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FOREWORD 

On October 24-27, 1988, an international workshop was held at Princeton 
University, Princeton, New Jersey, on the physics of compressible turbulent mixing. The 
idea for the workshop originated with David L. Youngs at Aldermaston, Reading, United 
Kingdom, in 1986. Organization of the workshop was begun in late spring, 1987, by 
Youngs, his Aldermaston colleagues, and a small group of scientists at the Lawrence 
Livermore National Laboratory in California. Immediate and enthusiastic response from 
scientists in Europe, the Soviet Union, Canada, and the United States confirmed the 
timeliness and appropriateness of the subject matter. 

For the workshop content, the organizers sought a balance between experimental and 
theoretical investigations of high-speed compressible turbulent mixing in free shear layers, 
wakes, jets, and boundary layers. With the exception of a few selected presentations on 
flow instabilities at low Mach Number, the organizers purposely sought contributions on 
supersonic flow with developing turbulence as opposed to transitional flows. Particular 
emphasis was given to the influence of high-speed compressibility, including the influence 
of shock waves on turbulence rather than combustion flow situations because the latter 
appear to have a substantial forum, whereas the physics of high-speed flow mixing and 
transport have a limited forum. 

There were over 150 workshop participants. A single daily session of talks was 
scheduled, supplemented by scheduled poster sessions. Each day, panel discussions were 
summarized by the organizers. A good cross section of current understanding and research 
in compressible turbulent mixing was provided by participants from Canada, the United 
Kingdom, the Federal Republic of Germany, France, the then Soviet Union, and the 
United States. 

In addition to the three editors of this volume, all from Lawrence Livermore National 
Laboratory, the organizers of this workshop included: C. David Levermore, University of 
Arizona; Steven A. Orszag, Princeton University; Raold Z. Sagdeev, Space Research 
Institute, Academy of Sciences of the USSR; and David L. Youngs, Atomic Weapons 
Establishment, Aldermaston, Reading, United Kingdom. 

The editors gratefully acknowledge the sponsorship for this Workshop provided by 
the Department of Energy's Lawrence Livermore and Los Alamos National Laboratories, 
Princeton University, the National Science Foundation, the U.S. Army Research Office, 
the Office of Naval Research, and the Air Force Office of Scientific Research. 
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INTRODUCTION 

This volume, Advances in Compressible Turbulent Mixing, includes some 

recent additions to original material prepared for the Princeton International Workshop on 

the Physics of Compressible Turbulent Mixing, held in 1988. The Princeton Workshop 

was organized to exchange views, collect available data, and report on work in progress 

and planned research in the topical area of compressible turbulent mixing. Workshop 

participants were asked to emphasize the physics of the compressible mixing process rather 

than measurement techniques or computational methods. To this end, actual experimental 

results and their meaning were given precedence over discussions of new diagnostic 

developments. Similarly, theoretical interpretations and understanding were stressed rather 

than the exposition of new analytical model developments or advances in numerical 

procedures. 

By design, compressibility influences on turbulent mixing were discussed-almost 

exclusively-from the perspective of supersonic flow field studies. This distinction 

unfortunately, but purposely, excludes contributions from the turbulent combustion 

community. However, at the characteristically lower combustion flow speeds usually 

encountered, the role of acoustic propogation in turbulent field evolution is much less 

significant than is is in supersonic flow. In addition, the reactive complexity of turbulent 

combustion flows reduces the opportunity for unambiguous isolation and investigation of 

fundamental questions in the dynamics of compressible turbulent flow processes. For 

example, Workshop emphasis was placed on questions about the interactively coupled 

influences of entropy, vorticity, and acoustic field fluctuations on turbulent mixing and 

transport development, evolution, and dissipation. An additional consideration is that 

combustion necessarily introduces added turbulent production complications associated 

with reactive energy release, as well as multicomponent species production/annihilation 

influences on density fluctuations. While these added complications are of great 

importance in combustion analysis, they are substantially beyond the range of physical 

processes chosen for special emphasis in this Workshop. Consequently, in the organizers 

view, the inclusion of turbulent combustion contributions would unnecessarily dilute the 

primary emphasis and goals established for the Workshop. 



The papers are arranged in three topical categories: Foundations, Vortical 

Domination, and Strongly Coupled Compressibility. 

The Foundations category is a collection of fundamentally seminal studies that may 

be considered a bridge connecting what currently is under study in compressible turbulent 

mixing with the compressible, high-speed turbulent flow research that, unfortunately, 

almost completely vanished about two decades ago in apparent response to a shift in 

national programmatic interests. Based on this seminal role, a number of contributions are 

included on flow instability initiation, evolution, and transition between the states of 

unstable flow onset through those descriptive of fully developed turbulence. 

The Vortical Domination category includes theoretical and experimental studies of 

coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing, and 

associated studies of the consequences of such focusing: e.g., possible incipient shocklet 

formation and the relationship of these flow field structure changes to significant alteration 

of basic mixing and transport processes. Also included in this category are experimental, 

theoretical, and numerically modeled contributions on both shocked as well as shock-free 

compressible and physically illuminating (albeit nearly incompressible) results of studies on 

wakes, free shear layers, and boundary layers. 

In the Strongly Coupled Compressibility category the organizers included the 

high-speed turbulent flow investigations in which the interaction of shock waves could be 

considered an important source for production of new turbulence or for the enhancement of 

pre-existing turbulence. The words Strongly Coupled have been adopted here to refer to 

the shockwave-turbulence interactive states developing at sufficiently high Mach Number 

so as to require simultaneous consideration of three inherently compressible fluctuating 

energy partition modes: acoustical, vortical, and entropy production. 



One of the Workshop's most significant outcomes was the unusual level of 

cooperation that began at the workshop and was subsequently pursued by participants 

despite their very different perspectives, backgrounds, and work motivations. Typical 

cooperative efforts included the informal but well-attended experimental and theoretical 

discussion groups that formed during intervals in the Workshop schedule. A prominent 

example was the development of an informal planning group that first met at Princeton to 

establish a common basis for prescribing a common and consistent set of shock-tube flow 

conditions for future investigations and later compressible turbulent mixing workshops. 

These plans included the important identification of facilities appropriate for undertaking the 

experiments simultaneously at several sites in the United States, the United Kingdom, 

France, Germany, and the then Soviet Union. 









An Experimental Study of Turbulent 
Mixing by Rayleigh-Taylor Instabilities 

and a Two-Fluid Model of the 
Mixing Phenomena 

M .  J.A ndrews 

Mechanical and Aerospace Engineering Department 

Princeton University 

ABSTRACT 

A simple experiment has been used to quantitatively investigate tur- 
bulent mixing at an unstable interface when the interface is subject to a 
large two-dimensional disturbance. The introduction of a small ampli- 
tude long wavelength does little to alter the early time development of a 
planar mixed region, but at late times causes a large overturning motion 
that tends to thin the planar mixed region and accelerate the overall 
mixing process. Data have been collected from the experiment by way 
of image analysis of experimental photographs. These data serve as a 
source of information for the development of a "two-fluid" model of the 
mixing process. 

A "two-fluid" model has been developed to describe the turbulent mix- 
ing by Rayleigh-Taylor instabilities of the two different density fluids 
investigated in the experimental study above. A one-dimensional model 
was employed for the planar mixing experiments; here attention is 
focused on the development of a physically plausible equation to 
describe the length-scale development within the mixed region. The 
one-dimensional model was then extended to two-dimensions for the 
overturning experiments, and terms are added to account for thinning 
of the mixing region at late times. Data collected from the experiments 
are used to validate the model and to determine several model con- 
stants. The two-fluid model successfully simulates the experimental 
results and is recommended for further application to turbulent mixing 
processes in buoyant environments. 



1. INTRODUCTION 

1.1. The Rayleigh-Taylor Instability 

The Rayleigh-Taylor instability occurs when a heavy fluid is placed above a light 
one in a gravitational field. The interface becomes increasingly distorted and small 
wavelength disturbances degenerate finally into a turbulent mixing process. 

Such mixing is of current interest because of its deleterious effect during the laser 
implosion of fusion targets, it is also important in meteorology, oceanography, astron- 
omy and elsewhere. 

1.2. Objectives of the present investigation 

* To devise a simple experiment for the investigation of Rayleigh-Taylor mixing, 
and its deformation by large-scale motions. 

* To collect data from the experiment for the validation of a new mo -fluid model 
of the mixing process. 

* To perform computer simulations for several experiments to validate the new tur- 
bulence model. 

1.3. Outline of the poster 

The experimental arrangement is described in the next section. This is followed by 
the densitometer analysis of photographic records. 

Section 4 presents some theoretical considerations for the phenomena of interest. 

Section 5 describes the use of the Euler equations for direct simulation of the experi- 
ments, and section 6 the new two- fluid model. 

Sections 7 and 8 present the results of two experiments, and their simulation on the 
computer. 

The poster closes with conclusions and references. 

2. EXPERIMENTAL ARRANGEMENT 

A heavy fluid, brine ( p b = l . l x  1 0 ~ k ~ l r n ~ )  is situated above a light one, water 
(p, = 1 .Ox 103kg/rn by inverting a slim perspex tank, of dimensions 360x 250x 5mm , 
containing the unmixed fluids. Gravity then drives Rayleigh-Taylor mixing. 

The tank pivoted on an axle that could be tilted to impose an initial 2-D distur- 
bance on the density interface, as may be seen on the video tape that accompanies 
this poster. 



An experimental run was performed in three steps: 

(1)  T h e  tank was filled with clear brine to  the level of the axle, and then water (dyed 
blue to  allow densitometer analysis) was added to  completely fill the tank. At this 
stage there was n o  mixing. 

(2) Rotation springs were attached to the tank. Removing a holding pin then 
released the tank which then rotated through 180°, situating the clear brine 
above the dyed water. 

(3) Once mixing was complete the tank was drained and cleaned by flushing with 
water. 

3. DENSITOMETER ANALYSIS 

A data collection technique has been developed based on densitometer analysis of 
photographic records. T h e  technique gives a volume-fraction measurement  of brine at 
a point, and then forming sub-domain averages a mixing contour may be drawn for 
direct comparison with results from m o  - f luid simulations. 

T h e  densitometer scans a photographic negative taking light absorption measure- 
ments  expressed on a grey scale. Typically 340x500 measurements  covered the flow 
domain. After subtracting non-uniform lighting from the absorption measurements  
well defined bi-modal grey level histograms were obtained with an estimated error of 
7%. The  histogram peak values were used to define the measurement  of pure brine as 
I,,, and pure water as Imi,. 

Figure 1 shows that there is a linear relationship between the grey scale measure- 
ments,  I ,  and dye concentration. The  volume-fraction of brine is determined from: 

Averaging over  a sub-domain containing 100 measurements  provided a set of 
34x50 averaged volume-fractions from which the mixing contours shown in the 
figures were obtained. 

4. THEORETICAL CONSIDERATIONS 

Using a linear analysis G.I.Taylor (1950) predicted the growth of a disturbance of 
amplitude, A ,  and wavelength, h, as: 



where g is the gravitational acceleration. According to (2) as h+O,nk+-. Chan- 
drasekhar ( 1962) demonstrated that viscosity acts as a stabilizing mechanism, giving a 
'most unstable' wavelength: 

for the present case of brine-water h,= 1.56mm. 

Experiments by D .J.Lewis ( 1950)' performed in conjunction with Taylor's theory, 
showed that the penetration rate of the disturbance reaches a limiting velocity. 

The development of turbulent Rayleigh-Taylor mixing from an initial random dis- 
turbance may be expected to occur in three stages: 

(1)  The appearance of h,. 

(2) The most unstable wavelength reaches its limiting velocity and longer 
wavelengths overtake because of their continuing exponential growth. 

(3) Non-linear interactions and continued engulfment cause an expanding turbulent 
mixing region with loss of memory of the initial conditions. 

The depth of the tank (5mm) restricts the larger turbulent motions to two- 
dimensions. The height (360mm) and width (250mm) of the tank are >> h, and so 
viscosity may be expected to play a significant roll only in the early stages of the 
experiment. 

5. DIRECT SIMULATIONS 

Several 'direct' (no turbulence model) simulations have been performed for the 
overturning motion in the 'tilted' experiments. The simulations solved the 2-D Euler 
equations with the initial conditions shown in Figure 2. 

The solution procedure used was the fully-implicit, finite-volume scheme embo- 
died in the PHOENICS84 computer code, Spalding (1985a). An explicit interface- 
tracking procedure was attached to the computer code to both visualize the brine- 
water interface, and to provide an accurate determination of fluid density for the solu- 
tion algorithm. 



6. A TWO-FLUID MODEL 

6.1. The need for a two-fluid model 

The wide range of length-scales, lmm +lm , associated with Rayleigh-Taylor mix- 
ing necessitates the use of a turbulence model, e.g. the k - E  model. The use of such a 
model involves a 'gradient diffusion' hypothesis. Stafford (1982) demonstrated that 
reversing gravity causes partial de-mixing, showing a non-diffusive mixing process. 

6.2. The two-fluid concept 

These experiments suggest that the Rayleigh-Taylor mixture comprises fragments 
from different density fluids. Gravity induces different accelerations in the different 
density fragments, causing different velocities. The velocity separation is limited by 
drag. This is an example of 'sifting' Spalding (1985b), and suggests the use of the 
two-phase flow equations for the motion of the different fluids. 

6.3. Mathematical equations of the two-fluid model 

Continuity : 
a ( r i ~ i )  a<ripiui) a(ripivi) + + =o  

at ax ay 

a(r ipiui )  a(ripiui2) d(r ipiuiv i )  
U - momentum : + + J P  =-ri-+ripigX+Fi(Uw-Ub) 

at ax ay ax  
a (r ip iv i )  a ( r ip iv iu i )  a(ripivi2) 

v  - momentum : + + - - ap -ri-+ripigy+Fi(v,-vb) 
at  ax  a Y JY 

Completeness : rw + rb = l 

where i=w or b ,  for water or brine; r  the fluid volume-fraction; U and v fluid 
velocities; p pressure. The drag coefficient is given by: 

(note: if gb=gw then the sum of the separate fluid equations gives the Euler equa- 
tion S) 

aL  + ~ ( U L L  ~ ( v L L  1 - 
Length - scale : - -t- -n . (gb-gw)--S  L 

at ax ay 2 

V r /  IV r  I if IV r  I> 0 
where n = or , u~=r,Ub+rbu,, 

0 otherwise 

V L  = rw vb+ T ~ v , ,  and Sij is the mean flow strain tensor. 

The value of the drag coefficient, C f ,  was determined by matching one- 
dimensional two-fluid simulations with plane Rayleigh-Taylor mixing observed in zero 



tilt experiments, Andrews ( 1986). 

6.4. Two-fl uid simulations 
Computer simulations have been performed using the two-fluid model given 

above for the 'tilted' experiments shown on the video accompanying this poster and 
displayed in the figures that follow. 

The two-fluid equations were solved using the two-phase flow solver in the 
PHOENICS computer code. To reduce numerical diffusion, accurate explicit schemes 
were constructed for the calculation of two-phase convective transport. The explicit 
schemes use the Van-Leer method to prevent spurious oscillations, and have been 
employed in the calculation of volume-fraction, momen ta and length -scale. 

7. RESULTS FOR A TILT OF 55' 

Examination of the photographs shown in Figure 3 reveals two distinct 
phenomenon; Rayleigh-Taylor mixing along the brine-water interface; and wall plumes 
associated with an overturning motion. 

The photographs show the mixing length-scale developing during the experiment. 
In the latter stages of the experiment an overturning motion rotates the mixing 
region, elongating the mixing interface and slowing the expansion of the mixture. 
The appearance of wall plumes may be attributed to the rapid growth of short 
wavelength Fourier components that make up the initial tilted (saw-tooth) distur- 
ban ce. 

Comparison of the direct simulation in Figure 3 with the photographs shows that 
the overturning motion is well represented. Mixing at the density interface does not 
appear in the simulation, a turbulence model being necessary to account for the range 
of length-scales. 

The densitometer mixing contours shown in Figure 4 compare well with the 
corresponding photographs in Figure 3. At the early time the contours are smooth, 
but later they become irregular. The irregular contours are caused by fluid fragments 
of the same scale as the averaged measurement sub-domain. Ensemble averaging over 
several experiments would be required for a smooth contour. 

Comparison of the two-fluid model simulation shown in Figure 4 with the densi- 
tometer contours, shows that the two-fluid calculation simulates well the mixing pro- 
cess. 



8. RESULTS FOR A TILT OF 3'21' 

Examination of the photographs in Figure 5 reveals the Rayleigh-Taylor mixing 
and wall plume phenomena observed in the photographs of the 55' tilt experiment.  

The  higher tilt angle gives a greater amplitude to  the initial disturbance, and as a 
consequence the overturning motion envelops the mixing more  quickly. An interest- 
ing effect shown in the photographs is the contraction of the width of the Rayleigh- 
Taylor mixing region as the overturning motion stretches the mixing interface. 

The  direct simulations of the 3'21' experiment well represent the overturning 
motion, but cannot show the mixing phenomena. 

Reduction of the spacing between the densitometer contours shown in Figure 6 
reinforces the observed con traction of the mixing region by the deformation m echan- 
ism 

Comparison of the two-fluid simulations shown in Figure 6 with the densitonleter 
contours of the 3'21' experiment shows that the simulation is in good agreement with 
the experiment. Is is particularly satisfying to  note that the two-fluid model correctly 
simulates the contraction of the mixing region. 

9. CONCLUSIONS 

* A simple experiment has been devised to investigate the Rayleigh-Taylor in stabil- 
ity. 

* Two experiments have been presented; one  for an axle tilt angle of 55' and the 
other for 3'21'. Two distinct phenomena have been observed in the experiments; 
Rayleigh-Taylor mixing along the brine-water interface; and the growth of an 
overturning motion that at the higher tilt angle thins the mixing region. 

* Densitorneter analysis of photographic records from the experiments h a s  been 
successfully used to collect data for comparison with two-fluid sin1 ulation s. 

* Direct simulations ( i.e. n o  turbulence model  ) of the experiments,  which used 
the 2-D Euler equations, successfully demonstrated the overturning motion 
observed in the experiments. 

* A new two-fluid model  of Rayleigh-Taylor mixing, that incorporates an equation 
for fragment size, has been described. The  model  is based on the mathematical 



equations that govern two-phase flow. When the separation velocity of the fluids 
is zero, the model equations reduce to the Euler equations. 

* Two-fluid simulations for the experiments agree well with the densitometer 
results, and correctly predict the contraction of the Rayleigh-Taylor mixture 
observed at the higher tilt angle. 
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Figure 2. Initial conditions in the 'tilted' experiments. 
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Figure 3. Photographs and direct simulations 
of the 55' tilt experiment. 
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Figure 4. Densitometer contours and two-fluid 
simulations of the 55' tilt experiment. 



t= 1.4 secs 

t= 2.0 secs 

t= 2.4 secs 

Figure 5. Photographs and direct simulations 
of the 3 O 2 1 '  tilt experiment. 
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Figure 6. Densitometer contours and two-fluid 
simulations of the 3'21' tilt experiment. 
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Abstract 

Paper briefly summarizes the influences of increasing Mach number upon the 

various stages of boundary-layer transition including body flow field processing of 

incident stream disturbances and normal mode amplification. Other compressibility 

unique or altered phenomena discussed include (a) outward movement of the critical 

layer and the related "precursor" transition, (b) flow chemistry, (c) shock waves, 

and (d) the all pervasive roughness issue. Paper concludes with consideration of 

ground simulation and prediction of high-speed transition. 

