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Abstract. A new realization of the two-phase flow approach is presented
and applied for the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM)
instabilities. The mixing zone fronts and interior are treated separately,
yielding a physically motivated model that is easier to implement numer-
ically than standard two-phase flow treatments. In the model, the evolu-
tion of the mixing zone boundaries is given by point equations, based on
the physics of large-scale structure at the fronts. The inner zone mixing
is governed by a diffusive scheme that simplifies standard two-phase flow
equations. The mixing-model parameters are determined by comparison to
theoretical models. The linear stage and late-time growth scaling laws, for
both RT and RM cases, as well as the mixing profiles, are obtained in good
agreement with full-scale numerical simulations.

1 Introduction

The Rayleigh-Taylor (RT) [1] and Richtmyer-Meshkov (RM) [2] instabilities play a
crucial role in ICF compression [3]. This process involves multi-mode perturbations
growing in regimes of time dependent acceleration, compressibility, thermal conduction
and multiple shocks in a complex geometry. The relevant perturbation modes may
span several decades in wavelength [4]. It is thus impractical in many cases to perform
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detailed direct numerical simulations of the instability growth. Existing theoretical
treatments are limited to idealized situations [5, 6, 7, 8, 9, 10]. Simple mixing models
are therefore needed to assess the effects of mixing in realistic situations.

A commonly proposed class of models are those based on turbulent transport
[11, 12, 13]. An important feature of turbulence models is that both the inner zone
structure and the evolution of the mixing zone boundaries are determined by the tur-
bulent diffusion process. Turbulent transport models contain many empirical parame-
ters, associated with the various closure approximations. Even the simplest turbulence
models contain on the order of ten such parameters [11, 12, 13]. These parameters
are typically calibrated based on developed turbulence experiments and models, as well
as mixing experiments. However, the basic assumption made in such models, that
the coarse-grained mixing zone evolution is primarily due to the small scale turbulent
motion, seems to contradict numerical and theoretical evidence that suggest that the
mixing front evolution is dominated by large structures [9, 10, 16, 17, 18]. This is re-
flected in the fact that in many studies, it has been found that it is difficult to obtain
a set of model parameters that simultaneously reproduce numerical and experimental
results for both RT and RM problems [12, 13, 16], and different parameter sets are
needed to describe different experiments.

The large-structure nature of the flow is more naturally included in the two-phase
flow (2PF) approach, which considers the flow as divided into regions rich with light
fluid, that are correlated with an upwards velocity, and regions rich with heavy fluid that
are correlated with a velocity in the opposite direction. The main large-scale features
of the flow are captured by considering two phases, which obey conservation laws and
interact with each other. The variables associated with these phases are the phase
volume fraction fi, the density ρi and the phase velocity ui, as well as the phase internal
energies and equations of state. In 2PF treatments [17, 19, 20, 21, 22, 14, 25, 27], the
Euler equations, which are valid for the mean flow, are separated into two components,
one for each phase. Each phase obeys separate mass and momentum equations, the
latter with phenomenological drag and pressure partition terms.

This implementation of the 2PF approach suffers from several drawbacks. First, it
is significantly more difficult to implement numerically [26] than diffusive-type mixing
models. Second, in order to calibrate the model, it is necessary to solve the partial
differential equations over the entire mixing zone. Since the front evolution and the
inner-zone structure are linked in a complicated manner, it is not easy to point out the
role of different parameters in controlling the front evolution.

Here we implement the 2PF approach in a new way which helps overcome these
drawbacks. In the new model, the evolution of the fronts and the evolution of the
inner-zone mixing are described by separate equations. These are cast in a form that
is simple to handle numerically. In Sec 2 we describe ODE’s for the bubble and spike
fronts that mark the boundaries of the mixed region. These equations are obtained
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by interpreting the 2PF equations at the fronts in terms of large-structure buoyancy
and drag physics. In this way, the functional form and coefficients of these terms
are determined by comparison to potential-flow [5, 33] and bubble-merger [6, 7, 9, 10]
theories, that have yielded scaling-laws for the RT and RM instabilities. This allows
both the bubble and spike, RT and RM, linear stage and late-time multimode scaling
laws to be captured with a single set of parameters. In Sec 3, we outline a treatment of
the inner-zone mixing, between the two fronts. A summary and discussion of the model
results is given in Sec. 4. A detailed description of the model and further comparison
with simulations will be presented in a forthcoming publication.

