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Abstract. The nonlinear Rayleigh-Taylor (RT) and Richtmyer-Meshkov
(RM) instability are investigated by theoretical models based on single-
mode and two-bubble physics at all Atwood numbers (A). A potential-flow
treatment of single-mode perturbations shows that the late-time RM single
mode velocity decreases as v ∼ λ/t, as well as quantifying a two-bubble
overtake interaction (“merger”) analogous to that found in the Rayleigh-
Taylor instability. Using these results in conjunction with a statistical-
mechanics merger model, the late time scaling of the RT bubble and spike
fronts, as well as novel scaling laws for the multi-mode RM fronts, are
obtained. Multi-mode RT bubble [spike] fronts are found to go as hB =
0.05Agt2 [hS = αS(A)gt2]. The multi-mode RM bubble front is found to
go as hB = aBtθB where θB = 0.4 at all A, while the spike front goes as
hS = aStθS where θS depends strongly on A. The dependence of aB and aS

on the initial perturbation was found. These results are in good agreement
with full-scale hydrodynamic simulations.

1 Introduction

The Rayleigh-Taylor (RT) instability [1] occurs when a fluid accelerates a heavier fluid,
or more generally when a pressure gradient opposes a density gradient. The related
Richtmyer-Meshkov (RM) instability [2] occurs when a shock wave passes a perturbed
interface between two fluids. These instabilities are of extreme importance in achieving
inertial confinement fusion [3]. Under the instabilities, small perturbations on the
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interface between the fluids grow into column-shaped bubbles of light fluid and jet-
like spikes of heavy fluids. At late times, a highly disordered mixing zone is formed.
Questions of interest include the growth rate of the mixed region (bubble and spike
fronts), its large-scale features and the effects of the form of the initial perturbation on
the late time behavior.

In the multimode RT instability, both the bubble and spike front penetrations grow
as gt2, where g is the driving acceleration. The large scale structure in the mixed
region exhibits a self-similar behavior with this scale [4] [5]. In this case, it is natural
that gt2 is the only dimensional length scale of the problem, after the initial conditions
have been forgotten. In contrast, the impulsive nature of the RM instability does not
induce such a well defined, self-similar law of fluid interpenetration. Many attempts
to experimentally [6], theoretically [7] or numerically [8] [9] [10] derive a simple scaling
law of the RM instability did not result in a satisfactory theory that could predict the
nonlinear evolution of the mixing zone.

In the following sections we briefly describe our theoretical and numerical study
of this system. Detailed information may be found in Ref [12, 13, 14, 15, 16]. We
employ a statistical physics approach, modeling the mixing zone caused by these insta-
bilities using effective particles (fluid bubbles and spikes) and their interactions (bubble
overtakes or “mergers”). The hydrodynamic behavior of single-mode bubbles and two-
bubble competition were calculated using a potential flow model described in Sec 2.
The collective behavior of a large bubble ensemble was treated using a bubble-merger
model, described in Sec 3. The main characteristic of the bubble front is that it reaches
scale-invariant dynamics. This is used in Sec 4 to derive novel scaling laws for the non-
linear RT and RM instability growth rates. Additional results on the Rayleigh-Taylor
instability in 3D [16], and under a time dependent driving acceleration can be found in
elsewhere in the present volume.

2 Potential-flow model of single mode and two-bubble interactions

In order to understand the mixing zone bubble fronts, it is important to understand
the single bubble behavior and two-bubble competition interactions. We considered
the simple case of an incompressible inviscid fluid accelerated by a much lighter fluid
that may be represented by a free boundary with constant supporting pressure. An
approximate solution to the resulting potential-flow problem of an array of such bubbles
was constructed. The solution generalizes a previous model for single-mode bubbles due
to Layzer [18], to include multi-bubble competition in various geometries.