Introduction 

In general, transition is an important design consideration for moderate 

Reynolds numbers, whether achieved through small bodies, high altitudes or with short 

distances at conventional flight conditions. In the absence of large initial 

disturbance fields and/or the cross flow and Gortler modes, transition at hypersonic 

speeds may occur at Reynolds numbers as large as 80 x 106 (Ref. 1) and therefore the 

definition of moderate Reynolds number in the present context can at high speeds 

subsume major portions of a vehicle's trajectory. High-speed applications for which 

the location and extent of transition is a major issue include: (a) space shuttles; 

(b) aerospace planes or transatmospheric vehicles; (c) re-entry vehicles; (d) laminar 

flow control for high-speed civil transports; (e) radomes on high-speed fighters and 

missiles; (f) inlets and leading edges of all types; (g) supersonic compressor 

blades; (h) high angle-of-attack vortex dynamics; and (i) gas dynamic lasers. 

Phenomena influenced by transition at high speeds include drag, surface heating and 

attendant thermal stresses, surface dynamic loading, control effectiveness, 

propulsion efficiency,and vehicle dynamics (Ref. 2). 

The canonical transition process consists of six serially occurring stages (Ref. 

3), starting with some initial disturbance field (stream particulates, stream 

velocity, concentration, temperature or pressure fluctuations, body vibration or, in 

the limit, Brownian motion). This disturbance field is modified or "processed" 

initially by the body inviscid flow field (e.g. via shock processing and "rapid 

distortion" processes) and subsequently by the body viscous flow field, the latter 

usually termed the "receptivity" process. The resultant internalized disturbance 

field is then amplified by the linear or normal mode processes. For low amplitude 

initial background disturbances this linear amplification can entail huge (order of a 

thousand-fold) increases in amplitude. The final stages in this concatenation are 

the (usually brief) non-linear "end game" and (finally) rapid spectral broadening and 



formation of Emmons spots or at least wall region transport elevated above usual 

laminar levels. 

In the absence of large background disturbances inferential evidence indicates 

that the linear amplification region constitutes the rate-limiting critical 

physics. Parametric sensitivities of the linear region include variables which can 

influence the mean viscous field including (a) Mach number, (b) pressure gradient, 

(c) wall temperature, (d) angle of attack, (e) wall mass transfer, (f) sweep, (g) 

flow history, (h) roughness and waviness, (i) streamline curvaturefiody geometry, (j) 

body rotation/dynamics, (k) flow chemistry and surface catalicity, (1) bluntness, (m) 

shock waves, and (n) Reynolds number. The present paper provides a brief summary of 

several of the influences of increasing Mach number upon these various stages of the 

boundary-layer transition process, along with the attendant issues of ground 

simulation and estimation of high-speed transition location. Previous and in some 

cases more detailed summaries of the high-speed transition physics include References 

4-10. 

High-Speed Aspects of Body Flow Field-Incident Disturbance Interactions 

The incident disturbances of interest for high-speed atmospheric flight include 

particulates and stream fluctuations of velocity, pressure, concentration, and 

temperature. For subsonic speeds the influence of the body inviscid flow field upon 

these incident disturbance fields is governed primarily by rapid distortion theory. 

(Also, incident stream pressure fluctuations are augmented by vehicle-produced 

propulsion and airframe noise.) Several aspects combine to compound and alter the 

problem at high speeds. The heating problem at high speeds causes (either by design 

or inadvertently) a finite bluntness in the vehicle nose region and consequent body 

bow shock formation about this blunted nose. The nose shock creates an embedded 

subsonic flow region immediately preceeded by the shock (which acts as a disturbance 

modifier). 

Therefore, the following can occur (for the high-speed case). First, consider 

stream particulates of an intermediate size, neither too small so that their Knudsen 

number is high and thus non-continuum, nor so large that the particle impacts the 

nose region, Such intermediate particles will typically traverse the shock without 

immediately slowing down and therefore downstream of the shock but within the body 

flow field the particles can be traveling supersonically compared to the local flow 

and produce "inverted" or "reversed" embedded dynamic shocks which can strafe the 

body boundary layer, creating a strong disturbance. From Reference 11 the distances 

required for the particles to attain local gas velocity can be the order of 10 cm. 

This uniquely high-speed disturbance production by particle induction can be 

particularly worrisome for the flight case because (a) the effective wavelength of 

the induced disturbance is a function of particle concentration as well as size and 

can easily be the order of the wavelength of linearly unstable waves; (b) the 

disturbance can be produced by particles in the nominally inviscid flow field (as 



opposed to the usual low-speed case where the particle must be entrained into the 

viscous flow to produce a worrisome disturbance); (c) the amplitude of the 

disturbance can be quite large initially so that even if sub-critical decay occurs 

resulting initial levels at the start of amplification can be significant; and (d) 

the atmosphere is particularly rich in particulate content of various sizes including 

cosmic and terrestial dust, rocket exhaust products from previous flights and 

volcanic and water-based particles. Large particles can impact the body and rebound, 

in some cases retraversing through the bow shock thereby producing extremely large 

amplitude flow perturbations of potentially dangerous scale. These high-speed 

mechanisms overlay the usual low-speed particle disturbance mechanisms including 

particle adhesion/interaction with the surface (various roughness effects) and 

particle wake/rotation due to motions within the viscous layer. 

Typically, atmospheric perturbation/turbulence scales are large compared to body 

viscous flow dimensions, and of such small amplitude that conventional wisdom holds 

that, to first order, transition is not influenced by stream disturbance fields in 

free flight. However, the aforementioned presence at high speeds of bow shocks and 

embedded subsonic regions may possibly alter this conjecture. This problem was 

considered by Morkovin (Ref. 12) and exhibits the following essential features. Due 

to the intermodal coupling inherent in the Rankine-Hugoniot equations, stream 

disturbances which traverse the bow shock will engender downstream acoustic waves 

even if the incident field does not initially have an acoustic component. Such post 

shock acoustic fields can reflect and re-reflect between the body and the bow shock 

(as can acoustic fields produced by nose region body vibration) as well as possibly 

interact with waves having other incidence angles, wave numbers, and phase. 

For the stream disturbances to couple into the boundary-layer transition problem 

to first order, mechanisms must be present for these low-wave number disturbances to 

shift energy content to higher wave number. Whether the high-speed nose region 

interactions just described can, perhaps through either sums and differences of 

(possibly resonating) frequencies, or through wavelength shifts and wave trapping in 

the subsonic region (see Ref. 13), yield such wave number shifts is the subject of 

current research at ICASE. Another possible mechanism involves the interaction of 

shock wave/shock layer oscillations due to long wavelength stream fluctuations with 

body roughness/waviness and/or dynamic shock oscillations associated with instability 

waves. Such a combination of "flow-field processed" stream perturbations and 

roughness may both amplify and wave number shift the incident perturbation. At the 

highest speeds (high hypersonic) incident concentration fluctuations may induce 

chemical reaction/"flame front" induced oscillations in the nose shock region 

(depending upon incident species) possibly providing other wave-number shifting 

mechanisms. This area of atmospheric disturbance-body flow-field interactions is 

virtually untouched and obviously requires considerable further research. 



Compressibility Influence Upon Linear Amplification 

The influence of Mach number upon the linear amplification modes for flat-plate 

boundary layers is well known and well documented. The pioneering and still current 

work of Mack (Ref. 14) identified the major intrinsically compressible phenomena in 

the linear theory area, the second or acoustic mode which becomes dominant (most 

unstable) in two-dimensional zero pressure gradient flows above Mach numbers the 

order of 4 to 5. This mode was experimentally verified by Kendall (Ref. 22). 

Therefore, at high speeds the three low-speed instability modes, Gortler, crossflow, 

and Tollmien-Schlichting (T-S), are joined by the Mack second mode at higher Mach 

numbers. The influence of compressibility upon these various modes can be 

conveniently and simplistically summarized as follows: For the first or viscous (T- 

S) mode the amplification rate decreases with Mach number while the most unstable 

wave angle increases. The most unstable second mode waves are two-dimensional and at 

higher frequency than the first mode case. Also, for the second mode, the critical 

layer moves to the outer part of the boundary layer and the amplification rate 

decreases with Mach number (after an initial increase above first mode values). See 

Reference 14 for detailed discussion of these behaviors. The movement of the 

critical layer to the outer part of the boundary is depicted in Figure 1 where the 

disturbance eigenfunctions are plotted for M - 0 (first mode) and M - 10 (second 
mode), respectively. For the latter case temperature fluctuations are dominant. 

Of particular interest when comparing the first and second modes is their 

different sensitivity to wall cooling. Cooling stabilizes the first mode, but the 

second mode is actually destabilized by cooling (Fig. 2). This is because the first 

mode amplified disturbances require the existence of a generalized inflection point 
d du 

(- ( p  -) - 0) which is present in all insulated wall boundary layers. This 
dy dy 

inflection point may be eliminated by sufficient wall cooling, thus stabilizing the 

boundary layer to first-mode disturbances. The second mode, on the other hand, does 

not re uire the presence of a generalized inflection point and only the condition 9 
that M > 1 (where M - (u-c)~,/V) is sufficient for inviscid disturbances to 
exist. The boundary-layer region in which this condition is satisfied expands with 

cooling, thus enhancing instability of the cold wall flow. The influences of 

pressure gradient, wall suction/injection, etc., have been little studied at high 

speeds (e.g., Refs. 15 and 16) but the trends are as would be expected from low 

speeds, at least up to low-hypersonic conditions. Wall suction and favorable 

pressure gradients stabilize both the first- and second-mode disturbances. 

The other linear modes, crossflow and Gortler, are usually more unstable than 

the conventional (two-dimensional, flat surface) cases just discussed and are 

therefore to be avoided for transition delay (as in the low-speed case). The 

influence of increasing Mach number upon Gortler vortices is shown in Figure 3. The 

effect of compressibility is stabilizing (Refs. 17 and 18), though weak. This 

centrifugal instability is hard to control by wall suction or heat transfer (Refs. 17 



and 19). The effect of adverse pressure gradient on Gortler instability in 

hypersonic boundary layers is found to be destabilizisng (Ref. 19). Figure 4 shows 

that the computed growth rates are significantly higher in the presence of adverse 

pressure gradient. The inflow Mach number for this calculation is 8. For the 

adverse pressure gradient case, the Mach number drops from 8 to about 6.5 towards the 

end of the computational domain. Since compressibility has been shown to have a 

stabilizing effect, part of the increase of the growth rates may be attributed to 

decreasing Mach numbers due to adverse pressure gradients. 

Crossflow instability in subsonic and low supersonic Mach number flows has also 

been studied. The effect of compressibility on this inflectional instability is 

rather weak. This instability may be controlled by wall suction but wall cooling 

has only a weak stabilizing effect (Refs. 20 and 21). Detailed experimental 

verification of the influence of Mach number upon the T-S and Mack modes is 

available from Kendall in Reference 22. Disturbance-amplification data for high 

speeds are somewhat questionable due primarily to gross facility acoustic 

contamination as discussed subsequently (see Refs. 23-29, see also Ref. 30). 

Detailed compressible disturbance amplification data for the cross flow and Gortler 

modes are not yet available. 

Some Additional Compressibility-Related 

or Accentuated Transition Physics 

Outward Movement of the Critical Layer, Effect on Transition Process 

As just noted, with increasing Mach numbers the critical layer moves to the 

outer portion of the boundary layer. Visualization on cones indicates that at 

high Mach number the disturbance growth in the outer region can become highly 

non-linear without grossly affecting the wall transport (Refs. 31-33) and there 

is some indication that "turbulence" can set in above the wall in a manner more 

analogous to the free shear layer case (spectral broadening) than the 

conventional Emmons spot "fully turbulent patch" wall production of turbulence 

(Ref. 34). Early attempts at modeling such behavior (Ref. 35 using the results 

of Ref. 36) improved the prediction of the transitional phase of the flow. 

Flow Chemistry - Essentially nothing is yet known concerning the detailed 
physics of the influence of flow chemistry upon the transition process. Plots of 

transition Reynolds number against Mach number for cones in free flight do not 

exhibit any unusual behavior as the ideal gas-reacting gas boundary is crossed at 

high-edge Mach number (Ref. 1). Figure 5 from Reference 37 is one of the first 

attempts to include the effects of equilibrium gas chemistry in linear stability 

calculations and a slight destabilization is indicated along with a shift in 

unstable frequencies. Some changes would be expected, as the mean profiles are 

obviously altered. Whether any new, chemistry specific modes will arise can only 

be determined from further research. The area is wide open. 



Shock Waves - The presence of shock waves constitutes an obvious and 
important difference between low- and high-speed flows. For the boundary-layer 

case the disturbance characteristics are such that, at least thus far, dynamic 

eddy shocklets do not seem to form/alter the amplification processes, e.g., 

Reference 38. However, quasi-steady shock waves can and do affect high-speed 

transition in several ways. The zeroth order effect is due to the curved bow 

shock which produces mean vorticity which in turn alters particularly the mean 

flow and thus the amplification characteristics of the tender external portion of 

the boundary layer and may cause instability of the outer inviscid but rotational 

flow in the region preceeding entropy swallowing (Refs. 24 and 39-41). In fact, 

at high speeds stability computations should be carried out using inputs from PNS 

or full NS rather than separate inviscid and boundary-layer codes to ensure that 

this effect is correctly incorporated. A transition reversal is observed in the 

experiments in which transition Reynolds number first increases with bluntness 

but then begins to decrease beyond a critical bluntness. This may be explained 

by considering the effect of bluntness on competing boundary and entropy layer 

instability modes (e.g., Ref. 39). 

Another possible manifestation of the effect of bluntness is the possibility 

of a wave structure between the bow shock and a blunt face (Ref. 13). Such a 

wave structure, if linked to an instability mechanism, perhaps through surface- 

irregularity interactions, may provide a "receptivity" link for the boundary- 

layer disturbances. The shock wave also constitutes an altered external boundary 

condition which can affect the instability process (Ref. 42). In addition, the 

interaction of disturbances within a boundary layer with a quasi-steady shock 

wave, either impinging upon a surface or generated thereon can significantly 

amplify the disturbances and also cause intermodal energy transfer (e.g., Refs. 

43 and 44). Such a process can be an integral part of the influence of adverse 

pressure gradients upon transition at high speeds where adverse pressure 

gradients can be accompanied by both concavely curved streamlines (which could 

induce a concomitant Gortler instability) and coalescing shock waves. 

Roughness - Roughness and/or waviness are obviously not unique to the high- 
speed transition problem but unfortunately their importance as well as the 

richness of the associated physics is accentuated by increasing Mach number. 

This increased importance is due to the increasing aerodynamic heating which 

accompanies high-speed flight and induces large thermal stresses. In many cases 

these thermal stresses exceed the aerodynamic loading and dictate the design of 

the structure, particularly the surface region. Several techniques have 

historically been employed to handle this heat load and/or accompanying thermal 

stresses, including sublimation/ablation, tiles/expansion joints/shingles and 

merely letting the surface deform into "waffles" or corrugations. As an adjunct 

to this problem various dissimilar structural and material joints exist, 



including antenna interfaces, handling plugs, field joints and fibers associated 

with some surface materials which give rise to additional steps and surface 

mismatches and irregularities. All of these approaches to surface survivability 

at high speeds produce "non-smooth" surfaces, i.e., roughness and waviness are 

endemic to high-speed atmospheric flight and the transition problem in 

particular. 

The possible influences of roughness/waviness upon transition are manifold 

and include (a) altering the mean flow locally and downstream, thereby changing 

local amplification rates/eigenvalues, (b) affecting receptivity of external 

disturbance fields by providing spatial gradients which can readily couple 

certain disturbances into the local viscous flow, (c) introduction of streamwise 

vorticity into both mean and fluctuating local fields, (d) direct production of 

dynamic vorticity through element "eddy shedding" (at low speeds), and (e) at 

high speeds, influences of roughness/waviness induced embedded shock waves. 

These latter influences include the aforementioned direct amplification through 

the shock as well as the direct production of dynamic vorticity via shock 

unsteadiness and even possible delay of transition due to shock-induced Reynolds 

number diminution (Refs. 45 and 46). As a typical example of the importance of 

roughness in high-speed flight the U.S. space shuttle windward surface transition 

problem is dominated by tile-induced roughness, with transition Reynolds numbers 
6 6 in the 2 to 5 X 10 range rather than the 40 X 10 plus values one would normally 

expect at shuttle conditions (high angle of attack, edge Mach number of order 2 

(first mode disturbances, cold wall). Reference 47 indicates the decreased 

sensitivity due to roughness which occurs at higher Mach numbers. This may be 

partly due to the shift to the second mode and movement of the critical layer to 

the outer region of the boundary layer. It should be noted that the roughness 

sensitivity of the cross flow and Gortler modes is evidently not significantly 

diminished at high Mach numbers. 

Experimental Simulation and Prediction of High-Speed Transition 

The influence of free-stream vorticity fluctuations upon transition location 

in low-speed facilities is well known. This source of facility stream 

disturbance diminishes at high Mach number but is replaced by a much more 

insidious and tenacious disturbance source - pressure fluctuations radiated from 
the turbulent nozzle wall boundary layer (Refs. 48 and 49). Extensive research 

at the NASA Langley Research Center over the past 15 years has indicated that in 

general this noise field alters both the level and magnitude of parametric trends 

of the transition location and that the only known approach to the replication of 

high-speed flight transition behavior in wind tunnels is the attainment of 

laminar flow on the nozzle walls of the facility (Ref. 49). This has been 

accomplished at NASA Langley by performing massive suction upstream of the throat 

to relaminarize the turbulent boundary layer incoming from the upstream piping 



and stagnation chamber wall. The resultant thin laminar boundary layer which 

grows downstream of the suction slot is kept laminar through a combination of 

ultra-smooth walls and favorable pressure gradient until it is destabilized by 

the Gortler process in the nozzle reflex (concave curvature) region. This 

approach has provided a sufficient run of quiet test flow to allow duplication of 

flight transition behavior in the Langley pilot facility at a stream Mach number 

of 3.5. Suction laminarization on the high speed portion of the nozzle cannot be 

used as weak shocks are produced as the flow is turned into suction slots or 

holes and these weak shocks can cause greater disturbances than the original 

turbulent boundary-layer noise. 

Additional pilot quiet facilities at Mach numbers of 6 and 20, to allow 

experimental study of second mode physics at high Mach number, are currently 

under development at NASA Langley. As an indication of the importance to 

transition of the stream asoustic disturbance field present in conventional 

tunnels, recent studies in the M - 3.5 pilot quiet tunnel indicate an order of 
magnitude difference in transition Reynolds number on flat plates for noisy and 

quiet free-stream flows (Ref. 50). It should be noted that successful 

duplication of flight transition behavior involves not only the maintenance of 

laminar nozzle wall flow but also control of other untoward disturbance fields 

such as gross particulates, small scale vorticity fluctuations, model vibration, 

and (uncontrolled) roughness. Transition data at high hypersonic cold-wall 

conditions in conventional, large facilities tends to approach flight- 

observations, perhaps due to a partial decoupling of the disturbance scale 

between the thick facility wall boundary layer and the thin model viscous flow 

(e.g., Ref. 8). 

The current status of the prediction of hypersonic transition is wholly 

unsatisfactory, as it rests entirely upon engineering correlations of flight data 

taken over a very limited and often ill-defined parameter space. The high-speed 

experimental data from conventional facilities simply cannot be trusted (except 

perhaps at high hypersonic, cold wall, large scale conditions), either as to 

trend or level, due to the stream acoustic disturbances just discussed. 