2 Point equations for the bubble and spike fronts

We consider the mixing of two fluids of densities ρi, where i = 1 denotes the lighter
fluid and i = 2 the heavier fluid, under an acceleration g(t). The Atwood ratio is
A = (ρ1 − ρ2)/(ρ1 + ρ2). ODE’s for the location of the bubble and spike fronts are
obtained based on the physics of the large structures that dominate these fronts. Based
on the balance of buoyancy and kinematic drag on large fluid structures, [10, 31, 32],
we employ the equation

dUi/dt = CB,i(A)g(t)− CD,i(A)Ui|Ui|/Li (1)

where Ui = dHi/dt is the velocity of the front of fluid i, CB,i and CD,i are dimension-less
constants that depend on the Atwood number and Li is proportional to the dominant
structure size. Note that this equation is valid also for g < 0, describing stable waves
on the interface.

We first consider the bubble front. To obtain the coefficients for this case, we note
that Eq. 1 is equivalent to Layzer’s A = 1 single mode potential flow model [5] when
using

CB,i = A(1−E)/(2 + E) (2)

CD,i = 6π/(2 + E) (3)

where E = exp(−6πH1/L1). In the linear stage, when L1(t) ≈ L1(t = 0) = λ0, where
λ0 = 2π/k with k the mean initial perturbation wavenumber, we obtain both the RT
and RM linear growth equations. At times somewhat after the perturbation reaches
the nonlinear stage, the multi-mode fronts have been found to reach a scale-invariant
regime [8, 9, 10] where the dominant mode’s wavelength is proportional to the front
penetration [10]. This suggests the following equation for the length scale (see also
Ref [27])

dL1/dt = β1U1 L1(t = 0) = λ0 (4)

where β1 is a parameter that represents the effects of bubble competition in the mul-
timode case. To find β1 we use the RT scaling laws [1, 6, 7, 10, 33], and, as shown
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below, get a satisfactory model for both RT and RM cases. In the RT case, g(t) = g,
and using H1 = αB(A)gt2 we obtain from Eq 1 a relation between β1 and αB:

αB = CB,1/(2 + 4CD,1/β1) (5)

Layzer’s model values for CB,1 and CD,1, Eqs. 2 and 3, approach CB,1 = A/2 and
CD,1 = 3π at late times. This suggests the value

β1 ≈ 2π (6)

in order to get αB ≈ A/16 = 0.0625A in good agreement with experiment [18] simu-
lations [6, 17, 20] and theory [7, 10]. We now use the same values of the parameters
for the later-stage RM case, solving Eq 1 using an initial velocity U1(t = 0) = u0 and
g(t) = 0. This yields as late times

H1 ∼ (u0t/λ0)θB θB = 1/(1 + CD,1/β1) = 0.4 (7)

in good agreement with recent results [9, 10] coefficient values for both RT and RM
suggests that the nonlinear evolution of both instabilities relies on similar large-structure
physics. Note that the late-time RM front penetration, Eq. (7), depends at all times
on u0 and λ0, the mean initial perturbation velocity and wavelength [9, 10, 27]. This
is in contrast with the RT case, in which memory of the initial perturbations is lost.

Similar considerations are made for the spike front, with the same form for the front
equation, Eq 1. In order to obtain the same linear growth rate for the bubbles and
spikes, the value of the buoyancy coefficient is the same as in the bubble case (Eq. 5),
CB,2 = CB,1. A separate length-scale, L2, is used to describe the spikes (L1 and L2 can
be viewed as the values at the two fronts of a space dependent length-scale [25]):

dL2/dt = β2U2 (8)

with β2 = β1 = 2π.
The spike drag coefficient is determined from the RT scaling laws

CD,2 = π(4/F (A)− 1) (9)

where F (A) = αS/αB is the ratio of spike and bubble front penetrations. We use a
simple form for F (A) based on numerical [17], experimental [18] and theoretical [10, 20]
studies of αS/αB, where F (A) ∼ 1 + A at low A, and F (A = 1) = 4 (so that the spike
drag vanishes at A = 1). Applying this to the RM case, yields H2 ∼ (u0t/λ0)θS(A).
This implies a relation between αS(A) and θS(A), which yields values for θS(A) in good
agreement with theory and simulations [10, 28], where the exponent was found to rise
with A, from θS(A) = 0.4 at low A to θS(A = 1) = 1. We note that the point equations
may be easily applied to the case of time-dependent driving acceleration g(t), yielding
results in agreement with recent theoretical treatment of this case described elsewhere
in this volume.
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Figure 1: Diffusion coefficient from the self-similar 2PF solution of Ref. [20] (heavy line) and
present model (light line). The self-similar mixing zone boundaries in the 2PF model are slightly
different than the present point equations, especially in the spike front at high density ratios.
Therefore, we use the 2PF solution values for the scaled front penetrations in the comparison.
The Atwood number is A=0.5.

