
∫ +∞
0 Qi(x) e−σix dx,

l̄ = pA
σA

+ pB
σB

.

(1)

In the following part, we take into account the Vanderhaegen ’s method, but we will
use a scaling law deduced directly from geometrical characteristics of the interface. Let
us intersect the mixing layer between two materials A and B with a random line. We
can deduce D from the two-dimensional fractal dimension Df

(2D) of the interface by
[3] Df

(2D) = D + 1. Let us note lc a characteristic scale of the problem. We get the
probability dQ [4] : dQ(x) = (1−D)( lc

x )
D dx

lc
.

For sake of simplicity, and in the absence of any relevant information, we weight the
species A and B by pA and pB, with pA = pB = 1

2 , and therefore l̄ = 1
2 ( 1

σA
+ 1

σB
) .

If we consider, after a certain time, the interface as a homogeneous fractal, we can
simplify QA = QB = Q which implies lA = lB = l. Therefore l is given by :



Besnard, Ducros, et al. 301

Figure 3: Marker particles initially located along the interface and considered at t = 2.4430 ms
(left). Density field at t = 1.9911 ms (right).
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Figure 4: τ(q) for the Rayleigh-Taylor instability (left) and for the dissymmetric triadic Cantor
set (right).

l = lc
1−D

(2−D) and :

qi =
1− e−σilc

σi
− lc

D−1
∫ lc

0
x1−D e−σi x dx . (2)

To conclude, we can compute σeff by (1), but using now (2).

4.3 Wavelet Transform (WT)

In first section we modeled the inter-fluids interface with a homogeneous fractal set.In
the following part, we keep a two-dimensional point of view. The multifractal analysis
is made via the two-dimensional WT. The definition of the two-dimensional WT is :

Tψ[f ](b1, b2, a) =
∫ ∫

R2 f(x, y) ψ̄a,b1,b2(x, y) dx dy,

ψa,b1,b2(x, y) = 1
a2 ψ

(
x−b1

a , y−b2
a

)
,

where b1, b2 are the position parameters ( b1, b2 ∈ R ) and a the scale parameter
(a > 0). In this work, ψ is the Laplacian of a Gaussian function.
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We study the density field computed by a numerical simulation of the Rayleigh-
Taylor instability which solves the Euler two-fluids equations (3). We use a 1024×1024
grid. To interpret the singularities of the density field we plot the moments Mq(ρ) =∫ ∫

R2 |Tψ(ρ)|q as functions of the scale parameter a, because of the following relation :∫ ∫
R2 |Tψ(ρ)|q ∼ aτ(q) , with τ(q) = (q − 1)Dq. The generalized dimensions Dq describe

the degree of inhomogeneity of a fractal set.
Let us note the similarity between our result and the function τ(q) of the dissym-

metric triadic Cantor set ( figure (4) ) [4].

4.4 Conclusions

For the Rayleigh-Taylor instability, the measure of the fractal dimension of the interface
can help to describe the mixing morphology. The fractal dimension is a global quantity,
however we have been able to compute an effective opacity of the random medium via
the fractal dimension.

The multifractal approach can be a useful analysis to describe the evolution of the
small scales structures in the case of the Rayleigh-Taylor instability. In fact, in our
case the density field can be considered as a singular measure. The modeling approach
adopted here is based on the assumption that the geometry of the mixing layer may
be described as a fractal or a multifractal set. The results obtained in the last section
tend to confirm it. In fact, this study was done for a significant time scale.
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