Therefore, at the present time, at best, the location of high-speed transition 

can be estimated to within a factor of 5 to 10. Research at Langley over the 

past 12 years in the laminar flow control area indicates that the eN method, 

which utilizes the linear stability theory to estimate transition location, may 

be applicable to the high-speed area (in the absence of roughness/waviness and 

Morkovin "bypasses") with an N value of the order of 10 (the usual low-speed 

value), Reference 3. Such an approach allows transition prediction within the 

order of 20 percent and parameterization for quantities which influence the mean 

flow such as (a) Mach number, (b) pressure gradient, (c) wall temperature, (d) 

angle of attack, (e) wall mass transfer, (f) sweep, (g) flow history, (h) 



geometry/curvature, (i) body dynamics, (j) flow chemistry, and (k) bluntness. 

This extension of the eN approach to high-speed flows (Ref. 3) should, except for 

roughness, elevated stream disturbances or perhaps shock interaction effects, 

allow a more accurate near-term estimation of transition location for design 

purposes. 

Concluding Remarks 

Paper sketches briefly the current state of the art in the understanding of 

high-speed boundary-layer transition. Of the 6 stages of the transition process 

the weakest links in the long term are the specification of stream-disturbance 

fields, including particulates, as a function of latitude, longitude, altitude 

and time (as well as body-generated disturbances), and the body processing and 

viscous internalization of this disturbance field as an initial condition for 

normal mode amplification. The basic normal mode processes are largely 

understood for the basic case with cleanup for bluntness, pressure gradient, and 

real gas effects currently underway. The non-linear end game is currently being 

attacked numerically and this approach, in fact in many cases the same codes, 

could also be used to study the receptivity problem. For most flight conditions 

with low-background disturbances the initial, internalized disturbance levels 

appear to be, to first order, the same order of magnitude. This is inferred from 

the fact that the eN method, which addresses only the normal mode/linear 

amplification (as a ratio) appears thus far to be capable of estimating high- 

speed transition location within engineering accuracy (O(208)). 

The major research frontiers in high-speed transition, in the opinion of the 

present authors, include: (a) initial disturbance specification and 

internalization; (b) transition in other than conventional boundary-layer flows 

including two- and three-dimensional free shear layers, vortex boundary-layer 

interactions and separated flows; (c) roughness effects; and (d) influences of 

shock waves and chemistry. 
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Figure 1. - Real and imaginary parts of the disturbance eigenfunctions for 
incompressible and Mach 10 (adiabatic wall) boundary layers. 
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Figure 2. - Effect of wall cooling on the most amplified first- and second-mode 
disturbances in a flat-plate boundary layer at R = 1500. 



Figure 3. - Effect of compressibility on neutral curves for Gortler instability. 
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Figure 4. - Effect of adverse pressure gradient on Gortler instability in a 
Mach 8 boundary layer (growth rates for the most amplified 
wavelengths). 
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Figure 5. - Effect of equilibrium gas chemistry on second-mode growth rates in 
a Mach 15 boundary layer. 
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1 . INTRODUCTION 

The onset of turbulence may be preceded by development of 

ordered spatial structures. Such structures play a prominent role in 
mixing and advection processes. Presence of these structures can 

lead to chaotic spatial distribution of streamlines and to random 

walk of passive particles along the streamlines. Examples of such 

particle mixing are well known, they are the ABC-flow [ l ] ,  and the 

flow between rotating cylinders [2,3]. In connection with these 

phenomena some general questions arise concerning the "structural 
mixing": (1) which kinds of structures are admissible; (2) which 

structures can lead to mixing of streamlines; (3) what are the laws 
of transport of passive particles? Here we discuss the first two 
questions which are tightly connected with modern problems of 

nonlinear dynamics. The part of the paper devoted to symmetry of 

the structures is restricted to incompressible flows. This provides 

the simplest way to deduce possible types of flow organization. We 
further restrict ourselves to the Beltrami-type flows. Special 
interest in such flows is associated with instability of large-scale 

modes obeying the Beltrami condition in fluids with strongly 
developed turbulence [4,5]. It is plausible that extended regions 

occupied by Beltrami flows can be present in turbulent flows [ 6 ] .  It 
is possible to say that flows can be "beltramized." We have shown 

that stationary hydrodynamic Beltrami f lows can possess an 

arbitrary symmetry of quasi-crystallic type. Not withstanding the 

regular character of the structures, the flow also includes elements 

of irregularity, stochasticity. In some regions of space, the 

streamlines are distributed chaotically. The second group of our 



results is associated with investigation of this property. The 

concluding part of the paper is devoted to chaos of streamlines in 

stationary Rayleigh-Benard convection. It is shown that three- 

dimensional stationary flow with hexagonal cells produces a spatial 

web of finite thickness within which the chaotic streamlines are 

concentrated. 

2.  STATIONARY STRUCTURES AND SYMMETRY OF PLANAR FLOWS 

For planar incompressible flows, the Navier-Stokes equation is 

reduced to the following scalar equation: 

where v is the stream function, F is the pumping that excites the 

medium. In two dimensions the solenoidality of the velocity field X 

allows expressing it in terms of the stream function as 

Now we specify the pumping in (1 . l )  by choosing the external force F 
in the form 

F(x,y,t) = F,(t) cos k(x cos wt + y sin wt) (1 .3 )  

where the pumping wave number is k = 2xIL and the frequency is 

o) = 2x/T, and F, is the amplitude of external force that generally 

depends on time. 

We have solved Eq. (1.1) numerically on a 128 X 128 grid in a 

unit square. At the square boundary Q the boundary conditions are 

given by 

y( t ,  I.) = const = W, (1 .4 )  



Initial conditions are chosen in a similar way, v(O,x,y)  = const = v,. 
Figure 1 shows the results for the case when the amplitude F,(t) is a 

sequence of short pulses of duration z with period To = 2n lQ .  In our 

computations, the length of an individual pulse, z, is much shorter 
than remaining characteristic times. As was revealed by numerical 
integration [7], the flow patterns under the resonance R = No) (with 

integer N) is qualitatively different from the corresponding patterns 
far from the resonance. Under the resonance and for o ) / \ ~ k  >> 1 ,  the 

flow eventually evolves to stationary structures of N-fold quasi- 
crystallic symmetry. Figure l a  shows the stationary flow structure 
under the resonance R = 10 w which possesses the quasi-crystallic 

symmetry, while Fig. I b shows the pattern of streamlines for the 
eig hth-order resonance. 

Figures l a and I b. 

The approximate analytical expression for the stationary stream 
function v can be obtained as follows. Let us approximate the 

amplitude of the pumping Fo(t) by a sequence of delta functions 



With use of the representation 

i-= 1 N +=Q 

C q n O - n ) = - C  C exp 
n=- 

N 
j= l  m=- 

it can easily be shown [8] that 

F = F + F  

N 
or c i=  kpej with p the radius-vector on 

vector that determines a vertex of the 
regular N-agon. Since the function R X , ~ )  in (1.7) is the exact solution 

of the Helmholtz equation 

for the stream function 

the nonlinear term on the left-hand side of Eq. (1 . l )  vanishes. 

Therefore, the stream function (1.9) is the exact solution to the 

Navier-Stokes equation with stationary pumping F(x, y). 



3 .  CHAOS OF STREAMLINES IN STATIONARY THREE-DIMENSIONAL 
FLOWS 

Above we have discussed only two-dimensional quasi- 

symmetric flows. Quasi-symmetric structures can be present also 

in three-dimensional flows described by the Euler equation 

a 2 
- v + v x r o t v  = - v ( P + v / ~ )  ; divv = 0 
a t -  - - - 

where P is the pressure. If Beltrami condition 

v_ = a rot v_ (2.2) 

with a = const is also imposed, these velocity fields v_ are the 

stationary solutions of the Euler equation. It was shown in [9,10] 

that the velocity field 

with E the perturbation parameter and = ~ ( x ,  y) obeys two- 

dimensional Helmholtz Eq. (1.8). We call such flow quasi-symmetric 
when the function is determined by (1.9) up to a constant factor. 

The flow (2.3) is solenoidal and is of Beltrami type, V X v_ = - v_, i.e., 

this flow is a stationary solution of the Euler Eq. (2.1). 
Equations 

determine the pattern of streamlines of the velocity field v(x_,y,z). 
For a quasi-symmetric flow (2.3) the system of Eqs. (2.4) reduces to 



where 

Reduction of (2.4) to the form (2.5) indicates that we actually deal 

with a "nonstationary" problem formulated for a dynamic system in 

two-dimensional phase space (x,y). The variable z stands for the 
time variable. Since Eqs. (2.5) have Hamiltonian form we can readily 

apply some results of the theory of dynamic systems. Let us recall 

them briefly. The unperturbed part of the system (2.5) with 

Hamiltonian (2.6) for E = 0 has a set of singular trajectories 

(separatrices) which pass through singular points of saddle type. 
For instance, for N = 4 or N = 3, 6, when the stream function is given 

by 

respectively, all separatrices belong to the same value of the 
stream function and thereby form single square or hexagonal 

network. Any arbitrarily weak periodic perturbation in z ( i .e. ,  

arbitrary c) leads to disruption of separatrices and to occurrence in 
their vicinity of a finite region of stochastic streamline dynamics. 
In the considered case this means development in the space (x,y,z) of 

a stochastic web with square or hexagonal cells. Examples of such a 

web are given in Fig. 2. Within the web cells, small regions (islands) 

are preserved where the streamline dynamics are stable. This 

means that streamlines are regularly wound around some invariant 

surface. In the case considered, such surfaces are periodically 

meandering stream tubes orientated at different angles to the plane, 



z = const. Cross sections of these tubes are actually the windows in 

the stochastic web of Fig. 2. The whole remaining region occupied 
by the web is filled by only a single trajectory and is essentially a 

fractal set occupying a finite voiume in the (x,y,z) space. 

Figures 2a and 2b 

The stochastic web with square (a) and hexagonal (b) symmetry 

formed by streamlines. 

When approaching the spatial rest points (saddles) that lie on 

intersections of separatrices, a streamline randomly chooses the 

direction of further motion. As a result, a spatial diffusion arises 

that is similar to Brownian motion of particles on square or 

hexagonal lattice. Two examples of such diffusion for N = 4 and 

N = 3 are obtained numerically and shown in Fig. 3 .  A streamline 

sometimes passes a considerable interval along the plane z = const, 

then turns and follows the plane X = const which produces a rather 

complicated loop and returns to the same plane z = const. This is 

why the diffusion alternates with "jumps" of streamlines along the 

same plane z = const. This feature is seen particularly clear in the 

case of the harmonics obtained by expansion of the solution into 

Fourier series and truncation. Any f inite sum of harmonics 

possesses the quasi-symmetry. In three- dimensional problems the 

quasi-symmetry corresponds to streamline equations with 312 



degrees of freedom. Therefore, stochasticity of streamlines must 

be typical of generic three-dimensional flows. 

Figures 3a and 3b. 

"Lagrangian turbulence" as contrasted to ordinary "Euler turbulence." 

As long as for stationary flows trajectories of Lagrangian particles 

coincide with streamlines, the chaos of streamlines implies also an 

anomalous diffusion of admixture particles along the channels of the 

stochastic web. 

Let us make these arguments more specific, using as example 

the streamlines of stationary Rayleigh-Benard convection in 

horizontal infinite fluid layer. When the Rayleigh number, which is a 

dimensionless measure of temperature difference across the layer, 

exceeds certain threshold value RC, the fluid motion is self- 

organized into hexagonal Benard cells. Slightly above the threshold, 
for E = [R - 1 , the spatial dependence of the velocity field v_ 

is given by 

v_ = E rot rot z_iq (3.1 ) 



With accuracy up to E ~ ,  where 

Explicit expressions for the coefficients a and b as functions of the 

problem parameters are obtained in [l l ] .  
Introducing parameter, t, we obtain the following equations that 

describe dynamics of impurity in the field (3.1) - (3.2): 

X 
sin x+sin-cos (cosz+ 2elcos2z) 

2 

here E, = a& and 12 = 2 b ~ .  To the first approximation in E, i.e., for 

E, = 0 and E~ = 0, the streamline pattern forms in a hexagonal so- 

called ABC flow (Fig. 3a). 
Thus, the streamlines divide the whole coordinate space 

occupied by the flow into a system of cells which can have either a 

simple crystallic pattern (N = 3,4,6) or be very complicated, as is 

the case for five-fold or higher quasi-symmetry. These cells are 



separated by layers of turbulent streamlines whose thickness is of 
the order of r [9,10]. This phenomenon is sometimes described also 

by the notion of "Lagrangian turbulence" as contrasted to ordinary 
"Euler turbulence." As long as, for stationary flows, trajectories of 

Lagrangian particles coincide with streamlines, the chaos of 

streamlines also impl ies an anomalous diffusion of admixture 

particles along the channels of the stochastic web. 

4 .  STOCHASTICITY OF STREAMLINES IN RAYLEIGH-BENARD 
CONVECTION 

The picture described previously seems to be of rather universal 

character and therefore well-known structures in other stationary 

motions of f luid, gas or p lasma must  also possess similar 

properties. This means that the structures that arise in fluids 

before transition to turbulence also form a stochastic web of 
streamlines. Moreover, spatial orientation of this web naturally 
reflects the structure form. This conclusion is motivated by the 
following arguments. Let us use any suitable method of analysis of 
a hydrodynamic medium in a preturbulent state. Such a state, which 

can be described by a finite collection of cells, was obtained in [12]. 
These streamlines are c losed and l ie on  vertical cyl indrical 

surfaces. 
To the next approximation in E ,  i.e. for E~ # 0, but small r 2  << 1 ,  

the picture changes. The majority of streamlines now become 

unclosed and wind around toroidal surfaces. Figure 4a illustrates 
the results of numerical integration of the system (3) for c, = 0 and 

E *  = 0.2. Shown is cross section of one of the tori in the plane 
z = x/2. However. near the cell boundary such surfaces turn out to 

be destroyed. Figure 4b shows the chaos of streamlines in one of the 

sectors of a hexagonal cell. We should note that, to the second 

approximation in c !  fluid cannot diffuse between the cells because 

the normal velocity vanishes at the cell boundaries, even though the 

streamlines are chaotic. In contrast to the case of square cells [13]. 
development of a global stochastic web in this case can be 

associated with oniy higher-order terms in Galerkin's approximation. 



Figures 4a and 4b. 

5. CONCLUSIONS 

Hydrodynamic structures do not always have the property of 

symmetry or quasi-symmetry. The previous discussion refers only 

to such structures. Nevertheless, our results underline an urgent 

need to clarify connection between Lagrangian and Eulerian 
turbulence. The difference between them directly affects the 

character of particle mixing in a flow, even though in both cases the 

mixing process is of clearly turbulent nature. 
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The Rayleigh-Taylor' (RT) instability occurs whenever a dense fluid is accelerated by a 

fluid of lower density. Perturbations on the interface between the two fluids are predicted to 

grow exponentially in time with a growth rate y = ( ~ k g ) ' / ' ,  where the Atwood number A 

= (ph - pI)/(ph + PI),  ph (pI)  is the density of the heavy (light) fluid, the wavenumber k = 

2.rr/X, X is the wavelength of the perturbation and g is the acceleration. When the amplitude 

of the perturbation ( 7 )  becomes of order of X/27-r, the sinusoidal surface disturbance mutates 

to rounded columns of "light" fluid rising into the "heavy" fluid which, in turn, is funneled 

This is the classical bubble-and-spike structure. It is at  about this amplitude 

that the RT exponential growth transitions into a nonlinear "free-fall" regime.415 The evolution 

of the bubble (spike) is now well described by 176 = abg t2 /2  ( v ,  = asgt2/2) ,  where (vs) is 

the amplitude of the bubble (spike) and cub ( a , )  is the free-fall reduction factor for the bubble 

(spike). Typically ab 5 a ,  5 1. In addition. the velocity4 of the bubble rise is m ( g ~ ) 1 / 2 .  

Thus for classical, incompressible RT in the presence of Inany perturbation wavelengths, the 

shortest wavelength modes will grow the fastest, saturate the earliest and then the larger 

bubbles will subsume the smaller bubbles and larger and larger structures will dominate the 

This tendency for the bulk of the energy to concentrate in the long wavelength modes 

means that fluid elements with like signed vorticity must tend to group together; in no other 

way is it possible for the scale of the velocity distribution to i n c r e a ~ e . ~  

Classical, incompressible, inviscid turbulence theory predicts that in two-dimensions both 

the kinetic energy and the enstropliy, the integrated square of the vorticity, are constants of the 

m ~ t i o n . ~  As a result, the excitation of a wide spectrum of middle wavenumbers in the presence 

of some dissipation results in the "inverse cascade" of energy to lower wavenumbers and a 

cascade of enstrophy to higher wavenumbers. Both this process and the process of "selective 

decay" of enstrophy with respect to energy in unclriven dissipative systems7 leads to the 

eventual dominance of the largest spatial scales of the system. This inverse cascade process has 

been observed in carefully prepared 2-dimensional numerical siniulations of constant density 

fluidss, electrostatic guiding-center plasn~asg and ~llagnetohydrodynamic fluids1'. There is 



both experimental1' (in 2D and 3D) and numerical12 evidence (in 2D) that this process 

occurs during the nonlinear evolution of the classical two-fluid multimode RT instability. We 

present here the first evidence of this 2D inverse cascade process in the compressible, ablative 

environment of the laser implosion scenerio. 

In laser driven ablation, the inward flow of thermal energy from the hot laser absorption 

region is roughly balanced by the outward flow of plasma kinetic energy and p d V  work from 

the target, or ablation, surface. As the newly heated material at the target surface expands 

outward, the cold, dense shell is accelerated inward as a result of conservation of momentum. 

In effect, a cold dense material is being accelerated by a hot, low density plasma and the 

ablation surface; i.e., the interface, is subject to the RT instability. The RT instability is a 

potential obstacle to inertial confinement fusion in that small perturbations on the ablation 

layer may grow large enough to destroy the spherical implosion symmetry of high aspect 

ratio pellets. Recent theoretical13, n ~ m e r i c a l l ~ - ' ~  and experimental18 investigations of the 

RT instability in laser ablatively accelerated targets are in general agreement and indicate 

that the RT growth rate is about 112 of the classically predicted (non-ablative) value. With 

the exception of a 5 mode study in Ref. 15 and a 2 mode study in Ref. 14, all of the 

above investigations have concentrated on single wavelength perturbations. In reality, RT will 

develop from initial perturbations where many different wavelengths are present. 

The evolution of the multimode RT instability in laser ablatively accelerated targets is 

modeled with our FAST2D Laser Matter Interaction Code. This is a fully two-dimensional, 

Cartesian, compressible hydrodynamics code with a sliding Eulerian grid with variable grid 

spacing. There are periodic boundary conditions in the direction transverse to the laser. This 

model has been extensively compared with experimental r e s u l t ~ l ~ ~ ~ ~  and is discussed in some 

detail in Ref. 16. Although the flux-corrected-transport (FCT) algorithms do not require 

artifical viscosity for stability and ensure that the large scale features are treated inviscidly, 

the nonlinear properties of the FCT algorithms ensure that energy in wavelengths smaller than 

a few computational cells is (numerically) dissipated. The small residual numerical viscosity 

of the algorithm mimics the behavior of physical viscosity.20 The laser energy is absorbed 

by classical inverse Bremsstrahlung absorption with a 10% dump at critical. For the results 

presented here, the code is initially run in a one-dimensional mode with a laser pulse that has 

a 2 ns Gaussian rise after which the intensity is held constant at its peak value. The peak laser 

intensity is 3 X 1014 W/cm2 with a wavelengtll of 114 pm. These steady-state profiles then 

serve as initial conditions in the two-dimensional moclel. At the start of the RT simulation, 

these profiles are perturbed at the ablation front with nlultiple wavelength perturbations of 

equal amplitudes and random phases; this gives rise to an initial mass perturbation of 0.1%. 