The model, which was presented in Ref [13], is based on the observation that the
flow of fluid bubbles is governed by the behavior near their tips. The fluid velocity
is given by the gradient of a potential u = ∇φ. Near the tips, the flow is described
by a potential that is a sum of modes that satisfy Laplace’s equation in the relevant
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geometry, with time-dependent coefficients. The interface near the tip of bubble i is

z(x, t) = z0,i(t) + z1,i(t)(x− xi)2 (1)

The interface move with the fluid, as described by the kinematic equation

uz = ∂z/∂t + ux∂z/∂x (2)

evaluated at the interface. The dynamics are given by Bernoulli’s equation

∂φ/∂t + 1/2(u2
x + u2

z) + gz = const. (3)

We expand these equations to second order near the bubble tips.This yields differen-
tial equations for the bubble’s heights z0,i(t), their curvatures z1,i(t) and the potential
amplitudes an(t).

The model yields very good results for the well-studied RT case, with the correct
linear and early nonlinear evolution, and asymptotic velocity u =

√
gλ/(6π) [18]. For

the RM case, a new result for the asymptotic single-mode velocity is analytically found:
u = (3π)−1λ/t. This result is in agreement with our full-scale simulations [13].

Two-bubble competition was found to be qualitatively similar for both RT and RM
instabilities. This represents a coarsening interaction, where large bubbles are formed
from the competition between smaller bubbles. The rates at which the merger process
occurs were calculated, for a periodic array of bubbles of two different sizes. The basic
physics of the process were understood by a simple heuristic model of the balance of
buoyancy and kinematic drag forces [15]. The ratio of the drag and buoyancy forces per
unit mass goes as the ratio between the bubble area and volume, S/V ∼ 1/λ, and is
thus smaller for larger bubbles. Thus, larger bubbles rise faster, leading to the overtake
interactions that govern the front evolution.

The potential-flow model was applied also to finite fluid layers and to study aspect-
ratio effects in 3D geometries. These results are described in Ref [13].

3 Bubble-merger model for collective behavior of bubble ensemble

The RT mixing zone is topped by column-shaped bubbles of light fluid, rising and
competing. At late nonlinear stages, large bubbles rise faster than smaller ones. A
bubble adjacent to smaller bubbles expands and accelerates while its neighbors shrink
and are swept downstream. This process leads to a constant growth of the surviving
bubbles and to an acceleration of the front. This description of the mixing front was
pioneered by Sharp and Wheeler (SW), who proposed a model for bubble rise and
competition [1, 11]. We presented [12] a bubble-merger model for the collective behavior
of bubble ensembles at the fronts, which allows realistic merger rates and treatment of
more general flow problems. The model is also simple enough to allow some features
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to be analytically derived. In the model the bubbles are arranged along a line, and are
characterized by their diameters (wavelengths) λi. The bubble competition is included
by a merger rule: two adjacent bubbles of diameters λi and λi+1 merge at a rate
ω(λi, λi+1), forming a new bubble of size λi + λi+1. This represents the surviving
bubble expanding to fill the space vacated by the smaller bubble that was washed away
from the front. Each bubble rises with a velocity u(λi) equal to the asymptotic velocity
of a periodic array of bubbles with wavelength λi. The mean interface hight is found
by using the average bubble velocity dh(t)/dt = 〈u〉.

To analyze the model, we define the size distribution function g(λ, t)dλ as the num-
ber of bubbles in the front with wavelengths within dλ of λ. In the mean field approxi-
mation, neglecting correlations between neighboring bubbles, we can write an evolution
equation for the size distribution:

N(t)∂g(λ, t)/∂t = −2g(λ, t)
∫ ∞

0
g(λ′, t)ω(λ, λ′)dλ′

+
∫ λ

0
g(λ− λ′, t)g(λ′, t)ω(λ− λ′, λ′)dλ′ (4)

where N(t) =
∫∞
0 g(λ, t)dλ is the total number of bubbles at time t. The first term

on the right-hand side of Eq 4 is the rate of elimination of bubbles of wavelength λ by
mergers with other bubbles, and the second term is the rate of creation of bubbles of
wavelength λ by the merger of two smaller bubbles.