3 Mixing zone structure

We now consider the mixing zone inner structure. We work in a Lagrangian frame
(which, in the presence of mixing, is defined so that Lagrangian cells contain a constant
mass [12]), and incorporate the mixing model into a 1D hydrodynamic code in which
the mean fluid velocity and internal energy are tracked. Consider for simplicity the
case of two incompressible fluids. The mixing zone boundaries are tracked, by solving
the front equations [Eq. 1]. The fluid volume fractions fi are advected in a Lagrangian
formulation according to [17] ∂fi/∂t = ∇ · (fiui), which may be formally written as a
diffusion equation:

∂fi/∂t = ∇ · (D∇fi) (10)

We obtain the effective diffusion coefficient, defined by D = uifi/∇fi by comparison to
an analytic solution of a 2PF model: in the incompressible RT case, an analytic solution
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Figure 2: Heavy fluid volume fraction as a function of the scale invariant coordinate s = x/gt2,
in an incompressible RT case. Dashed lines are simulation results, full line is the Freed et. al.
2PF self-similar result, and the heavy dots are the present model results. The Atwood number
is A=0.5.

of the 2PF model introduced by Youngs [17] was presented by Freed et. al. [20]. In the
self-similar 2PF solution [20], both fi and ui vary roughly linearly across the mixing
zone, at all A. Thus, a good approximation for the effective diffusion coefficient is a
parabolic shape:

D(x) =
{

1
2
|U1|+|U2|
|H1|+|H2| [x−H2][x + H1] H2 < x < H1

0 otherwise
(11)

At the limit of low Atwood numbers, one can analytically show that D from the
2PF solution goes exactly to Eq 11. The effective diffusion coefficient from the 2PF
solution is compared with Eq. 11 in Fig. 1 for A = 0.5. The agreement is seen to be
good, and similar agreement is found for all A. In Fig. 2 the present model is compared
with the 2PF model solution [20] and full-scale numerical simulation results in the self-
similar regime. The numerical simulations started from an initial random multimode
perturbation. The simulations were performed using Leeor-2D, a compressible, ALE



20 Two–Phase Flow Model for RT and RM Mixing

0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

x(cm)

f

t=0.1

0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

x(cm)

f

t=0.3

0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

x(cm)

f

t=0.5

0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

x(cm)

f
t=0.05

Figure 3: Heavy fluid volume fraction in a RM case. The full line is the simulation results,
and the dashed line is the mixing model results, at various times, t = 0.05, 0.1, 0.3, 0.5 ms,
representing both the early and late stages of the flow. The Atwood number is A = 0.5.

code with interface tracking [20]. The agreement between model and simulation is seen
to be good.

We now turn to the RM case. We performed simulations with g = 0 and an initial
multimode velocity perturbation [27]. In this case, there is no natural scale for the
problem, such as the scale gt2 in the RT case. In Fig 3, the volume fraction contours
from the simulation and the model are compared at several times, both in the early
and late stages of the flow (when the late-stage scaling laws already apply), at A = 0.5.
The agreement is seen to be good. Similar agreement was found for all values of A [34].

4 Conclusions

A new realization of the 2PF approach was presented and applied for the RT and
RM instabilities. The model simplifies standard 2PF treatments, separating the front
evolution and the inner-zone mixing. The method advantages are easy and physically
meaningful calibration of the front penetration based on large-structure physics, and a
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numerically simple diffusion form for the inner zone mixing. The model was compared
to 2D numerical simulations for classical, incompressible cases at various density ratios.
Both RT and RM early and late-time growth and mixing profiles are well described
with a single set of parameters. These parameters have been systematically derived
by comparison with theoretical models. The mixing-model may be simply included in
existing 1D hydrodynamic codes [36].

The present model should be viewed only as a first step towards an effective mixing
model that includes the full physical effects in realistic problems. More complicated
effects that require further study include the effects of compressibility, including loss of
scale invariance in compressible RT problems [6], multiple shock passage [11, 12, 15, 21]
and treatment of molecular level mixing [21, 27].

References

[1] D. Sharp, Physica D 12,3 (1984).

[2] R.D. Richtmyer, Commun. Pure Appl. Math. 13,297 (1960); E.E. Meshkov, Fluid. Dyn.
,101 (1969).

[3] S.W. Haan, Phys. Rev A 39,5812 (1989).

[4] D. Layzer, Astrophys. J. 122,1 (1955).

[5] C.L. Gardner, J. Glimm, O. McBryan, R. Menikoff, D.H. Sharp, Q. Zhang, Phys. Fluids
31,447 (1988); J. Glimm, X.R. Li, R. Menikoff, D.H. Sharp, Q. Zhang, Phys. Fluids A
2,2046 (1990).