The laser intensity is held constant throughout the evolution of the RT instability. The growth 

rate of the instability is obtained by Fourier transformation of the sunlmed mass of the foil. 

The mass of the target (p X )  is integrated from the rear of the foil ( the side away from the 

laser) to the ablation front for each transverse coordinate. 

T I M E  ( N S I  

FIG. 1. Log of the Fourier transform coefficient of the areal Inass density as a function 
of time (ns) for all 20 modes. The areal mass of the target (px) is integrated from 
the rear of the target (the side away from the laser) to the ablation front for each 
transverse coordinate. lfodes 2 - 20 ("C" - "U", 75 p171 - 7.5 p 1 7 7 )  are perturbed 
initially. hIode "B" (150 p n z )  is not perturbed initially. 



The target is a 200 p m  thick planar slab of plastic (CH). After con~pression. at the time 

the target is perturbed, the target thickness is E 40 pm. The  transverse dimension is 15Opm 

and modes 2 - 20 (7.5 p m  5 X 5 75.0 pm) are perturbed with equal amplitudes and random 

phases. The wavelengths range from nearly 4 times the inflight target thickness to 1 / 5  of 

the inflight target thickness. The time evolution of the amplitude of the mass variation of 

all 20 modes is shown in Fig. 1. There is much information to be gained from this figure. 

The longest wavelength mode in the system ("B", 150 pm), which is not perturbed initially, 

undergoes rapid oscillatory growth with a growth rate E 2 ns-l. This wavelength becomes 

the dominant mode in the system by about 8 ns, after all the other modes have saturated, 

and reaches a saturation level nearly an  order of magnitude larger than the other modes. 

The growth of this mode stems directly from the nonlinear interaction between the smaller 

wavelength modes. The shortest wavelength modes in the system ( "Q" - "U". 9.375 pm - 7.5 

p m )  exhibit very little growth until about 5 ns when they begin to grow at an increased rate. 

They are apparently being fed by the longer wavelength modes which are saturating at about 

this time. Modes "Q" - "U" saturate a t  about 6.5 ns. Note that the long wavelength modes 

("B" - "J". 75 pm - 15 p m )  initially grow a t  nearly the same growth rate. It is quite clear 

that nonlinear mode coupling is occuring very early in the evolution of the instability. The 

growth rates of the individual modes (square symbols), measured in the 1.5 - 5 ns time 

FIG. 2. Plot of the numerical growth rates (squares) as a function of perturbation wave- 
length. Also shown are the growth rates when only single modes are perturbed (dashed 
line). 



interval, are shown in Fig. 2. Also shown are the growth rates obtained when only single 

modes were perturbed (dashed line). During the exponential growth phase of the instability, 

the multimode behavior is strikingly different from the single mode behavior. The interme- 

diate and long wa.velengtl1 modes grow at nearly the same rate a.nd, for X < 75p172, at rates 

substantially below the single mode behavior. The growth rates for X 5 15pm are strongly 

suppressed. 

The inverse cascade process which results in the eventual dominance of large scale motion 

can also be observed by examination of the isodensity contours. Fig. 3 shows the evolution 

of the target surface at four different times during the development of the mix layer. The 

instability is well developed by 5 ns. At 8 ns five well-developed spikes are evident; the fourth 

and fifth modes have just saturated. Note the two large bubbles at the top and bottom of 

the density contours. By 9 ns, these bubbles have expanded to cover over half of the target 

surface. This rapid spreading of the vortex pairs in each of the two largest bubbles, coupled 

with the strong ablative flow, shears off several of the spikes (at the top and bottom), which 

are then convected back towards the laser. In addition, this spreading and shearing process 

causes the four central spikes to collapse into one spike and by 14 ns, the system has evolved 

to a single spike and the bulk of the target is relatively flat. In effect, the evolution to the long 

wavelength modes coupled with the strong ablative flow causes the target to be "self-healing7' ; 

i.e., the bubbles are not observed to break through the target in this case. This late time 

spreading and shearing process has been observed over a wide range of modes (from 6 to 20) 

and system lengths (from 42 pm to 150 pm). The rapid bubble spreading begins when the 

bubble diameter sz 17/2. 

The transition from a many mode structure to a single mode structure occures in two 

distinct phases. The initial phase, up to about 7 ns, is qualitatively similar to what is predicted 

by the inverse cascade theory and large amplitude RT theory. There is a gradual evolution to 

longer wavelength modes as vertex merging, or bubble amalgamation, appears to dominate. 

When the amplitude of the perturbation becomes large, O(X/27r), the spike and bubble enter 

a free-fall regime. The time evolution of the mix layer is shown in Figure 4; plotted is the 

height of the bubble rise (hb) and the depth of the spike fall (h,) as a function of time. After 

z 4 ns, the spike begins to fall much faster than the spike rises. After 7 ns, the rate of bubble 

rise rapidly slows and hb approaches a ln(t) dependence by 9 ns. There is reduction in the 

free-fall rate in the 5 - 7 ns time interval. With g = 2.0 X 1015 cm/s2, we find c u b  = 0.08 and 

a,  = 0.17. This is 70% of the free-fall reduction factor for the multimode, nonablative RT 

case.17 In the nonablative mix layer, as the bubbles grow, the vortices on either side of the 

spikes (of unlike magnitude) induce a net rotational flow on one another. The vortices tend 





FIG. 4. Plot of the height of the bubble rise (squares, hb) and the depth of the spike fall 
(triangles, h,) in p m  as a function of time2 (ns2). These distances are measured on 
the ablation front, the point of steepest density gradient, at the center of the largest 
bubble and the longest spike. 

FIG. 5 .  Plot of the bubble diameters (solid symbols) of the two largest bubbles 
(scluare:upper bubble, triang1e:lower bubble) and the rise velocities (open symbols) 
of the same two bubbles as a function of time. 



to rotate about one another, further entraining the heavy and light fluids and extending the 

mix layer.'7>'8 This secondary rotation is not observed in the laser driven case. 

The second phase of the transition to the fundamental mode. from 8 ns - 14 ns, is governed 

by the evolution of spreading, buoyant vortex pairs. As the largest spikes enter the free-fall 

regime, the vortex pairs, in the corresponding bubbles, are convected away from the steep, 

unstable density gradient and reside in the nearly constant density fluid making up the bubble. 

By 8 ns, isovorticity contours and streamline plots (not shown) indicate that the vortex pairs 

cornprising the two largest bubbles are centered in the nearly constant density fluid of the 

bubble. The isodensity contours a t  9 ns, Fig. 3, show the nearly constant density in the 

largest bubbles. For a buoyant, vortex pair it has been shownz0 that if the circulation remains 

constant while the buoyancy force acts to  increase the momentum of the pair, then the buoyant 

pair spreads linearly in time and rises a t  a rate o: l / t .  The  rate of change of circulation 

l? = - $ d p l p  i 0 for nearly constant density. The rise velocity of the vortex pair is V = 

I'/(27iD), where D is the vortex separation distance. The  constant buoyancy force (Fb) is 

equal to the rate of change of upward momentum, Fb = d(MV)/dt, where A I  is the total mass 

of the vortex (hl  a D2). Then the separation distance D cx t and the rise velocity V oc l / t .  

Figure 5a shows the diameters of the two largest bubbles as a fuilction of time. The bubble 

diameters follow a linear time dependence for t > 6.5 ns. The  bubble rise velocities, Fig. 5b, 

follow a linear time dependence for 4.5ns 5 t 5 6.5 ns, corresponding to the free-fall regime, 

but there is a sharp transition into a l / t  dependence for times 2 6.5 ns. The bubble diameter 

(D m t )  is increasing at a much faster rate than the bubble height (hb  m ln( t )) .  This rapid 

expansion coupled with the strong ablative flow essentially scours the perturbations off the 

surface of the target. This causes an enhanced erosion of the target surface; by 14 ns, only 

30% of the initial target mass remains. 

In summary, the results indicate that nonlinear mode coupling occurs very early in the 

evolution of the ablative RT mix layer. The nonlinear process. the inverse cascade of energy 

towards the larger spatial scales, drives the RT instability tolvard progressively longer wave- 

lengths and limits the growth of the shorter wavelength perturbations, as evidenced by: (1) 

the early appearance of an initially unperturbed long wavelength mode, and (2)  the strong 

reduction in the \stavenumber dependence on the growth rate as compared to the single mode 

perturbation case. The rate of development of the vortical mix layer is smaller than that 

observed in the nonablative case. Subsequent late time development of the mix layer appears 

to be well described by the phenomena of buoyant vortex pairs: the bubbles rise much slower 

than the linear time dependence predicted by large amplitude bubble theory. Although the 

inverse cascade mechanism may be particular to two dimensions, the nonlinear mode coupling 



which severely reduces the wavenumber dependence of the RT growth in the multimode case 

will most likely not depend on the dimensionality of the problem. If buoyant vortex rings are 

formed in three dimensions, they are predicted to rise at  a ratez0 K l / t1 I2 ,  which is less than 

the large amplitude steady state prediction (V cc t) .  

One of the authors (MHE) wishes to  thank J .  P. Dahlburg for several stimulating conver- 

sations during the course of this work. This work was supported by the U. S. Department of 
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Similarity Theory of Incompressible Random 

Rayleigh-Taylor Instability 
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In this Note, we show how a detailed analysis of recent high resolution two- 

dimensional numerical simulationsl of low Mach number (incompressible) random Ray- 

leigh-Taylor instability allows the formulation and explicit perturbative solution of a 

mathematical model that embodies key features of these flows. The results are in good 

agreement with both the numerical simulations and with experiment2. Some typical 

interfacial contours from the numerical simulations of Rayleigh-Taylor instability at 

1 1 19 density ratios a = 2 : 3 , l  : 3 , l  : 20 [(Atwood ratios A = (1 - a)/(l  + a )  of Z, 

respectively)] are given in Figure 1; the numerical results are obtained using an ALE 

(Arbitrary Lagrangian-Eulerian) compressible flow code, supplemented by a novel and 

accurate interface tracking scheme, at a spatial resolution of 200x200 cells (run on a 

superworkstation). 

Our analytical model is based on the two-fluid model of Youngs3. The dependent 

variables of the model equations are horizontally averaged velocity, pressure, volume 

fraction, etc. We denote the direction of gravity as +z.  The dependent variables are 

ZL,(Z, t ) ,  f,(z, t ) ,  p ( ~ ,  t) ,  p, (r = 1,2)  where U, is the average velocity in fluid r at z,  t ,  f, 



Fig. 1. Two dimensional hydrodynamic simulations of a Rayleigh Taylor mixing layer 
obtained using our interface tracking code. The ratio of the densities of the lower fluid 
to the upper one is 2:3 in (a)[t=5.0], 1:3 in (b)[t=3.0], and 1:20 in (c)[t=2.0]. 



is the average volume fraction, p is the pressure, and p, is the (constant) density. We 

assume that  a t  t = 0,  the heavy fluid of density p1 occupies z < 0 while the light fluid 

of density p2 occupies z > 0. 

Conservation of mass requires that 

where g is the (constant) gravitational acceleration and K is an interphase drag co- 

efficient. These two equations should be viewed as defining relations for the effective 

pressure p and drag coefficient K.  Furthermore, the fluid is space filling so 

for all z ,  t .  Eqs. (1)-(3) are closed by a relation for the friction coefficient K.  Following 

Youngs we assume that K depends only on the local properties (f,,p,,u,) of the flow, 

that it vanishes if either f l  = 0 or f 2  = 0; dimensional analysis then gives the relation 

where L ( z ,  t )  is a new length scale, an effective mixing length for the Rayleigh-Taylor 

instability. 

Finally, we assume that the scale length L is independent of space and grows 

with time according to the velocity jump at the original interface location (say z  = O), 

so L qualitatively measures the average bubble-spike separation. 

We solve the model (1)-(4) using the following additional approximations. First, 

we assume that  the statistical behavior of the random Rayleigh-Taylor unstable interface 



is  independent of the details of the (random) initial conditions; this suggests a self-similar 

solution to (1)-(4) in which the non-dimensional dependent variables f,, v, = u , / g t ,  q = 

p / ( p l  $ p 2 ) g 2 t 2 ,  1 = L I g t 2  depend only on the non-dimensional variable 

and on the density ratio cr = p 2 l p l .  This assumption may be checked from the numerical 

simulations; in Fig. 2 ,  we plot fl as a function of s a t  various times as well as a smooth 

second-order polynomial fit .  The results plotted in Fig. 2 suggest that self-similarity is 

a good approximation at the level of 5-10% errors4. 

Transforming ( l ) ,  (2)  to  the non-dimensional similarity variables gives the ordi- 

nary differential equations 

where the prime indicates differentiation with respect to  the scaling variable S. 

From (l1) and (3), we obtain 

for all S .  Then, eliminating q from ( 2 ' )  for r = 1 , 2  gives 

Another critical test of the model is gotten by using Eq.  (6), together with the 

polynomial fits to f , ( s ) , v , ( s )  (see Fig. 2 )  to  evaluate C as a function of S; the result is 



Fig. 2. Check of the self-similarity of the profiles of the heavy fluid volume fraction 
fi vs. the reduced coordinate s = zlgt2 obtained from the simulation of Fig. l ( a )  at 
the times t = 1.5, 2, 2.5 and 3. Also shown is a polynomial approximation to the curve 
(dashed line) used for eliminating numerical noise. 



~ l o t t e d  in Fig. 3, which shows (with an error of order 20%) that C is nearly independent 

of s (as it must be if L depends only on t ) .  In this case, (4) becomes 

1 e =  - 1  
2 v2 - v1 Is=o (4') 

The results plotted in Fig. 3 also show that .!/C = 0(5x10V3) so the interphase drag 

coefficient C may be expected to be a large parameter. 

We could now ~ r o c e e d  by solving the ordinary differential equations (4'), (5), (6)  

numerically. However, we believe that it is more instructive to solve these equations 

analytically by expanding in powers of 1/C.  Guided by the numerical simulation results 

and the form of (4'), (5), (6), we assume that l and v, are first-order in 1 / C  while f, 

is zeroth-order in 1 /C .  Then the left-side of (6) may be neglected to leading order so, 

noting (5),  

This result for v1 as a function of fl together with (3) and (5) may be inserted into (1') 

with the result 

l - a  

which shows that s is also of order 1/C over the region of significant mixing. 

To determine C from (4'), we first find fi at s = 0 by solving (8) 

where the sign of the square root is chosen so that f l /s=o -+ when a -+ I-.  Eqs. (3 ) ,  

(4'), (5) give l? = $v l / ( l  - fi)/s=o so (7) and (9) imply that 

3(1 - a )  e = 
2 C [ l +  a + (a2 + 14a + l):] 

Eqs. (3 ) )  (5) ,  (7)-(10) give the analytic model. 



Fig. 3. The effective scale length as obtained from the simulation vs. the (reduced) 
spatial coordinate. The two-phase flow model (1)-(4) assumes the scale length is inde- 
pendent of space as shown here to be approximately true. 



We now compare the ~redict ions of this analytically solvable model with the 

results of our numerical simulations of the two-dimensional random Rayleigh-Taylor 

flow. The only adjustable parameter of the similarity flow model is the dimensionless 

friction coefficient C. The volume fraction f l(s)  for Atwood ratio A = 6 is fit well by 

the analytic result (8) with C = 7.5 [see Fig. 41; for the other Atwood ratio runs plotted 

in Fig. 1, the best choice of C is between 7 and 8. The results plotted in Fig. 4 show 

the modelling error in fl and v1 is only about 10%, except where the numerical noise is 

large (near the rarely occurring far-reaching spikes). 

Let us now consider a few global parameters of the mixing layer, since this fa- 

cilitates both comparison with experiments and a clear view of the dependence of the 

results on the Atwood ratio A. The maximum excursion of the bubbles in the model is 

112 

-,I,=, = [-&(I - a)] 

while for the spikes it is 

In Fig. 5, we plot the dependence of the bubble excursion on A. The fit to the simulation 

data is good and is very near to  the straight line 0.057Agt2 for the whole parameter range. 

The ratio of spike to  bubble excursion equals the inverse square root of the density 

ratio cr and does not depend on the drag parameter C. This is impossible for very small 

density ratios (high Atwood numbers) since it gives a spike excursion which might exceed 

fgt2. Inspection of E q  (6) shows that when both a and fl are small (of the order of 

1/C or less), the neglect of all terms on the left hand side is not justified. Luckily, it 

can be shown that only the first term, v l ,  on the left side is important in this case. 

Retaining v1 on the left side of (6) complicates the analytic expressions but poses no 

new difficulties. We shall give here only the maximum excursion results for the corrected 



Fig. 4. Comparison of profiles of the volume fraction (decreasing to the right) and 
velocity (increasing to the right) of the heavy fluid, from the model and the simulation 
(with density ratio 1 :3). Both the simple analytic approximation (continuous lines) and 
the numerical solution of the model differential equations (dashed lines) are given, and 
all agree within the accuracy of the direct simulation (continuous lines with numerical 
noise). The plots are done at t = 2.5. 
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Fig. 5. The maximum penetration of the heavy fluid by bubbles of the light fluid 
(scaled by gt2), as a function of the Atwood ratio (or density ratio). The analytic 
model results (continuous line) roughly agree with a straight line (dashed), which is 
the familiar expression yAgt2 with 7 = 0.057. Also shown are the results from the 
simulations [indicated by X ' S ] .  



model which, for the spikes, is 

and (11) unchanged for the bubbles. This expression is close to  the previous result (12) 

1 2 '  for large density ratios, and tends to s = f ( z  = Zgt in dimensional units) for very small 

Further results can be obtained from this analytic model, for example, the global 

energetics of the flow. Only global energy results can be easily obtained since differential 

energy conservation equations would necessitate the introduction of a new inter-fluid 

interaction term, thereby complicating the model. Computing the change in potential 

energy relative to the initial state, and normalizing it by (pl + p2)g3t4, the simple version 

of our model gives 

l - a  l 1 - 4 a  + tr2 
= -- ( 

32C 
1 - 

1 - a 2  

while for the kinetic energy of the average flow (calculated from the mean velocities 

within each fluid) we obtain 

The ratio of the kinetic energy to  the absolute potential energy can be regarded as an 

energy conversion efficiency factor (with the "wasted" energy going to turbulence and 

possibly heat); this quantity is plotted in Fig. 6. It is seen that the efficiency factor 

is low for moderate density ratios, and only rises when the density ratio becomes very 

small (A20.9). In fact, it is also clear from this result that the simple model cannot hold 

for extremely small a because it implies negative turbulent kinetic energy. We already 

know that for small a we must use the corrected model, which necessitates numerical 



integration; these results are also given in Fig. 6. The  sudden change of slope for ,420.9 

suggests that  the analytic model has limited validity for Atwood ratios higher than about 

0.9, since the behavior there is a different flow regime with relatively organized spikes 

and lu lb les .  For example, it is possible that the scale length is not absolutely constant 

and decreases for low o in the far reaching spikes (which would lead to better agreement 

with experiments). 

A more complete summary of this work will be published elsewhere1. 

One of us (SAO) would like to acknowledge support under DARPA contract 

number N00014-86-K-0759, by the US Air Force under contract number F08635-89-C- 

0383, by the Office of Naval Research under contract number N00014-83-C-0451. 