It was instructive to analytically solve the model in a simple case ω = const [12].
In this case, no correlations are formed and Eq 4 is exact. Its solution was obtained
using Laplace transforms. It was shown that the bubble size distribution approaches a
scale-invariant form

g(λ, t) = N(t)〈λ(t)〉−1f(λ/〈λ(t)〉) (5)

where 〈λ(t)〉 is the mean bubble diameter at time t. The scaled distribution f is selected
out of a family of fixed-points. The selection mechanism is related to the central-limit
theorem, since the sizes of bubbles that survive to late times are sums of lengths of
many original bubbles [12]. All initial distributions with a finite variance were shown
to flow to one fixed-point. “Unphysical” initial distributions with long, power-law tails
that have no variance, flow to other scaled distribution functions, each with the same
tail as the initial distribution. Thus, for a wide class of initial bubble distributions that
includes all physically realizable ones, the dynamics flows to a scale-invariant regime
which is independent of initial conditions. This was shown apply to other forms of the
merger rate as well, by monte-Carlo simulation of the model.

In order to apply the model to quantitatively derive the front evolution, the single-
bubble velocity and two-bubble merger rate ω must be supplied. We obtained these by



12 Scaling Laws of Nonlinear RT and RM Instabilities

a potential flow calculation, described in Sec. 2 for A = 1, and by numerical simulation
of the two-bubble problem for A < 1.

4 Scaling laws of nonlinear Rayleigh-Taylor and Richtmyer-Meshkov
mixing fronts

In realistic systems, the instabilities develop from noisy initial perturbations, that con-
tain many short-wavelength modes. To find the scaling laws for the multi-mode case,
we applied the cellular coarsening model of Sec 3, with the merger rates calculated
from the potential flow model. This is described, for the case of a large ratio of fluid
densities, in Ref [14]. The scaling of the bubble and spike fronts for all density ratios
was derived in [15].

The bubble merger model described above predicts that both the RT and RM front
dynamics flow to a scale invariant regime, where the bubble size distribution scales
with the average wavelength. The growth rate of the bubble front penetration hB in
this regime was derived. In the RT case, the model results in hB = αBgt2. Using the
scale-invariant fixed point distribution from the merger model, we find αB = 0.05A.
This result is in good agreement with experiments [4] and simulations [11] [4] [5]. The
approach to a scale invariant form independent of the detailed initial bubble distribution
in the model explains the observed independence of the mixing rate on the initial
perturbation [12, 19].

The results for the RM bubble front exhibit new scaling behavior. The bubble front
penetration is

hB ∼ λ0(u0t/λ0)θB (6)

where θB = 0.4 at all density ratios,and λ0 and u0 are the mean initial wavelength
and velocity. This is an important difference from the RT case: in the RM case, the
penetration depends on information from the initial perturbation at all times. These
predictions are in good agreement with our full scale numerical simulations, using the
hydrodynamic code LEEOR-2D [5].

We then considered the spike front, where jets of heavy fluids penetrate the light
fluid region. At a very high density ratio between the fluids, A = 1, the spike behave as
freely falling drops. In the RT case this leads to a spike front penetration that goes as
gt2, the same scaling as the bubble front. But in the RM case, at A=1 the spikes fall
at a constant velocity, i.e. as hS = aStθS , with θS = 1, as compared with θB = 0.4 for
the bubbles. Thus, in the RM case, the bubble and spike fronts display different power
laws.

To help understand the spike front behavior, we applied the present method to the
spike front, by noting that the dominant spikes visible in the flow have roughly the
same periodicity as the dominant bubble structures, and the coarsening of their size
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can therefore be described by the same merger rate ω. The spike velocity used in the
merger model is not its terminal velocity but rather the velocity of a single-mode spike
when the amplitude of the corresponding bubble is hB/λ ≈ 0.25. In the RT case, this
yields for the spike front penetration hS = αS(A)gt2 with αS(A) an increasing function
of the density ratio, that agrees well with simulation and experimental results. In RM,
we find hS ∼ λ0(u0t/λ0)θS , with θS going from θS = 1 at A = 1, to θS = θB ≈ 0.4 at
low A, where the bubble and spike fronts are almost symmetric. These results are in
good agreement with our full-scale RM simulations.
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