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1 Introduction

One of the characteristic hydrodynamical instabilities is the Kelvin–Helmholtz insta-
bility (KHI), or tangential velocity discontinuity. Most studies of this problem pertain
to the case of incompressible fluids for which the problem formulation is simpler while
capabilities of the methods are broader. Results of solution to the problem for in-
compressible fluids and review of the literature can be found in [1]–[4]. In the small
perturbation approximation the problem of tangential velocity discontinuity instability
in compressible gases for 2D (plane) perturbations was studied by Landau [5].

Analytical description of finite perturbations where amplitude is comparable with
wavelength is hardly possible, therefore the principal method of studying is the numer-
ical simulation method. This paper gives the results of numerical simulation using the
Eulerian technique EGAK [6],[7] of the non-linear stage of the problem under consid-
eration for compressible gases (see also [8],[9]).

Despite the efficiency of using finite-difference methods for solving complex hydrody-
namic instabilities there are some difficulties related to computational grid discreteness
and presence of approximation viscosity.

When studying unstable flows one, as a rule, considers evolution of determinate per-
turbation specified at the initial time in the form of one or several harmonics. With time
owing to process non- linearity perturbations of shorter wavelengths develop, however,
the approximation viscosity present in the difference schemes leads to distorted descrip-
tion of small-scale flows. Therefore, quantitative description of the non-liner stage is
limited to the time starting from which the harmonics of wavelengths comparable with
computational cell size develop.
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2 Non-linear stage of KHI evolution for sinusoidal perturbation

The following problem is considered
There are two ideal gases in the upper and lower half-spaces, having the same initial

pressures and adiabatic indices, equal to P1 = P2 = 0.6 and γ1 = γ2 = 5/3, respectively.
For same initial time, there has been specified an x-periodical sinusoidal perturbation
on the interface

y(t = 0, x) = a1 sin(2πx), (1)

where a1 = 0.1, and perturbation wavelength is λ = 1.
Tangential velocity discontinuity ∆ux = 1 satisfied the plane flow conditions for

relatively small 2D perturbations [6].

∆ux < (c2/3
1 + c

2/3
2 )3/2, (2)

where c1 and c2 are the sound velocities in the upper and lower gases, respectively.
Initial density was ρ2 = 1, and ρ1 was varied as ρ1 = 1, 5, 10.

Computational domain size along x axis was Ln = 1. The computational grid is
square, there were 50 cells per perturbation wavelength period. On side boundaries
periodic boundary conditions were used, and on the bottom and top boundaries there
were rigid walls.

The interface (1) was approximated by piecewise-conditions function. This made
the velocity discontinuity spread in y d = (1÷ 2)h, where h — is the mesh size.

As shown by the analyses of initial perturbations spectrum, the first harmonic a1

has its actual amplitude differing from 0.1 by no more than 1%, with the amplitudes
of harmonics an(1 < n < 10) not higher than 0.01a1. Therefore, the approximation
assumed for initial perturbation was reasonable accurate.

Figures 1,3 illustrate some calculations. Figure 1 shows interface shapes at different
times for the case where the gases have the same initial density. What is observed is the
interface spiraling. This tendency is less marked for density ratio equal to 10 (Figure 2).

Figure 4 shows the interpenetration zone thickness L(t) = ymax − ymin, where ymax

and ymin are the maximum and minimum y-coordinates of the interface. At an earlier
stage, the curves L(t) are linear, with the rise rate decreasing with larger density dif-
ference, and this is qualitatively consistent with the date from linear theory of small
perturbations growing in incompressible liquids. For gases having the same densities,
L is no longer observed at the level L ≈ 0.7.

While density variations n the flows of interest were within 30% the contribution of
the velocity discontinuity smoothing can be estimated by making use of the data from
shear flow instability studies of incompressible liquids. That the incompressible liquid
approximation is suitable for this purpose, is also supported by the similar calculations
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Figure 1: Interface shape evolution
(δ = 1).

Figure 2: Interface shape evolution
(δ = 10).

Figure 3: Interface shape evolution in the stable case (δ = 1).
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Figure 4: Dependence L(t) for sinusoidal perturbation. 1 — δ = 1; 2 — δ = 5; 3 — δ = 10;
dashed line — the problem analogous to the problem 1 (δ = 1), but sound speed was doubled.

where sound velocities in gases were increased two-fold (dashed line in Figure 4). The
interface shapes obtained by this calculation differ from the previous calculated data
by no more than a mesh space.