Atwood Ratio 

Fig. 6. Ratio of mean kinetic energy t o  available potential energy gained from the 
gravitational field for the simple analytic approximation (dashed line) and the corrected 
analytic results (continuous line). Also shown are the results from the simulations [in- 
dicated by X'S]. The  sharp changes a t  Atwood ratios above 0.9 indicate that these flows 
may be in a different regime. 
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I-INTRODUCTION: 

Stability and transition to turbulence have been the object of a considerable interest in the past 

fifteen years. However, the mechanism by which a flow becomes chaotic has been studied, 

essentially, for thermal convection of incompressible fluids. Numerical simulations of such flows are 

usually carried out with the spectral methods owing to their high accuracy [l-21. The Boussinesq 

approximation, used in these studies, holds for a compressible fluid provided that the vertical extent 

of the fluid is small enough. In some situations, for example in stellar convection or in laser driven 

fusion, the stratification of the fluid can no longer be ignored and we have to use the full 

Navier-Stokes equations. Since the pioneering work of Graham [3], some papers have been devoted 

to the simulation of compressible convection [4-51. In the special case of fixed heat flux Yamaguchi 

[6] found supersonic solutions even at low Rayleigh numbers. From a numerical point of view, 

viscous compressible flows involve very different time scales which lead to long time runs. It is then 

necessary to use numerical schemes more implicit than those used in incompressible flow 

sirnulations, in order to overcome, as far as possible, time step resmction due to convective terms. 

In view of this, we have developed a 2D pseudo-spectral code for the full Navier-Stokes 

equations [7], which has been used so far to numerically simulate the compressible Rayleigh-BCnard 

convection. A Fourier expansion is used in the horizontal direction. The expansion in the Chebyshev 

polynomials used in the inhomogeneous direction leads to severe time step constraints due to the high 

resolution on the boundaries. However, in compressible flows, viscous and thermal diffusion terms 

are nonlinear. This nonlinearity leads to use iterative methods such as suggested by Orszag [8]. In 

the first version of the code, only vertical diffusion terms were solved implicitly by an iterative 

method preconditioned by the time independent Chebyshev approximation of the diffusion operator. 

In this paper we present a more implicit version where convective terms are treated 

semi-implicitly and all diffusion terms are handled with an iterative method preconditioned by the 

finite difference approximation of the diffusion operator. We used both numerical schemes to 

compute sub and supersonic steady state solutions obtained with radiative boundary conditions. 

The next section I1 poses the physical problem, section 111 is devoted to detail the numerical 

scheme and numerical applications are described in section N. 



II-THE PHYSICAL PROBLEM: 

The motion takes place in a two-dimensional rectangular cavity of width L, and height d. 

The z-axis is directed downward so that the gravity, represented by the vector g=(O,O,g), is positive 

along this direction. 

The equations of motion for a compressible, viscous, thermally conducting gas are as follows: 

and 

where E is the total energy 
2 2 E = 1 / 2 ( u l  + u2 ) + e -  g x 2 ,  

and 2. .  the viscous stress tensor given by 
1J 

Tij= p( auim xj + aujm Xi -213 6ij aul/a , (2.5) 

where i,j,l=1,2. The Stokes' relation between the f i s t  and the second viscosity 

coefficients has been used. The coordinates xl and x2 stand for the X and z coordinates respectively. 

This set of equations is closed by the equation of state for the perfect gas, 

P = R *  pT and e = G T .  (2.6) 

P, p, T and e are pressure, density, temperature and internal energy respectively; the ui are the 

components of the velocity. The thermal conductivity and the dynamic viscosity are taken as 

constants. R* is the gas constant and C, the specific heat at constant volume. 

We use slippery boundary conditions for the velocity and radiative boundary conditions for the 

temperature. This set of boundary conditions is a reasonable approximation for stellar convection 

zones. The boundary conditions for the velocity read 

We impose the heat flux at the upper boundary to be fixed by the radiative energy of a black 

MY 

K dTIdz = db fi (2.8) 

where osb is the Stefan Boltzmann's constant. Taking into account the fluctuations of the 

thermal conductivity up to the f i s t  order with respect to the density and the temperature and 

linearizing the equation (2.8) gives the following relation at the upper boundary: 



where 6 Bp  is the derivative with respect to p and the Stefan number Sf= osb T ~ ~ / K ~  has 

been used. If the thermal conductivity K is of the form ~ ~ 1 0 ,  the temperature fluctuations satisfie an 

inhomogeneous timedependent Robin type boundary condition at the top of the layer. 

and T(zo+d) = T1 at the bottom of the layer. (2.10) 

Periodic boundary conditions are used in the horizontal direction for all variables. With these 

bundary condtions, the static state reads 

The coordinate z goes from Z-I to ~ - l + l ,  where Z=d/%. The index of the polytrope is 

m=glR*PO- l where PO = T (%+d) - T (W). 

In Eqs.(2.l l), we have used the following units: d, d20( %)/p, p(%) and T(%) for length, 

time, density and temperature respectively. The two-dimensional compressible convection problem is 

characterized by seven dimensionless parameters which are the aspect ratio A, the Prandtl number o, 

the ratio of specific heats y, the normalized layer thickness 2, the plytropic index m, the Stefan 

number Sf and the Rayleigh number R. The parameters o and y are given by the thermodynamical 

properties of the fluid. Z characterizes the stratification of the configuration while the Stefan number 

measures the magnitude of the radiative diffusion with respect to the thermal conductivity and the 

Rayleigh number measures the degree of the instability. Their expressions are 

A=L,/d, o=CpW, W%, W p ' C v ?  

and 

R=(f lu  Id4 [(Tl- Tu )/d-glCp I / ( W P ~ C ~ ) (  MP,). 

where the subscripts 1 and U refer to the lower and upper layer boundaries. 



m - DESCRIPTION OF THE PSEUDO-SPECTRAL CODE : 

Density, velocity and total energy are expanded in a Fourier-Chebyshev basis as 

where Tm is the Chebyshev polynomial of degree m, and L, is the horizontal periodicity. 

We use a collocation method where spatial derivatives are computed in the spectral space and 

nonlinear products are performed in the physical space. Time marching is performed in the physical 

space by means of a finite difference technique. As already stated, a simple numerical scheme 

consists of the Adams-Bashforth predictor of order two and the third order Adams-Moulton corrector 

for all terms but the vertical diffusion terms. Such terms are handled by an iterative procedure 

preconditioned by the time independent Chebyshev approximation of the diffusion operator. This 

spectral preconditioning appears to be very efficient both in term of the number of iterations needed 

to achieve a given accuracy and in term of CPU time. However, in this approach, the time step 

obeys the CFL condition and then it is of interest to test more implicit numerical method in order to 

overcome this constraint. Harned and Kerner [9] have investigated a possible way within the finite 

difference framework by stabilizing convective terms with a diffusive term handled semi-implicitly. 

More precisely, they first notice that fast modes are described by the following equation 

a2 v I at2 = *dpo v (".V) (3.2) 

obtained by linearizing the Euler's equation and the energy equation written for the pressure. 

Consequently, they add the term A ~ ~ A ~ ~  V (V.V) in the velocity equations and handle it implicitly. 

Coupled with the second order Runge-Kutta numerical scheme, they show that unconditional 

stability is ensured provided that 

In other words the constant A, is of the order of the sound velocity. 

Second order Runge-Kutta numerical scheme with Chebyshev approximation are known to be 

weakly stable. So we turned to the third order Runge-Kutta such as used by Hussaini and coworkers 

[2, lO].This scheme reads 

where the terms in F are treated by the third order Runge-Kutta and those in G by Crank Nicholson. 

[ I - AZA,~V V.] u1 = un + Hl/3 + At /6( G, + GI)  - At V v.un (3 .k)  



2 2 [ 1 - At ~ ~ ~ v v . 1  un+l = u2 + 8/15 H3 + 118 At (G2 + - At A, '3 v.u2 (3.4g) 

In this approach, diffusion terms are iteratively solved with the Chebyshev method in the 

Fourier space. The two velocity components are coupled by the second viscosity term. Then we have 

to solve 

where the right hand side Fk is given by the convection and pressure terms of the Navier-Stokes 

equations. The operator L is given by 

2 2 with Dt =At A, + 113 

We use the Chebyshev iterative method preconditioned by the diagonal part of L. 

N-NUMERICAL APPLICATIONS : 

We have computed convection solutions for different Stefan number values. The aspect ratio is 

fixed to 4 and the Rayleigh number to 11500 for all studied cases. The Prandtl number is fixed to the 

value o=0.1 and the ratio of specific heats is chosen to the value of a monoatomic gaz ~ 1 . 6 7 .  The 

polytopic index is equal to the value m=l. 

In Table I we give the final steady values of characteristic quantities such as the maximum of 

the velocity, the Mach number and the relative thermodynamical fluctuation quantities. They are 

defined by 



where the maximum is taken over the two dimensional domain. 

Table I 

Stefan number 1. 1.5 2. 2.5 2.73 

Velocity maxi. 487. 478. 461. 439. 428. 

Mach max. 0.37 0.53 1.02 1.23 1.31 

Nusselt number 1.82 2.42 3.06 3.69 3.99 

Pmax 0.217 0.536 1.05 1.91 2.70 

Tmax 0.174 0.269 0.365 0.457 0.496 

l'rnax 0.324 0.656 1.08 1.53 1.76 

On Fig.1 we have plotted the velocity field when the Stefan number is equal to 1. The 

asymmetry between the rising and sinking flows is clearly revealed by the iso-vorticity contour on 

Fig. lb. This asymmetry is a feature of compressible convection in comparison with the Boussinesq 

case where there is a symmetry with respect to the center of the cell. On Fig1.c the divergence of the 

velocity field shows positive values where the flow is ascending and negative ones in the 

downward-directed plume. In this solution, the ratio of densities between the top and the bottom is 

equal to 2 while the same ratio for the pressures is equal to 4. 

In a steady state the total energy flu becomes independent of depth and is written as 

where Fc is the convective heat flux, FK is the kinetic flux, FR is the radiative flux and FV is the 

viscous flux defined by the following relations. 

In the latter the overbar denotes the horizontal average and the prime denotes the fluctuation 

about the mean. 



We also define the pressure flux by FP = W P' and the rates of working done by buoancy, 

pressure and viscous forces. They are given by 

On Fig. l-c, we have displayed these five fluxes. The dominant ones are the convective and the 

radiative fluxes. Kinetic and pressure fluxes are always less than 10% when all fluxes are normalized 

to the total flux. Viscous flux is negligible throughout the layer. F ig - ld  shows the rates of working 

done by buoancy, pressure and viscous forces. The work done by pressure fluctuations are clearly 

dominant at the bottom of the fluid layer where both pressure fluctuations and velocity gradients are 

large. 

For a Stefan value parameter equal or larger than 2 we obtain supersonic regions at the top of 

the fluid layer. The size of this domain is increasing with the stratification parameter value. On Fig.2 

we displayed the velocity field for a Stefan number equal to 2.73. As expected, the cell centers are 

shifted to the bottom and to the sinking flow. The maximum of the relative thermodynamical 

quantities also increases with the Stefan number. For the largest parameter stratification value used 

the density and pressure fluctuations respectively reach 2.7 and 1.76 times the density and pressure 

of the static state. Both convective heat flux and radiative flux reach larger values while the viscous 

flux and the corresponding rate of working remain very small. 

V- CONCLUSION : 

We have developed a numerical algorithm to simulate the thermal convection of a 

two-dimensional fully compressible fluid; the third order Runge-Kutta numerical scheme and a 

semi-implicit treatment of the convective terms have been used. All diffusion terms were handled by 

the Chebyshev iterative method in the Fourier space. Fourier functions in the horizontal direction and 

Chebyshev polynomials in the inhomogeneous direction have been used. The fluid is a perfect gas 

with constant dynamic viscosity and thermal conductivity. Both sub and supersonic steady state 

solutions have been reached with radiative boundary conditions for the temperature, they reveal the 

features of compressible convection even in the case of a weak value of the stratification parameter. 
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Fig.1-a-b-c: Velocity field, isovonicity contour and iso-velocity divergence contour for a Stefan 

number value equal to 1. 

Fig.1-c: Convective heat, kinetic, radiative, viscous 

and pressure fluxes for a Stefan number value equal to 1. 

Fig. ld: Rates of working by buoyancy, 

pressure and viscous forces. 



Fig.2a-b-c: Velocity field, isovorticity contour and iso-Mach number -1 contour for a Stefan 

number value equal to 2.73. 

Fig.2-c: Convective heat, kinetic, radiative, viscous Fig.2-d: Rates of working by buoyancy, 

and pressure fluxes for a Stefan number value equal to 2.73. pressure and viscous forces. 
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ABSTRACT 

Statistical theories for the outer envelope of the Rayleigh-Taylor mixing layer refer to 

a simplified dynamia of fundamental modes and their interactions. These modes are bub- 

bles of light fluid entrained in the mixing layer between the undisturbed light and heavy 

fluids. The dynamia can be understood in terms of the motion of a single mode and the 

interactions between modes. The single mode dynamics has to be solved self-consistently 

in a background field of random bubbles. The dominant interaction is bubble merger, i. 

e. the spreading of larger bubbles at the bubble envelope. Merger leads to dynamically 

increasing length scales, and thus to a dynamic renormalization of scaling dimensions. The 

mechanism for bubble merger is the differential motion of physically adjacent single bub- 

ble modes. 

This paper is focused on the above topia: single bubble motion, bubble interactions 

and statistical models. 

1. Introduction 

Density gradients at an accelerated interface result in Rayleigh-Taylor instability. At late times, the 

interface evolves into a chaotic regime characterized by a mixing layer and the entrainment of one fluid in 

the other. Sensitivity to the initial conditions and to random heterogeneities as well as the complexity of the 

mixing process call for statistical descriptions. Here we focus on statistical theories for the outer envelope 
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4. Supported by the U. S. Dcputment of Energy. 



for the penetration of the light fluid into the heavy, i.e. the boundary of the mixing layer. 

As with mixing theories in general, the issues discussed here fall within the area of nonequilibrium sta- 

tistical mechanics. The essential issue is to determine transport behavior in the nonlaminar, chaotic regime. 

In this chaotic regime, macroscopic continuum events (i.e. interactions between coherent structures) rather 

than molecular collisions are the driving mechanisms. Pursuing this analogy, our current investigation could 

be viewed as an effort to characterize the two body potential of this process. 

The elementary modes for the description of the outer envelope of the Rayleigh-Taylor mixing layer 

are bubbles of light fluid penetrating into undisturbed heavy fluid. P2 describes a recent refinement [g] of 

the single mode (bubble) theory developed previously [l]. An extension of this theory, based on superposi- 

tion, describes the interaction of a single bubble with a random background field in the limit of small 

wmpressibility. 03 reviews current statistical theories and develops ingredients which may be needed in a 

new generation of statistical theories. Extending earlier work [l]  using the Sharp-Wheeler model, we find a 

greater variability in a than was observed in the Read experiments [4]. This variability may be due to the 

smaller sample size in our computation as well as the ability to vary initial condition systematically. 

2. Single Bubble Theory 

2.1. The Periodic Array 

The periodic array of bubbles, or  equivalently the single bubble with periodic boundary conditions 

allows a detailed study of the long time behavior of a single mode. In this regime, the bubble goes through 

three successive time periods of exponential growth, bounded acceleration and approach to a constant (termi- 

nal) velocity. There are four parameters which effectively describe the entire motion, and in [g], the four 

parameter ODE for the velocity v 

is proposed as a model for the single bubble dynamics. Here U,  gR, V ,  and b are the linear growth rate, the 

renormalized gravity, the terminal velocity and the decay constant to terminal velocity respectively. The rea- 

son for generalizing our previous three parameter ODE for single bubble motion was the realization that it 

contained an ansatz or  prediction concerning the decay rate to terminal velocity which seemed to be lacking a 

physical basis. The solution for Eq. (2.1) is 

Extensive computations with the compressible two fluid Euler equations show a good fit for a range of 

Atwood numbers A and compressibilities M2= [g] for the equation (2.2). Here we give an intuitive, or 

physical interpretation for these parameters. We also note that two of the four parameters have been effec- 

tively determined and the remaining two must be obtained as a function of A and M2 through explicit numer- 

ical solution of the single bubble problem to complete this theory. This determination has been made for a 

limited range of these variables only. 

The two parameters which are known govern the initial period of bubble growth. The exponential 

growth rate U is a solution of a transcendental equation, and its dependence on A and M2 has been partially 
1 explored [1,8]. The constant which gives the maximum acceleration is gR = - -As on  the basis of the exami- 
2 

nation of a large number of numerical solutions to the two fluid Euler equations [l]. The final two parame- 

ters specify the terminal velocity v ,  and the rate b of approach to v,. 



2.2. The Superposition Hypothesis 

The bubble velocity for the periodic case does not agree with the experimentally observed values for 

chaotic flow [2]. The essential idea we propose is to consider the bubble as a short wave length mode. Then 

an envelope is constructed through the tips of adjacent bubbles. This envelope defines a long wave length 

mode in the interface motion. We consider a bubble which is further advanced than its neighbors. Then its 

location can be regarded as a bubble on the long wave length envelope. In other words the long and short 

wavelengths are in phase in this case. Similarly, a bubble which is less advanced than its neighbors is a spike 

on the long wave length envelope, or in other words, the long and short wave lengths are phase reversed. 

The superposition hypothesis states that the bubble velocity is the sum of the single bubble velocity plus 

the single bubble (or spike) velocity of the envelope. These two velocities are determined from the single 

bubble model of 02.1, using only the bubble radius and amplitude as geometrical parameters and so finally 

the bubble in a chaotic flow also has a velocity depending only on long and short wavelength radii and ampli- 

tudes (and dimensionless physical parameters A and MZ). 

Table 1. Verification of the superposition hypothesis from experiments of Read [4]. The hypothesis is 

satisfactory for those experiments in which envelopes can be clearly identified. In all these cases, 

A 2 0.5. 

Experiment 

t (ms) 

Vcxp 

vrh 

A V/V 

The superposition hypothesis has been confirmed for the incompressible case by analysis of Read's 

experiments. Only cases with clearly formed bubbles and envelopes were analyzed. In the remaining cases 

(presumably with small surface tension) the interface was too irregular to define a long wave length 

envelope. The results are shown in Table 1. 

Numerical solution of the two fluid Euler equation by the front tracking method shows agreement with 

the superposition hypothesis for M2 =: 0 in cases with clearly formed bubbles (no bubble splitting secondary 

instability). We find disagreement as M2 is increased, see Table 2. We observe three cases of disagreement. 

all outside the range of experiments. Our proposed explanation in this case concerns the density stratification 

of the fluids in the gravitational field. In hydrostatic isothermal equilibrium, the density of the heavy fluid 

decreases exponentially with height. The density profile is more strongly stratified as M2 increases. As a 

result, when the light fluid penetrates the stratified heavy fluid, the effective density ratio will be less than it 

was initially, thereby decreasing the velocities. We also observe disagreement with superposition in cases 

where bubble splitting occured presumably due omission of high frequency bubble splitting modes in the 

envelope description. Finally we observe disagreement with superposition for small Atwood number, for 

reasons not presently understood. 
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Figure 1. Successive times in a two bubble merger process. The compressibility and density ratio for 
this case are ~2 = 0.1 and D = 5 respectively. It can be seen that the large bubble overtakes the 
smaller one at  t = 12. The velocity of the large bubble is accelerated during the merger while the velo- 
city of the small bubble is reversed, see Figure 2. 

Table 2. The deviation of experimental and numerical results from the superposition hypothesis. 

Error 

1.2-13.5% 

1-19% 

72-105% 

Case 

Experiment 

Simulation 

Simulation 

D 

3-600 

5- 10 

2- 10 

hf2 

0.001-0.005 

.l 

0.5 



2.3. Mode Mode Interaction 

The bubble merger process appears to have two stages. As illustrated in 02.2 with the superposition 

hypothesis, smaller bubbles develop a negative envelope velocity (contributions out of phase with their single 

bubble velocity), and at sufficient envelope amplitude, their total velocity becomes negative. At this point, 

they move rapidly away from the bubble envelope, and the position they previously occupied can be 

regarded as an oversized spike between the remaining larger bubbles. The second stage of the merger pro- 

cess involves an equilibration of radii, whereby the remaining (large) bubbles increase in size, while the 

spike region between them reduces to its equilibrium value. Fig. 1 shows the interface evolution of the two 

bubble interface during merger and Fig. 2 is the plot of the velocities of the two bubbles. 