[6] J. Glimm, D.H. Sharp, Phys. Rev. Lett. 64,2137 (1990); J. Glimm, Q. Zhang, D.H. Sharp,
Phys. Fluids A 3,1333 (1991).

[7] U. Alon, D. Shvarts, D. Mukamel, Phys. Rev. E 48,1008 (1993).

[8] U. Alon, J. Hecht, D. Mukamel, D. Shvarts, Phys. Rev. Lett. 72,2867 (1994).

[9] U. Alon, J. Hecht, D. Ofer, D. Shvarts, Phys. Rev. Lett., 74,534 (1995).

[10] V.A. Andronov, S.M. Bakhrakh, E.E. Meshkov, V.N. Mokhov, V.V. Nikiforov, A.V. Pen-
itskii, A.I. Tolshmyakov, Sov. Phys. JETP 44,424 (1976).

[11] C. E. Leith, ”Development of a Two-Equation Turbulent Mix Model”, UCRL-96036 (1986).

[12] S. Gauthier, M. Bonnet, Phys Fluids A 2,1685 (1990).

[13] V.A. Andronov, S.M. Bakhrakh, E.E. Meshkov, V.V. Nikiforov, A.V. Penitskii, A.I. Tol-
shmyakov, Sov. Phys. Doklady 27,393 (1982)

[14] D.C. Besnard, J.F. Haas, R.M. Rauenzahn, Physica D 37,227 (1989).

[15] D.C. Besnard, M. Bonnefille, P.B. Spitz, F.H. Harlow, R.M. Rauenzahn, ”Turbulence
Transport Modeling of Unsteady Multi-material Flows: Calibration of Model Constants”,
in Proceedings of the Third International Workshop on Physics of Compressible Turbulent
Mixing, edited by R. Dautrey (DAM, Abbey of Royaumont, France, 1991).



22 Two–Phase Flow Model for RT and RM Mixing

[16] D.L. Youngs, Physica D 12,32 (1984).

[17] K.I. Read, Physica D 12,45 (1984).

[18] Turbulent transport terms may be added to 2PF models (discussed below) to describe local
microscopic mixing inside the mixed region, while the large scale features are described by
2PF physics.

[19] N. Freed, D. Ofer, D. Shvarts, S.A. Orszag, Phys. Fluids A 3,912 (1991).

[20] D.L. Youngs, Physica D 37,270 (1989).

[21] M.J. Andrews, D.B. Spalding Phys. Fluids A 2,922 (1990).

[22] D.C. Besnard, F.H. Harlow, Int. J. Multi-phase Flow 14,679 (1988).

[23] C.W. Cranfill, Los-Alamos National Laboratory Report, LA-UR-92-2482, 1992.

[24] W.P. Crowley, E. Burke, private communication.

[25] F. Harlow, A. Amsden, J. Comp. Phys. 18,440 (1975).

[26] D.L. Youngs, Laser and Particle Beams 12,275 (1995).

[27] U. Alon, D. Shvarts, ”Two Phase Flow Model for the Rayleigh-Taylor and Richtmyer-
Meshkov Instabilities”, to be published.

[28] J.W. Grove, R.L. Holmes, D. Sharp, ”Numerical investigation of Richtmyer-Meshkov in-
stability using front tracking”, LA-UR-94-2024.

[29] Y. Yang, Q. Zhang, D.H. Sharp, Phys. Fluids 6 1856 (1994).

[30] D. L. Youngs, ”Experimental investigation of turbulent mixing by RTI” Advances in Com-
pressible Turbulent Mixing, edited by W.P. Dannevick, A.C. Buckingham and C.E. Leith
(Princeton 1992) p. 607, Conf-8810234.

[31] H. Takabe, A. Yamamoto, Phys. Rev. A 44,5412 (1991).

[32] J. Hecht, U. Alon, D. Shvarts, Phys. Fluids, 6,4019 (1994).

[33] D. Ofer, D. Shvarts, Z. Zinamon, S.A. Orszag, Phys Fluids B 4,3549 (1992).

[34] U. Alon, D. Shvarts, to be published.

[35] R. Epstein, J.A. Delettrez, C.P. Verdon, U. Alon, D. Shvarts, ”Simulations in 1D of Fuel-
Pusher Mixing in Laser Driven Implosions”, paper 2E9, Bull. Am. Phys. Soc. 40,1669
(1995).

[36] M.J. Dunning, S.W. Haan, Phys. Plasmas 2,1669 (1995).

[37] D. Shvarts, U. Alon, D. Ofer, C.P. Verdon, R.L. McCrory, Phys. Plasmas 2,2465 (1995).