When the velocity discontinuity smoothing region (0 < y < d) has ux linearly
dependent on y, the instable perturbations spectrum is upper limited by the wave
number value k∗ ≈ 1.3/d [2]. For k = 2p/λ < 0.4k∗, the perturbations increments differ
from those in the velocity discontinuity problem by less than 10%. The calculations
were performed with the spacing scale for velocity discontinuity smoothing d = 0.02,
the harmonic referring to k∗ is that of the number n∗ ≈ 11. Harmonics numbered
n > 11 would not grow. Bat perturbations with harmonic numbers n ≈6 to 11 will
grow significantly slower than for velocity discontinuity case.

Small additional harmonics caused by stepwise shape approximation of the initial
perturbation, and the above considerations both indicate reasonably accurate numer-
ical description of the nonlinear stage of perturbations growth during a limited time.
The mathematical viscosity effects analysis made using analytical assessments and by
numerically solving supplementary problems [10], shows the calculation results for t > 2
are more likely to be qualitative. Good accuracy of the data obtained for t < 2 has
been proved by the calculation with the mesh size taken twice as small.

The numerical solutions were verifies for accuracy and representativeness using a
calculation involving the velocity discontinuity ∆ux = 5. From criterion (2), the flow
like this should be steady with respect to comparatively small 2D perturbations.
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The interface shape as resulting from this calculation is given in Figure 3. Unlike
the non-steady case, there is no perturbations amplitude growth observed here, thus
showing qualitative agreement with the conditions of reference [5].

Thus, the following may be concluded from the analyses of the calculation results.
A harmonically perturbed interface will transform with time into a periodic set of

spirals. Spiraling is the more rapid, the smaller the density difference between the
gases. What was to be observed, that the lateral spiral growth is limited by the value
L ∼= 0.7lλ, this being due to the periodic nature of initial perturbations. The shear flow
instability criterion referring to 2D perturbations (2) has also proved valid for finite
amplitude perturbations.

3 Evolution of perturbations specified superposed harmonics

A computation series was performed where harmonics interaction and its effect on gas
interpenetration were studied.

The calculations have been made for gases having one and same density ρ0 = 1
and the same pressures P0 = 0.6. The velocitiy discontinuity was ∆ux = 1. There
were more computational cells used per unit length (60) than in the above-described
calculations.

Initially, the interface perturbation was specified as:
– superposition of two harmonics:

z(t = 0, x) = a1 cos(2πx/λ1) + ak cos(2πx/λk), where λk = l/k(k = 1, 3), and
– saw-tooth shaped.
Table 1 shows some parameters and results of the calculations.
The following notation is used here: Ak = ak/λk — harmonic amplitude ratio (for

saw-tooth type perturbation Fourier coefficients are given), L = ymax(t, x)−ymin(t, x) —
gas interpenetration thickness, L0 = ymax(t = 0, x)− ymin(t = 0, x).

Figure 5 illustrates the interface shape evolution as obtained in calculations 2
through 4, respectively.

The calculations all observe the gas interpenetration zone stops growing thicker.
The final column in table 1 includes asymptotic values L.

N type A1 A2 A3 A5 L0 L

1 — 0.02 — 0.1 — 0.106 0.45
2 — 0.1 — 0.1 — 0.268 0.5
3 — 0.67 0.1 — — 0.175 0.43
4 saw-tooth 0.082 — 0.03 0.2 0.02 0.43

Table 1: Input parameters and results of the calculations
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Figure 5: Interface shape, (a) — calculation 2; (b) — calculation 3; (c) — calculation 4

Given the first harmonic has smaller amplitude than the third one (calculation
1), a two-stage flow pattern will be then observed. Initially, there will be the first
harmonic rapidly increasing in amplitude, thus making the gas interpenetration zone
grow thicker. Over time, the growth rate of L will be decreasing. Then, the increase in
L becomes dependent on the amplitude growth of the harmonic of n = 3, and thus the
zone thickness grows more rapidly. At later times, L growth rate again will decrease.
However, when the first harmonic’s initial amplitude is larger than that for the harmonic
of n = 3, no two-stage flow pattern will be observed.

Why the gas interpenetration zone stops growing thicker, can be understood from
the following qualitative analogy. By virtue of its periodic nature, the perturbations
spectrum is limited and contains for any t only harmonics with the wave number
k ≥ 2π/Ln, where Ln — is the computational field size in x axis. Shear flow is a
rather complex pattern during its nonlinear stage (with a set of spirals forming). If one
considers it as averaged flow with continuously distributed velocity, then it should be
stable against perturbations having wave number k > k∗ ≈ (1 − 2)/L [11]. By times
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where L > (1− 2)Ln/2π, this flow should become stable against perturbations having
any wave numbers possible.
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