Figure 2. The plots of bubble velocities vs. time for the two bubble merger simulation. The result 
shows that the small bubble is accelerated at the beginning and is then decelerated after about r = 5. 
The small bubble is washed out downstream after its velocity is reversed. The large bubble is under 
constant acceleration. The smooth curves represent the bubble motion as predicted by the superposition 
hypothesis. 



3. Statistical Theories 

Let h(t) be the distance from the initial bubble interface to the outer bubble envelope. Then 

and in two dimensions, a = .06 (experiment) [4]. 

Computations of the acceleration constant a have been given by several authors, based on the full two 

fluid Euler eqyations with a random interface. Youngs [7] used an incompressible MAC code with van Leer 

advection. Special interface enhancements (e.g. the method of LeBlanc) which minimize diffusive mixing 

were not used, and the computation presents considerable diffusive mixing of the two fluids. His computa- 

tions used small amounts of viscosity. He considered initial configurations of 12 bubbles with 200 horizontal 

mesh blocks, or  about 16 blocks per bubble. H e  used a variety of initial conditions and Atwood numbers, 

and obtained values for a in the range .04 to .OS. 

Zufiria [ g ]  used a vortex-in-cell code for the incompressible case. He considered only A = 1, with 

small surface tension. His initial conditions were various 4 bubble configurations, and he used a range of 

mesh sizes, the coarest of which was 16 grid cells per bubble. His result was a = .05 to .06. 

We report here on recent compressible front tracking computations. A wide range of physical parame- 

ters have been varied in our simulation. Those include the Atwood number A ,  the compressibility M and a 

variation in the number and size of bubbles on the initial front. For these simulations, we have traced the 

height of the largest bubble during the run. We have two methods for analyzing the acceleration coefficient 

a ,  namely from plots of h vs. r2 and from plots of v vs. t .  The first type of analysis is similar to Read's 

analysis and is close to the experimental data. This first method gives integrated time averaged acceleration, 

ah, relative to the instanteous acceleration, a,, in the second method and is consequently more regular. We 

find that a h  in most cases is nearly time independent, and varies in the range 0.05 to 0.065 in agreement with 

Read [4]. However, some initial conditions give rise to significantly smaller values of a ;  namely extreme 

values ah = 0.038 were recorded. a, shows even larger fluctuations, both between different runs and also at 

different times within a single run. In Figs. 3 and 4 we examine a case for which ah = .066. The bubble 

motion can be observed to have three stages, as recorded in Fig. 3b. The sharp increase in a, in the time 

period 7.5 t 5 10 is associated with the collision of two spikes which lie above the bubble interface and 

are falling into the larger bubble. Upon collision, they create a jet, which accelerates the bubble. The sign 

reversal for 10 5 t S 14 appears to be due to the formation of a secondary bubble splitting instability. This 

detail of structure is missing in the plots of Fig. 3a, which are once integrated from Fig. 3b. The more regu- 

lar quantities plotted in Fig. 3a are the same as measured and plotted by Read, which provides a partial 

explanation of the regularity of his results in comparison to ours. A further explanation is that Read has 

about 10 times the number of initial bubbles in his experiments; if 10 of our runs were combined into an 

ensemble of 50 bubbles, we would obtain the same leading bubble behavior for ah  as Read. 

None of the above computations or experiments have examined many generations of bubble merger. 

Computations have been limited to one  or two generations of bubble merger. The experiments contain one 

observable generation of merger. According to the theory of the most unstable wavelength, the experiments 

have an additional one to two generations of bubble merger which is not directly observable from the experi- 

mental pictures. The fact that initial conditions can play an important role after one or two generations is 

not surprising. 

The number of generations of bubble merger in the laser fusion application can be bounded as follows. 

The theory of the most dangerous wave length [3,6] gives an estimate of the final bubble size in terms of the 

aspect ratio of the spherical shell of the container; the initial bubble size could be fixed by (a) photon wave 

length, (b) surface tension, (c) surface finish, and (d) asymmetries of the driving source. An order of 



magnitude estimate of the number of bubble merger generations from the initial bubbles set by these sources 

would be (a) 5 generations, (b) unknown but presumed very large, (c) at most 5 generations, (d) 0 to 1 gen- 

eration. From this analysis we conclude that, aside from the driving source asymmetries, there is a potential 

for more generations of bubble merger in the laser fusion application than in present computations o r  exper- 

iments. We turn next to statistical models, and the possibility of universal behavior independent of initial 

conditions. 

Figure 3. The left plot displays bubble heights vs. tZ in a simulation with 5 initial bubbles. The Atwood 
number in this case is A = 0.818, and the compressibility MZ = 0.1. The right picture shows the velo- 
city vs. t in the same case. 

Two statistical models for  the bubble envelope have been proposed [S, 101. These models are coupled 

systems of differential or  difference equations for the bubble growth and merger. The essential differences 

between these models are: The Zufiria model has no free parameters and is limited to the case A = 1, 

M2 = 0. It allows continuous relaxation of bubble width, as an aspect of bubble merger. The Sharp-Wheeler 

model has two emiprical parameters and appears to be applicable to a range of values of A and M2. Merger 

in this model is discrete in all its aspects. They both result in a constant acceleration, with an acceleration 

constant a in reasonable agreement with experiment. 



Figure 4. The interface positions at successive times in a computation with five initial bubbles. The phy- 
sical parameters of this run are the same as in Figure 3. 

Two phenomena have been observed in our random interface computations which are not contained in 

the above statistical models. One is the role of stratified initial conditions, which implies:that for times large 

in proportion to the compressibility, the light fluid bubbles rise into a rarefied portion of the heavy fluid, to 

an extent that the effective Atwood number is diminished or even becomes zero. This observation raises the 

question of initial conditions which are not density stratified. It appears to be related to the breakdown of 

superposition for small Atwood numbers and moderate o r  large compressibilities. Also note that the increase 

in wave number due to bubble merger leads to an increase in the effective compressibility. A second 

phenomena is a change of flow regime to a bubbly, frothy or slug flow regime in the mixing layer, in which 

the light fluid spatially disconnected. This multiphase regime also reduces the effective Atwood number at 

the interface. The occurence of a slug flow regime is dependent on initial conditions, in particular on the 

relative size of adjacent bubbles. It could also depend on the distinction between exactly two-dimensional 

computations as opposed to approximately two-dimensional experiments. 
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MOLECULAR MIXING IN RAYLEIGH-TAYLOR INSTABILITY 
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Abstract 
The amount of mixing at the molecular level at  various stages during the growth of Rayleigh- 

Taylor instability is investigated in a series of laboratory experiments. Instability is produced 
at an interface between two miscible liquids, brine and fresh water, with zero surface tension. 
The brine, density p + Ap with Ap 2 0, is placed on top of a layer of fresh water, density p,  
and separated from it by a horizontal barrier. Both liquid layers are initially at rest, and the 
instability is initiated by removing the barrier horizontally. 

Measurements consist of visual observations of the Aow using fluorescent dye and shadow- 
graphs. Quantitative measurements of the amount of mixing are obtained from analysis of dye 
intensities profiles during the growth of the instability. These measurements give an integrated 
value (across the width of the mixing region) of the amount of mixing. A conductivity probe has 
been used to make point measurements of the salinity. These have been correlated with visual 
observations of relate changes in salinity with specific mixing processes. 

1. Introduction 

Rayleigh-Taylor (RT) instability is the name given to the motion that develops when light 
fluid is accelerated into a heavy fluid. This can occur, for example, during laser implosion of 
deuterium-tritium fusion targets, or as a result of local density inversions of a stratified fluid. 
Linear stability theory dates back to Taylor(1950), Chandrasekhar(l961) and a recent review of 
the development to finite amplitude is given by Sharp(1984). The characteristic of the insta- 
bilities observed at high density ratios is the production of 'bubbles' and 'spikes'. Secondary 
phenomena include the development of Kelvin-Helmholtz instability on the side of the 'spikes', 
amalgamation of bubbles and the production of small turbulent scales. The motion is essentially 
three-dimensional in character, with the interface having a fractal quality as the instability devel- 
ops. For lower density ratios, the difference between bubbles and spikes disappears leaving two 
symmetric turbulent fronts marking the mixed region. 

Much of the previous work ( see e.g. Read(1984)) has considered the RT instability of 
immiscible liquids. Surface tension affects the production of small scales, and no mixing at the 
molecular scale is possible. In this paper we report some results of laboratory studies of RT 
instability between miscible fluids (brine and water) at low density differences. The aim of the 
work is to determine how the two fluids mix. 

In section 2 the experimental method is outlined and the results are presented in section 3. 
The conclusions are given in section 4. 

2. The experiments 

The experiments were carried out in a perspex tank 500 mm deep, 400 mm long and 200 mm 
wide. The tank had a removable aluminium sheet 1.5 mm in thichness which separated a layer 
of brine from a layer of fresh water below (see figure 1). The two layers of fluid were initially 
at rest and the experiment was initiated by sliding the aluminium sheet horizontally through a 
slit in one end wall of the tank. Flow visualization was either by shadowgraph or by adding dye 
to one of the layers. Laser induced fluorescence was also used, with illumination provided by a 
thin (2mm) sheet of light from a 2W argon laser. Records of the flow were made using video 
and still photography. The video images were digitised to obtain quantitative estimates of dye 



concentration. Measurements were also made of the salt concentration with a conductivity probe 
placed in the tank. 

All the experiments were conducted with two layers of equal depth, with a range of initial 
density differences from 0.0005 to 0.098 . Only the experiments with 9 between 0.005 and 
0.065 are considered fully representative of the RT instability since for lower values of the density 
difference the initial disturbance caused by the plate removal caused considerable uncertainties 
(see setion 3.2.1) and at high values the growth rate of the instability was comparable with the 
velocity of the plate. There also remain regions near the side walls which exhibit some anomalous 
behaviour and are excluded from the subsequent analysis. 

box 

Figure 1: Schematic diagram of the apparatus 

3. Experimental results 

3.1 Qualitative results 

The structure of the mixing region at two times after the removal of the plate is shown in 
figure 2. These shadowgraph images show that the front grows symmetrically about the original 
interface position, and that motion develops over a range of lengthscales. There is some variation 
in the thickness of the mixing region during the early stages which results from removing the 
plate through one end of the tank (see figure 2a) and there are strong flows generated in the 
immediate vicinity of the end walls of the tank. In the central region of the tank the mixing 
region is of approximately uniform thickness. Views from the end of the tank confirm that there 
are no significant mean variations in the thickness of the mixing region in the direction normal 
to the plane of these photographs. 

The lengthscales which appear initially are those produced by vortices shed from the trailing 
edge of the plate. These are typically lOOmm in length. Superimposed on these vortices are 
small scale instabilities, associated with RT instability (see section 3.2.2.). At later times the 
lengthscales of the dominant motions increase by vortex pairing. Eventually the whole system 
overturns on the scale of the tank. Denser fluid reaches the bottom and a stable stratification 
develops. This stratification supports internal gravity waves(see section 3.2.3.) 

3.2. Quantitative results 

3.2.1 Growth of the mixing region 
The thickness 6 of the mixing region was determined from flow visualization. If we assume 

that the rate of advance of the mixing front depends only on 

and the instantaneous thickness, dimensional analysis gives 



Figure 2 :  Visualisation o f  the flow , a),b) Shadorvgraph o f  a low density difference experiment. 
c),d),e),f) Laser induced fluorescence , ICH billows can be seen in the sides o f  the bubbles. 



Integration and application of the boundary condition 6 = 60 at t  = 0 shows 

Thus 60 represents a 'virtual origin' corresponding to the initial displacement produced by 
withdrawal of the plate. At large times, when 6 >> 60 ,the above formula is equivalent to the 
result given by Youngs(1984) 

1 2  6 = c g t  

A typical plot of against g11/2t for one experiment is shown in figure 3. The straight line 
is a least squares fit of the form given above. We see that it represents the data well, and from 
fits to all the experiments the values of b0 and c are determined. 

Figure 3: Plot o f  the advance o f  the front with time. g' is 0.186 r n ~ - ~ .  

Figure 4: Plot o f  the constant c versus 9. 



Figure 4 shows the values of c plotted against the density differene y. Although the data are 

somewhat scattered, particularly at low values of 9, they are consistent with a constant value 
of c = 0.035 f 0.005. This value is in agreement with those obtained at large density differences 
( A p l p )  by Read and Youngs(1984), Smeeton and Youngs(1988). The virtual origin 60 is plotted 
against 9 on figure 5. As expected there is an increase in so at low density differences with 
values as high as 40mm being observed. At these large values we expect the effect of the initial 
disturbance caused by the plate to be significant throughout the measurement period and this 
may account for the increased scatter and larger values of c at low k.  

P 

Figure 5: Plot o f  the virtual origin, hO, with the initial non- dimensionalised density difference. 

3.2.2 Lengthscales 

A range of lengthscales occurred during the RT process ranging from 5mm to the scale of 
the tank. The behaviour was similar for all of the densities analysed. Initially small disturbances 
could be seen which corresponded with the most unstable lengthscale X, between 3mm and 
1.5mm (see figure 2c) . Superimposed on this scale 4 to 6 wavelengths of the order of 50 to 100 
mm developed due to the removal of the barrier. As the RT instability front advanced new small 
scales could be seen developing (figures 2d, 2e). Some could be identified as KH billows and some 
as small vortex pairs (figure 2f). The large disturbances merged as the RT front advanced leaving 
one or two larger protuberances by the time the RT front reached the bottom of the tank. After 
that time a rotational overturning motion of the size of the box took over. 

3.2.3. Conductivity measurements 

Measurements made with a conductivity probe placed centrally within the tank and just 
above the plate for three initial 9 are shown on figure 6 . These figures show the density 
p  measured by the probe normalized by the initial density difference so that the upper layer 
corresponds to p = 1 and the lower layer to p  = 0, as a function of time. Since the probe is in 
the upper layer, p  = 1 before the plate is released and then p  decreases as lower layer fluid mixes 
upward. 



The overall behaviour is the same at all values of 9 ,with a rapid decrease in the density 
being observed followed by oscillations which eventually decay, when the probe records a density 
intermediate between the upper and lower values. All records show fine scale fluctuations super- 
imposed on longer timescale oscillations . There are significant differences between the way in 
which this final state is reached, depending on the initial density difference. 

Figure 6:  Point density fluctuations with time for three different experiments , values are : a) 
0.0078 ,b) 0.0251 ,c) 0.0647. 

As increases the oscillations on both timescales decrease more rapidly. This is associated 
P 

with the formation of stable stratification as the two layers overturn causing a rapid damping of 
the turbulent motion. 

Timescales for the decay of these fluctuations are shown in figures 7 and 8 . Figure 7 shows the 
e-folding time obtained by fitting an exponential decay to the peaks of the slow time oscillations 
plotted against 9 . These peak values provide a measure of the mixing into the large scale 
structures observed in the mixing region. 

The timescale for the decay of these oscillations decreases with increasing initial density 
difference. The decay of the short timescale fluctuations is shown in figure 8. These values were 
obtained by visual inspection of the traces, such as shown in figure 6. These values also decrease 
with increasing y,  and the values are, in general, larger than those in figure 7. 



Figure 7 (left): Decay e-folding time for the large scales associated with internal waves. 

Figure 8 (right): Decay time for the small scale fluctuations recorded with a conductivity probe. 

3.2.4. Light intensity measurements 

Figure 9 shows profiles of dye concentration in the lower half of the tank determined by 
digitisation of video images. These profiles give integrated values across the width of the tank, 
and are normalized so tha.t initially the upper layer corresponds to unit concentration and the 
lower layer to zero concentration. The advance of the mixing region is clearly shown with a mean 
decrease in dye concentration. There are also considerable fluctuations about the mean, and there 
is clear evidence of regions of dense fluid falling as coherent entities. 
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Figure 9 (left): Averaged light intensity profiles ,normalized with the concetration o f  the upper layer. 
Volume fraction o f  dense fluid across the whole tank .The profiles were taken at times t= 0.5, 0.8 ,2.3 and 
3.7 sec. 

Figure 10 (right): Same as figure 9 for the volume fraction o f  dense fluid near a single bubble in the 
same experiment with % = 00.2 

These measurements show that the front of the advancing disturbances is mantained sharp 
throughout the mixing process. This means that most of the mixing occurs through the sides of 
the falling bubbles. Figure 10 shows a similar averaged light intensity profiles as in figure 9, or 
the same experiment,but here the averaging has been done only over a single protuberance. It is 
seen that the averaged concentration gets sharper as the disturbance advances. 



3.2.5. Final s ta te  

Vertical profiles made with the conductivity probe after all motion has ceased (see figure 11) 
show that there is a stable density stratification in the tank. If no molecular mixing had taken 
place, all of the upper layer fluid would ultimately lie beneath the original lower layer fluid and 
a two-layer stable stratification with the initial density difference would result. 

Figure 11: Stable density profile after mixing has taken place for an initial density difference of 
0.023gcm-3. 

On the other hand, if complete molecular mixing occurred the tank would be uniform with 
no density variations. The observed density stratification lies between these two extremes and 
may be interpreted as a mixing efficiency. 

A numerical estimate of mixing efficency is given by the final potential energy of the mixed 
fluid 

associated with raising the centre of mass above the zero-mixing case. This is plotted on figure 
12 normalized by the available potential energy that can be used for mixing. This is the initial 
potential energy 

minus the zero-mixing case potential energy , 

This curve increases from zero with increasing . reaches a maximum of 0.46 and then 

decreases again at high b. 
P 



initial dens i t y  step (w.) 

Figure 12: Mixing efficiency versus 9. 

This curve is characteristic of mixing processes in stratified fluids (Linden(1979,1980)). The 
maximum mixing efficiency, when the final profile is totally mixed is i, and if the profile were 

linearly stratified with slope then the mixing efficiency is i. 
4. Conclusions 
The experiments show that RT instability involves a number of interacting scales and pro- 

cesses. Small scale instabilities (consistent in scale and growth rate to those predited by linear 
theory) occur and are superimposed on a larger scale instability of the interface. This larger 
instability leads to the formation of blobs of fluid which penetrate into the layers on either side. 
Secondary instabilities in the form of Kelvin-Helmholtz billows form on the sides of the blobs. 
There appears to be little mixing across the leading edge of the blob, but fluid is entrained around 
the sides in a manner reminiscent of a falling plume or thermal, described in Turner(1973). The 
volume fraction profiles of dense fluid as it falls and mixes within the lower layer are similar to the 
ones obtained in the numerical calculations of Youngs(1984). The stepwise structure seen in the 
plan averaged volume fraction is due to the reduced mixing at the leading edge of the instabilities. 
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ABSTRACT 

The threedimensional structure of the turbulent flame in premixed propanelair charges was 

examined by visualizing siinultaneously four parallel planar sections through the flame with a time 

resolution of 10 ns and a spatial resolution as low as 200 pm. The ratio of the turbulent intensity 

U' t o  the laminar flame speed S! ranged from 0.5 to 25 and the ratio of the Kolmogorov length 

scale to the laminar flame thickness from 0.2 to 5. 

The interface between reactants and products is: highly wrinkled; continuous; without islands 

of reactants and products; with only few cusps; with some "fingers" of products; and of fractal 

geometry. The fractal dimension increases with ul/Se but seems to tend to a maximum value of 

about 2.38. This is also the value measured in non-reacting turbulent flows, thus suggesting that 

the interface between reactants and products may act as a constant property passive scalar surface 

under certain conditions. If the local and instantaneous turbulent flame speed is related to the 

fractal dimension, then signifin--,t inhomogeneities in this speed are found even though the 

turbulent field is rather homogeneous and isotropic. 

INTRODUCTION 

The structure of the turbulent premixed flame is of fundamental importance. Since turbulent 

combustion is an interplay of turbulence, chemistry, and thermodynamics, the parameters of the 

turbulence influence the structure of the flame front and, consequently, the regime of turbulent 

combustion. Thus measurements of turbulent intensities with and without combustion [l ,2] and 

of length scales without combustion [3,4] were also made in our apparatus, that happens to be a 

ported reciprocating engine, and in [5] an assessment of the regimes of turbulent combustion in 

engines is given. In [l-41 it was established that th2 turbulence field away from walls is roughly 

homogeneous and isotropic when the chamber volume is around its minimum and that is when the 

visualization measurements of this paper, most of which are three-dimensional, were made. 

Earlier two-dimensional visualization results [6-81 had given direct information on the flame 

structure and helped identify the regime of turbulent combustion in premixed+harge engines. 

The quantification of the two-dimensional flame structure information, and its relation to 
fundamental turbulence and combustion quantities, was just initiated in [g]. A main obstacle to 

this quantification is that the flame front can be highly fragmented and therefore difficult to 
measure using classical geometrical concepts. But theories based on fractals have begun to emerge 

for the characterization of turbulent flame fronts [g], and in [l01 the fractal nature of premixed 
engine flames was established. Very recently the first three-dimensional images of turbulent 



engine flames were also obtained [ l l ] .  In this paper we summarize our conclusions from our two 
and three-dimensional imaging wcrk and present some new data that explore the maximum value 

of the fractal dimension of the interface between reactants and products. Obviously such an 
interface is an extreme example of density change in a turbulent field. 

The paper is organized as follows. The regimes of turbulent combustion are reviewed and 

fractal concepts are listed that will be used later for the fractal analysis of the data. Then, the 
results are considered. First we position our specific conditions within the regimes of turbulent 

combustion, next we examine tlie fundamental issue, that can be addressed only with 

three-dimensional measurements. of the presence of islands of reactants and products. Fractal 
dimensions are then considered initiating a discussion of whether the flame front acts as a passive 

scalar surface of the turbulent field and of homogeneity of the geometrical properties of the 

wrinkles as may be assessed by analyzing changes in fractal dimensio~is. Our main conclusions are 

summarized a t  the end. 

THEORY 

Turbulent Combustion Regimes 

The regimes of turbulent combustion are discussed with the help of Fig. 1 [5] which is a plot of 

the Damkohler number DaA versus the turbulence Reynolds number RA [12]. The Damkohler 

number is the ratio of the characteristic turnover time, r t ,  of an eddy of the size of the integral 

length scale, A, t o  the characteristic transit time through tlie laminar flame, re: 

where b! is the laminar flame thickness, U '  the turbulent intensity and SC the laminar flame speed. 

The turbulence Reynolds number is: 

with U the kinematic viscosity. Relevant parameters appearing in this plot are the ratio of the 

I<olmogorov scale, 7, to the laminar flame thickness, and the ratios and ul/Sp . Some 

understanding of the structure of turbulent flames exists in two regimes; the regimes of reaction 
sheets and of distributed reactions. In the regime of reaction sheets, turbulence does not affect 

chemistry and the residence time in the laminar flame is much smaller than the characteristic 
turnover time of the smallest eddies. In  this regime, the propagating laminar flame fronts are 

wrinkled and convoluted by tlie turbulence. In  the distributed reaction regime, chemical reactions 

proceed together with, or after, turbulent niixi~lg and the concept of a laminar flame does not 

apply. The lower bound of  the  reaction slieet regime can be set at q / b t  = 1 (the quantity q2/$ 
is a measure of the stretch to which the lamiliar flame is subjected in a turbulent flow [13]) and 

121% = 1 is the upper bound of the distributed reaction regime. In tile intermediate regions, 

7 < < A, the structure of the turbulent flame has not yet been identified The reaction sheet 

regime is divided in two subregimes. For u'/SC << 1, turbulence is weak and a single continuous 

reaction sheet can be identified; at higher turbulence intensities it had been thought that adjacent 
sheets could collide and cut off pockets of reactants, forming multiply-connected reaction sheets. 



The line ul/SC =l may be taken as the boundary between these subregimes. The rectangle in Fig. 

1 indicates the combustion regimes for various engine operating conditions as estimated in (51. It 
is seen that a survey of important regimes of turbulent corllbustion can be made by changing the 

operating conditions of an engine. 

Fractals 

The analysis of rough surfaces or curves has followed an independent mathematical route which 

is known as fractal analysis, largely advanced by Mandelbrot [14,15]. Fractals are objects that 
display self-similarity (in the statistical sense) over a wide range of scales. For a fractal curve, its 

measured length L will have a power law dependence on the measuring yardstick E: 

The exponent D2 is called the fractal dimension of the curve (1 < D2 < 2) and is a measure of the 

roughness and fragmentation of the curve. An expression similar to Eq. 3 applies for fractal 

surfaces: the measured area A of the fractal three-dimensional object depends on the size, €2, of 

the square used to resolve it: 

The exponent D3 is the fractal dimension of the surface (2 < D3 < 3). For a fractal object with an 

isotropic surface (a  surface with a degree of wrinkling independent of orientation), a plane cut 

intersecting this object defines a curve with fractal dimension D:! such that D3 = D2 + 1. 

The main thrust for the application of fractals in the field of turbulence and combustion came 

when Mandlebrot [l61 suggested that constant property surfaces of passive scalars in homogeneous 

and isotropic turbulent flows possess fractal character within a certain range of scales, the lower 

being the Kolmogorov scale and the upper being of the order of the integral scale. Fractal 

dimensions in turbulent flows have been measured; in [l71 the fractal dimension D3 of the interface 

between turbulent and laminar parts of an incompressible jet was found to be between 2.3 and 2.4 

and in [l81 the fractal dimension of clouds was found to be 2.37. 

In [g] Gouldin proposes that turbulent flame surfaces are fractals. He suggests that when 

ul/Se >> l and 1)/6! > 1 (the second condition is necessary to define a thin flame front 

unambiguously) the flame front behaves as a constant property passive scalar surface where the 

theory of [l61 is applicable; in this case the same fractal dimension of the turbulent field is 

assumed to be obtained, with the only difference that the range of fractal behavior may start at a 
scale higher than the Kolmogorov scale due to the smoothening effect of the flame propagation. 
For lower values of ut/Se the effects of flame propagation are significant and the fractal dimension 

may differ from that of the non-reacting turbulent flow [g]. In [g] a theory based on fractals was 

also developed for the prediction of the turbulent flame speed. 

The fractal analysis was applied to the flame fronts in engines in [10,11]. It was found that 

they exhibit fractaI character between scales as small as 200 pm (the highest resolution of the 

measurements in [10]) and as large as 4.5 mm. The values of Dg obtained in [10,11] are shown in 

Fig. 2. The turbulence intensity was increased by increasing the engine speed and the laminar 

flame speed was changed by varying the equivalence ratio 41 i.e. the mass of propane for mass of 

air. Note the tendency for D3 to increase with ut/SC and that the maximum value of Dg is around 



2.38, i.e. in the range observed in non-reacting turbulent flows [17,18]. However the trend of the 
data leave open the possibility that for 1.0 > Q > 0.59 the maximum value of D3 may exceed 2.38. 

Thus for this paper additional two-dimensional n1ea.surements were made for @ = 0.7, 0.8, 0.9. 

ItESULTS AND DISCUSSION 

Table 1 shows the parameters of the six three-dimensional cases and the three 

two-dimensional ones. The experimental arrangement and the data processing are described in 

detail in [ l l] .  Figure 3 shows typical three-dimensional flame images for cases 1 to 6; each set 

consists of four images corresponding to four planes. The top plane is in the upper-left side of the 

image and the direction from top to bottom is counterclockwise; the field of view in each plane is 

16x16 mm and the total separation between top and bottom planes is 3.4 mm. Figure 4 shows 
typical two-dimensional flame images for cases 7-9, with field of view 20x20 mm. For each of the 

nine cases 100 flames were analyzed. In the discussion of our results, we shall first identify the 

regimes of premixed-charge turbulent combustion that correspond to our nine cases, and then we 

will consider the question of the presence or absence of islands of reactants and products, the 

values of D3 and of the turbulent flame speed, the existence and significance of the asymptotic 

value of D3, and the subject of hoinogenei ty. 

Turbulent-Combustion Regimes of Our Data 

To identify the regimes of premixed-charge turbulent combustion of our data we refer again to 

Fig. l .  This figure is obtained using the definitions of Eqs 1, 2 as well as the following: 

S e b e = D T =  U (5) 

= ~ 7 5  
A (6) 

where in Eq. 5 the thermal diffusivity DT was taken to be equal to the kinematic viscosity v. The 

four definitions can be combined to give DaA versus RA at  constant Se /U':  

DaA = (Se / U ' ) ~ R ~ ;  

DaA versus RA at  constant (A/be ): 

2 ~ - 1 .  DaA = (A/Je) A 9 

and DaA versus RA at  constant (q/Je): 

2~ 0 -5  
DaA=(17/bt) A 

which are the three functions plotted in Fig. 1. 

In the application of Eqs 1, 2, 5, and 6 there are two types of problems: one must estimate the 

values of A, U',  Se , be , and u that appear in Eqs 1 and 2; such quantities, in reality, are not 
necessarily related to each other exactly as postulated by the equalities of Eqs 5 and 6. In other 

words, Fig. 1 and all of its information pertain to order4f-magnitude estimates, not to 

uniquelyAefined, precise quantities. Thus in order to position within it our nine cases, we have 

taken the same qualitative approach of [5]: we have estimated the maximum and minimum values 

of A, U' ,  S!, be, and v and combined them to give the maximum and minimum values of of DaA , 
RA using Eqs l and 2. The estimated quantities are given in Table 1. They were obtained as 



follows. 

The values of the turbulence intensity U '  a t  tlie time at which the flame images were taken 
were measured in [l]. For the $ = 1.0, 0.9 and 0.8 cases the values of the larninar flame speed Se 

was estimated from the high-pressure high-temperature correlations of [19]. For the @ = 0.7 and 

0.59 cases, S! were estimated from tlie high pressure correlations of [20] and using the high 

temperature corrections of [19]. It should be pointed out that there is significant scatter in the 

measurements of the laminar flame speeds, particularly at very lean conditions, as illustrated for 

example in Fig. 5. For all cases, a lower bound for the laminar flame thickness $ was estimated 

from the relation be = DT U/Se where D is the thermal diffusivity in the reactants. For the $ 
7 T,u 

= 0.59 case the upper bound for was set by the measurements of [g], whereas for each of the 

other cases tlie upper bound for fie was estimated from laminar flame structure computations [5] 

and using the distance between the 5% and the 95% temperature rise across the flame. The 
integral length scale A was measured in 141 to be 2.1 mm (lateral ensemble integral length scale) 

at  600 rpm and was assumed to be independent of engine speed. A range of values for the 

kinematic viscosity v was obtained for each case by calculating v in the reactants and the 

products. The ranges of RA and Da,, are shown in Fig. 6 which is an enlarged portion of Fig. 1; 

for cases 7-9 only the average position is shoivn, to avoid crowding of the figure. 

Figure 6 shows that we estimate our stoicl~ionietric flames to be mostly in the reaction sheet 

regime and our lean flames in the more difficult, less understood intermediate regime but close to 

the reaction sheet regime. Thus tlie structure of at least the lean laminar flames can be expected 

to be perturbed by the turbulence [22]. 

Flame Structure and Islands of Reactants and Products 

Figure 3 shows that flame fronts with larger values of ul/SE are more convoluted than the ones 

with lower values of ul/SI.  In case 1 with the lowest ul/SI (= 0.51, cusps are often found pointing 

towards the product side (white); no such cusps occur at  higher u l /Se .  This is in agreement with 
the theory of [23] that predicts cusps for ul/Sg < 1 and no cusps for ul/Sg 2 1; it should be 
mentioned however that the theory of [23] was developed for flames with r]/6! > 1 and this 

condition is met only by some of our cases (see Table 1). 

We can now consider one of the fundamental questions of premixed-harge turbulent 

combustion: the existence of islands of reactants and of products. It was expected that islands of 

reactants exist in the reaction sheet regime (due to collision of the laminar flame fronts and 

subsequent cutoff of pockets of reactants) and islands of products (due to flame stretching and 

extinction) exist in the intermediate regime in which, presumably, there would still be islands of 

reactants also [24-261. All 600 sets of three-dimensional flames were examined for islands. In 

addition, more than a thousand sets of flames were viewed in cases 5 and 6, which are the best 

candidates for the occurrence of islands; No instance was found in which one could unambiguously 

recognize a disruption of the flame contiguity. In addition to the experiments with 3.4 mm total 

vertical separation, case 6 was examined with a total separation of 5.2 mm. The increased 

separation should increase the chance of finding islands if they existed. No island was found in 
this case either indicating that the flame surface is composed of a continuous flame sheet. 

However it is interesting that several instances of "fingers" of products were found especially in 



the lean cases; it would appear that thin fingers are responsible for the connectedness of the flame 

whenever the intercepts of the four planes with the flame define small islands in some of the 

planes. 

Fractal Dimension and Turbulent Flame Speed 

The fractal dimension D2 was calculated for each of the four images of a set; 100 sets were used 

for each of the six threedimensional cases and the results were analyzed in several ways. The 

ensemble average and the standard deviation of D2 in each plane was computed. There is a 2% to 

3% difference in 0 2  between the various planes for a given case. This systematic difference 
appears to be small and may be due to systematic differences in the measuring technique. Thus 
one may be justified in neglecting the systematic differences and in considering an average value of 

D2 over the four planes. The six values of D3 (= 6 2  + 1) are shown in Fig. 7 together with those 

of cases 7-9. In addition Fig. 7 shows results at  low values of ul/Se obtained from burner studies 

[27]. The vertical error bars represent a two--standard deviation error on the mean (217~ 1N0.5 
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where N is the statistical population). Note that the difference in the horizontal scale between 

Figs 2 and 7 is due to the more accurate estimate of the laminar burning velocity at  4 = 0.59 in 

the current study. The results of Fig. 7 suggest that the fractal dimension reaches an asymptotic 

limit of 2.38 and that this limit is reached monotonically. 

Theories are beginning to emerge that attempt to connect fractal data to turbulent flame speed. 

For 71% > 1 and ut/Se >> 1, Gouldin [g] extrapolating from Mandelbrot [16], has suggested 

where A = n~1'75 for isotropic turbulence. Peters [28] has argued in favor of 

St/se = (ut/Se ) 3(D3-2) (8) 

As can be seen from Fig. 6, cases 2 and 3 come closer to satisfying the conditions 7/Jl > 1 and 

ul/Se > > 1. The turbulent flame speeds obtained with Eq. 8 for cases 2 and 3 are show; in Fig. 8 

together with correlations proposed by various authors [29,30], and data from [31]. Also shown in 

Fig. 8 are the values of St/St obtained in [8] after correcting them [l11 for the now-established 

fractal geometry of our wrinkled laminar flames. It is to be pointed out that in determining the 

four solid symbols of Fig. 8 from Eq. 8 and references [8,11], the turbulence intensity was obtained 

after filtering out the low frequency components of the measured velocity fluctuations to reduce 

the effect of systematic trends [3]. If the standard ensemble averaging technique without filtering 

is used, the four solid symbols may move as far as indicated by the arrows. Conversely the data of 

[31] could move to the left if a trend analysis of the results were to  show systematic trends. 

Constant Property Passive Scalar Surface 

We can now address the question as to whether the wrinkled flame fronts act as a constant 

property scalar surface of the turbulent field. The limit value of 63 is 2.38 f 0.5% and is 

approached for flame fronts with values of ul/Se > 4. This value of D3 happens to coincide with 
those measured in non-reacting turbulent fields. Thus, as far as the fractal dimension is 

concerned, the flame surfaces of our lean turbulent flames act as if they were constant property 



scalar surfaces of the turbulent field. If confirmed, this behavior must result from a rather special 

balance of events since for our lean flames we have estimated 77/bt 1 and hence we expect the 
structure of the laninar flame itself to be altered by turbulence. In [32] it is proposed that the 

value of the fractal dimension of the flame front is irrelevant to that of the turbulent field. 

Homogeneity 

In general. i f  two curves have the same fractal dimension and in addition the inner and outer 

cutoffs of the fractal region are the same, they both have (statistically) the same degree of 

wrinkling. Homogeneity of a random field implies translational invariance of all its statistical 

quantities. D2 is one characteristic parameter of the "long-space average" of the flame front. For 

homogeneity of the flame front structure the values of D2 in all planes should be the same at each 

time. This is equivalent to the homogeneity of turbulence, where a long-time average of tlie 

velocity is taken at different spatial locations to yield the turbulence intensity U ' .  Then for the 

turbulence to be homogeneous the turbulence intensity U' a t  the varjous spatial locations should 

be the same. It is important to note that D2 is an average quantity, like U ' ,  and neglecting all 

errors of the fractal analysis (finite spatial domain, etc.) for homogeneity of the flame front 

wrinkling, D:! should be the same in all planes at  each time. 

Then a measure of the inhomogeneity of the fractal dimension for each of cases 1-4 may be 

derived from the distribution of the instantaneous differences in D:! between any two of the four 

planes over the 100 realizations. Each difference distribution will have a mean and a standard 

deviation, the mean representing a systematic difference between the ensemble .';stributions of the 
fractal dimension in each plane, which is between 2% and 3%, and the standard deviation 
representing the stochastic differences in fractal dimension between the two planes. 

The wrinkles of the flame surfaces do show inhomogeneity and the magnitude of the random 

difference between Dp in any two planes has a standard deviation of less than 9.1% iin all cases (in 

1331 the turbulence intensity was found homogeneous within 15%). In [l l]  the detailed statistical 

analysis is presented. The next question is how significant this inhomogeneity is. Eq. 8 is 

sufficiently descriptive of the enhancement of the turbulent flame speed by wrinkling and that the 

flame surface is isotropic, a 10% change in Dz would result in a 50% change in S t /S t .  But the 
effective turbulent flame speed would be some spatial and temporal average and the effects of local 

and instantaneous variations would be smoothed out. Nonetheless. it seems likely that significant 
instantaneous variation in the flame propagation rate exists over the surface of the flame, 

particularly for small flames. 

The cross correlation of D:! between various planes was also examined and found to decrease 

with increasing distance; the correlation distance is of the order of the measured integral length 

scale. 

CONCLUSIONS 

1) No island of reactants or products was observed in any of tlie flames. However, in about 

10% of the lean flames "fingers" of products were found; it would appear that thin fingers of 

products are responsible for the connectedness of the flame surface in flames that would seem to 



be highly fragmented in previous t\so-di~~iensional Irnaglng studies. Such fingers were also 
observed in stoichiometric flames a t  higher engine speeds but u.ere less frequent. 

2) The flame wrinkles exhibit fractal behavior The fractal dimension of the flame fronts 
averaged over all planes at each condition was found to have a rn i~ i imu~n  value of 2.15 and to 

approach the value of 2.38. 

3) As far as the fractal dimension is concerned, it would appear that tlie lanlinar flame surfaces 
act as if they were constant property scalar surfaces of the turbulent field, under appropriate 

conditions. 

4) Turbulent flame speed models based on fractals were examined and compared with 

correlations of turbulen t-to-laminar flame speed ratios (S /S ) of various researchers. Even t e  
though the comparison shows general agreement in trends. the simple fractal models for St/St we 

have considered are not totally satisfactory. 

5) The question of homogeneity in tlie geometry of the flame wrlnkles was then addressed by 
examining the instantaneous differences between any two of the four planes for the 100 

realizations of each condition. The degree of inhomogeneity is less than 9% for all pairs of planes. 

Such degrees of inhomogeneity in fractal dinlensioll were assessed to  be significant in that  a 10% 
change in fractal dimension could possibly produce a 50% ciiange in St/St . The wrinkling 

however could change with time, which may smooth out the effect of tlie instantaneous differences 

between planes, and would have to be averaged over some space as well. 

6) The correlation of the fractal dimension i11 various planes was found to  decrease with 

increasing separation of the planes; the correlation distance is of tlle order of the measured integral 

length scale. 
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TABLE 1 

EXPERIhlENTAL CONDITIONS 

CASE (I RPM U '  S ul /SE A rl 
( m m  (mm) (pm) 17 / 8, 

Fig. 1 Regimes of turbulent combustion. 
The rectangle is an estimate of the 
regimes a plicable to internal combustion 
engines [57 

Fig. 2 Fractal di~lleilsion D j  versus u t /S l .  
Filled symbols are from 101 and open 
symbols are from [I l l .  4 he vertical 
bars extend plus and minus a standard 
deviation of the distribution of D3 [ll]. 



Fig. 3 Sets of three-dimensional flalne images: 3 sets are sholrn for each of the 
cases 1-4 of Table 1. 

Fig. 4 Twowdimensional flalne images at 2400 rpm; 4 flame images are s h o ~ v n  for 
each of tlie cases 7-9 of Table 1. 
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Fig. 5 Laminar flame speed for propane 
air mixtures at  standard conditions by 
various authors [19-211. 

2-51 cases 1 to 6 
cases7to9 

+datafrom 10 ++ data horn [26]& i $ 

Fig. 6 Estimated regimes of turbulent 
combustion for cases 1-9 of Table 1. The larger 
rectangle is the range estimated in [5] for 
premixed-charge engine combustion. 

Fig. 7 Fractal diiileiision Dj versus u l /S  Fig. 8 Turbulent flame speeds for cases 2 and 3 
E ' of Table 1 estimated from Eq. 8 and from [8,10], 

correlatiorls proposed by various authors and data 
from [31]. 
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1. Laminar Models of the Mixing Layer 

The seminal observations by Brown & Roshko (1974) of large scale coherent structures in the 

turbulent mixing layer have stimulated large amounts of work on the question of the extent to 

which turbulent flows can be modelled by inviscid laminar dynamics. We wish to know if such 

modelling can lead to quantitative predictions as well as provide qualitative insights into the 

mechanisms of the evolution of the turbulent flows. The jury is still out on this question, and 

more problems have been raised than have been solved, but whatever the final conclusions, there 

is no doubt that a significant increase in the understanding of vortex dynamics has resulted from 

the effort. As an aside, it is said that the eye of the artist can see deeper into nature than the 

trained scientist. The drawings by Leonardo da Vinci of coherent structures and van Gogh's 

painting "Starry Night", which resembles closely the pairing process of coherent structures in the 

mixing layer, illustrate this adage. 

The simplest laminar model of the turbulent mixing layer consists of an infinite array of uniform, 

identical, finite area vortex patches in an unbounded incompressible, inviscid fluid. The existence, 

uniqueness and stability of such an array was first addressed by Pierrehumbert & Widnall (1981) 

and Saffman & Szeto (1981). Using the 'water bag method' of plasma physics (introduced into 

uniform vortex patch calculations by Deem & Zabusky 1978), the determination of the steady 

states can be reduced to the solution of an integro-differential equation. An alternative method 

due to J.  Jimenez (private communication) employs the method of Schwarz functions and has 

been utilised by Kamm (1987). The latter method offers some distinct advantages for study of 

the two-dimensional linear stability properties of the array. An approximate method to calculate 

shapes (Moore & Saffman 1975a) is to approximate the shapes by ellipses, and use the exact 

solution of Moore & Saffman (1971) for a vortex in a uniform strain to determine the ellipticity 

and orientation of the ellipse. This method can be extended to unsteady flow (Saffman 1979), 

and has been developed more extensively, systematically and comprehensively by Melander et a1 

(1986), who have obtained the Hamiltonian for the equations. (See also, I<amm 1987). The use 

of a cloud of point vortices to model the uniform vortex patches is a quick and easy way to obtain 

approximations, but it fails if the steady states are unstable (Moore & Saffman 1975a). 

The calculations show that there is a one parameter family of solutions, the parameter being 

cr = A'/ ' /L ,  where A is the area of each vortex and L is the longitudinal distance between the 



centers of the patches. For small a ,  the vortices are nearly circular as is intuitively obvious. As 

a increases, the vortices become more deformed, and remarkably there is a maximum value of 

a. This is a limit point or fold of the family, which actually continues through more deformed 

shapes (of smaller area) until a limit is reached at which the vortices touch. The family then 

continues into a continuous varicosely deformed vortex sheet of finite thickness and finally ends 

at  a uniform vortex sheet, whose bifurcation into a deformed sheet was studied by Rayleigh. 

We mention in passing two alternative models for which steady states can be found in closed 

form. Baker, Saffman & Sheffield (1976) solved for the case of hollow or stagnant vortices. The 

behavior is very similar to that of the uniform cored vortices, except that the family does not 

change into a deformed connected vortex sheet of finite thickness but continues smoothly into a 

vortex sheet of zero thickness. The other model is the Stuart (1967) vortices which is a continuous 

family with a smooth vorticity distribution going from a tanh profile to a vortex sheet of zero 

thickness. This model seems less relevant as a model of the evolution of a mixing layer, as it does 

not possess limit point behavior. On the other hand it appears to offer the possibility of applying 

methods of global analysis to study two-dimensional finite amplitude stability, and is convenient 

for 'brute force' numerical investigations of three-dimensional linear stability (Pierrehumbert & 

Widnall 1982). 

The existence of families of solutions means that application to the mixing layer requires a selection 

principle, in order to  determine which members of a family are appropriate models. Stability is 

a criterion which is often tried, either to determine possible states or to model by the unstable 

modes the evolution of the flow. There are at  least three approaches to the stability problem. 

The first method, which we call spectral, finds the eigenvalues of infinitesimal disturbances to  a 

steady state, and associates instability with existence of eigenvalues with non-zero real part. Since 

the system is inviscid, the eigenvalues come in pairs or quartets, so the existence of a non-zero real 

part implies a n  eigenvalue with positive real part. (We adopt the convention that the disturbance 

is proportional to  e u t . )  If all the eigenvalues are pure imaginary, the state is linearly stable, but 

can of course be non-linearly unstable. The spectral method gives little information about this 

matter. On the other hand, it is straightforward in principle and can be applied to both two 

and three dimensional disturbances. The main drawback is the need for large scale computing 

resources, as the eigenvalue problem can be multidimensional. Also for flows evolving in space 

there can be open questions about the boundary conditions. 

The second method is initial value evolution. .4 dsturhance is followed numerically to see if it 

grows or decays. Growth implies instability, provided one can dstinguish between physical and 

numerical instability. Non-linear instability can be detected if the appropriate initial condition is 

given. The drawbacks are that the computing needs are greater than those for method 1, and that 

demonstrations of stability are not conclusive as the wrong class of disturbance may be chosen. 

(An example is the I<arman vortex street, where initial value evolution calculations showed that 

finite core area stabilized the street because only disturbances of wavelength twice the separation 

distance were considered, and the unstable disturbances have a different wavelength as was found 



by spectral calculations.) 

The third method is global and gives general criteria for stability. The ideas are modern devel- 

opments and extensions of Kelvin's observation that the equilibrium states are characterised by 

maxima or minima of energy. So far, the method is limited to two-dimensional disturbances and 

there is usually a restriction to a space which lacks physical significance. For example, the circular 

vortex can be shown to be L' stable, but appears to be Lm unstable (see the discussion below 

on filament ation). 

There are two distinct classes of instability, which it is convenient to label as superharmonic and 

subharmonic. Superharmonic disturbances are those where the wavelength is the longitudinal 

spacing between the vortices, and every vortex behaves in the same way. Subharmonic distur- 

bances have wavelength greater than the spacing and neighboring vortices behave differently. 

The major case is the pairing instability in which neighboring vortices interact. The vortex array 

is superharmonically stable when cr is small, and becomes unstable when cr reaches the critical 

value. This is the change of stability associated with the fold in the family of solutions. If a su- 

perharmonic disturbance is applied to the array at a state beyond the fold, the individual vortices 

break up; i.e. fission takes place (Moore & Saffman 1971). The subharmonic instability is always 

present for an array. It is easily calculated in the point vortex approximation (Lamb 1932), and 

the most unstable disturbance is the pairing one. When the vortices are of finite size, initial value 

evolution calculations show that the vortices rotate around each other and fusion takes place. 

The superharmonic class can have a subharmonic component, and effects of h i t e  size on the 

subharmonic disturbances can be worked out. Kamm (1987) has studied these questions, and 

finds that the modifications are generally slight. (See also SafTman 1988). 

These considerations have led to a model of the mixing layer evolution proposed by SafTman 

(1981). The excess energy E of the array relative to that of a zero thickness vortex sheet is 

calculated. The mixing layer is represented at some station by one of the steady exact solutions 

of the Euler equations. Then the actual effects of turbulence can be modelled by an increase in 

the area of the vortices, the separation between them staying constant. The state of the mixing 

layer can be represented by points on the E vs CY curve. There are two possibilities, which can 

be categorized as pairing or tearing. In the pairing mode, we assume that the energy of the layer 

is conserved during the entire evolution, which case it is necessary that E = 0 and the state is 

described by the array with this property. From details of the solution, it is found that in this 

case 

alb = 1.45, 6,lL = 0.28 (1.1) 

where a/b is the axis ratio of the vortex, and 6, is the vorticity width of the layer. In this case, 

the vortices would not grow between pairings, i.e. there is no turbulent entrainment or 'nibbling' 

and in the pairing process the vortices would have to ingest or 'gulp' a volume of fluid fluid equal 

to themselves in order to maintain the similarity with A m L2. The time scale of the evolution 

would be the pairing time, which could be estimated from the exact solution for point vortices if 

there were a reliable way of estimating the stage at which coalescence takes place. 



The second possibility is the tearing process, according to which the system moves from some 

state X by nibbling until the maximum area is attained at M. The steady state can no longer exist 

and something catastrophic occurs; presumably the vortices disintegrate and reform into a new 

array with double the spacing. The state X can be estimated by the assumption that energy is 

conserved during the rearrangement. It follows from the details that there is then a 35% increase 

in volume during the evolution from state X to state M, and the remaining 65% is gulped during 

the reformation. The dimensions are 

These values are not inconsistent with the experimental data, and seem to agree with the idea 

that both pairing and tearing take place. It is possible that pairing is dominant wihen the layer is 

young, and tearing becomes more important as the layer ages, because once a significant amount 

of energy is lost, the pairing process would have to dissipate energy suddenly in order to preserve 

the similarity as the negative excess energy is doubled. Of course, the analysis does not explain 

why the vortices form in the first place or survive the numerous interactions rather than forming 

an amorphous cloud. Deeper understanding of the physics is called for to answer these questions. 

So far the discussion only concerns two-dimensional disturbances. Three-dimensional disturbances 

are clearly also of interest and possible importance, but are more Afficult to analyse. However, the 

various results for three-dimensional behavior suggest that only superhannonic instabilities are 

physically relevant for the mixing layer (this is not so for the wake and boundary layer), and they 

can be modelled satisfactorily by considering a single vortex in a uniform straining field (which 

is in the real situation produced by the other vortices in the array). There appear to be three 

instabilty mechanisms, which can be identified as (i) Biot-Savart (see Robinson & Saffman 1982), 

(ii) WBT (Widnall, Bliss & Tsai 1974), and (iii) Pierrehumbert (1986), and are distinguished by 

different axial length scales. 

The Biot-Savart is the three-dimensional perturbation of the pairing instability with an axial scale 

long compared to the core radius. The three-dimensionality reduces the growth rate in general, 

so this instability does not appear to be too significant. The WBT is a parametric instability 

caused by interactions between Kelvin waves in the presence of strain (Moore & Saffman 1975b). 

Robinson & SafTman (1984) studied the effect of finite strain on this instability. The axial length 

scale is now comparable to the core radius. Finally, the Pierrehumbert (1986) instability, with 

a length scale small compared with the core radius, is an instability of elliptical streamlines 

in an almost two-dimensional flow. Bayly (1986) produced an  analytical treatment based on 

exact solutions of Kelvin, and Landman & Saffman (1987) included the effects of viscosity. All 
three mechanisms have the same time scale A l p ,  where r is the strength of the vortices in the 

array,and it is not possible at present to  decide what determines the actual axial scale of observed 

disturbances. 



2. Filament ation 

According to the ideas so far discussed, the mechanisms of mixing in the turbulent layer will 

be associated with the ingestion of fluid by the vortices in the pairing and/or tearing processes. 

Recent work has shown that there is another mechanism related to non-linear instability of a 

vortex which may play an important role in the mixing of fluid between the two streams, and 

this is the phenomenon of filamentation. Actually this was seen in the numerical calculations 

of Roberts & Christiansen (1972) of the fusion of two vortices. Deem & Zabusky (1978) saw it 

in the evolution of a circular vortex patch, and Melander, McWilliams & Zabusky (1987) have 

carried out a detailed study for the evolution of an elliptical vortex. Pullin (1981) observed 

filamentation in the evolution of a constant vorticity layer at a wall. Dritschel (1988) has done 

extensive calculations demonstrating repeated filamentation at the rim of a circular vortex patch. 

Filamentation is not unexpected when the vortices are linearly unstable (Polvani et al 1988). 

The interesting phenomenon is that the process occurs for vortices that are linearly stable and 

provides a mechanism for the ingestion of fluid into a stable vortex. We would like to understand 

its basic cause, and determine if it always occurs. Numerical calculations by Shelley & Baker 

(1988) of the evolution of a vortex sheet of finite thickness show the formation of elliptical cores 

but no filamentation (which could be suppressed in this case by the sheet outside the cores which 

can be thought of as backwardly evolving filaments.) F'urther, it appears that filamentation can 

be either extrusive (e.g. Melander et al 1987) with filaments of vorticity entering the irrotational 

fluid, or intrusive (Pullin 1981) with filaments of irrotational fluid entering the vortex. Pullin, 

Jacobs, Grimshaw & SaiTman (1988) have proposed a theory which attempts to explain these 

properties, it is based on the idea that filamentation is due to non-linear instability. When the 

vortex is stable, waves of finite amplitude exist on the interface. These waves can, however, be 

unstable and this instability will cause the generation of hyperbolic stagnation points in a frame 

of reference moving with the disturbance to the finite amplitude wave. Filamentation then occurs 

as the edge of the vortex is swept past the stagnation point. According to the details of the 

calculation, the time for filamentation to occur can be estimated as 

t f  E - w - ~ A - ~  log A (2.1) 

where W is the magnitude of the vorticity in the layer, and A is the amplitude of the non-linear 

wave. 

The approach by Pullin et al provides some insight into uncertainaties concerning aspects of 

the filamentation phenomenon. One is the requirement for a minimum steepness. The results 

suggest that a minimum steepness is required in the sense that the amplitude of the total interface 

perturbation must be sufficient to reach the critical layer, where stagnation points are present 

in the appropriate frame of reference. Pullin (1981) used disturbances of initially sufficient large 

amplitude to produce filamentation. On the other hand, an initial minimum steepness may not 

be required, provided a dynamical mechanism exists for the amplification of disturbances from 

arbitrarily small values. Such a mechanism is identified and shown by Pullin et a1 to be capable 



of producing growths in interfacial amplitude sufficient to cause filamentation. 

The real issue of filamentation of uniform vortex equilibria appears to focus on the question of 

the growth mechanism. This may be quite different for different classes of first disturbance to 

the same equilibrium state and also for similar disturbances to geometrically differing vortex 

equilibria. For example, the growth mechanism for waves on a circular vortex may differ from 

that found for   lane interfaces. Also, external length scales may play a crucial role. 

With regard to the phenomenon of different types of filarnentation, consider filamentation of a 

uniform circular vortex of radius ro and vorticity W .  When subject to perimeter shape disturbances 

of the form 

r = ro + Sexp [i(M6 - a ~ t ) ]  (2.2) 

where S << ro and M is integral, then to 0 ( 6 ) ,  the wave crests move with angular velocity 

In a frame of reference moving with this angular velocity, the tangential velocity distribution for 

the mean flow is 

In this reference frame the flow is rotational in r > ro. There is thus an effective critical layer, 

where v0 = 0, at r = r,, where from (2.5) 

In the rotating frame of reference in which to O(S)) the wave crests are stationary, stagnation 

points would be expected at at r E r,, B = m69, m = 1 . .  - M on the true irrotational side of 

the interface. It is then expected that filarnentation would be extrusive in r > ro. If W > 0, the 

filaments would be expected to  grow in an anticlockwise direction, and at a radial displacement 

from r = ro given from (2.6) by 

This formula gives reasonable quantitative agreement with Dritschel's calculations. 

Finally, note that if the vorticity were of opposite sign on either side of a plane interface, there 

would be two critical layers and double filamentation would then be expected. 
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FOR SUBSONIC AND SUPERSONIC FREESTREAM MACH NUMBERS 
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I. Introduction 

The interaction of a straight oblique shock with a supersonic 

turbulent wake of a flat plate was studied experimentally by means of 

Laser-Doppler-Anemometry and Mach-Zehnder interferometry. 

Investigated were the changes of the time-averaged velocity, the 

Reynolds stresses, the turbulence intensity across the shock and 

instantaneous density profiles. After completion of the experiments 

with a smooth plate, the investigation was extended to flows about 

flat plates with rough surfaces. The roughening of the surfaces was 

achieved by pasting sandpaper on to both sides of the plate. It was 

found that a detectable vortex street was formed in the wake in 

subsonic and supersonic flow, if the following three conditions are 

met: First, the relative roughness had to exceed a certain critical 

value, second, the trailing edge had to be sharp, i.e. no rounded 

corners, and third, the sandpaper should not extend to the trailing 

edge, but should end at a certain distance upstream from it. 

In a second series of experiments the shedding frequency was measured 

with Laser-Schlieren optics and the density drop in the vortex cores 

was evaluated with holographic interferometry in two wind tunnels. 

In addition, the time averaged velocity profiles were measured as 

before for undisturbed and shock-disturbed flow. 

The comparison of the results is discussed in this paper. 

Finally, an attempt was made to explain the formation of the vortex 

street in terms of absolute and convective instability. In order to do 

so, the Raleigh-equation was solved on the basis of time-averaged 

velocity profiles, measured in the near wake. First results indicate 

that the predicted Strouhal number is in rather close agreement with 

the one observed in the corresponding experiment. 



11. Experimental setup and instrumentation 

The experimental setup for the investigation of the interaction 

between a shock wave and a wake is shown in Fig.1. The flat plate was 

pastenend with smooth paper or sandpaper. In the following figures the 

distance between the trailing edge and the beginning of the paper is 

expressed by the symbol PHK followed by a number between 0 and 9 

indicating the distance in mm. 

The densitiy distribution was measured by Mach-Zehnder interferometry, 

holographic interferometry and differrential interferometry, whereas 

the time-averaged flow quantities, as the velocity, the turbulence 

intensity and the Reynolds stresses were measured by a two component 

Laser-Doppler-Anemometer. 

The vortex shedding frequency was determined by Laser-Schlieren optic. 

The experiments were carried out in the 15x15 cm2 and the 40x40 cm2 

windtunnel of the Institute for subsonic and supersonic Mach numbers. 

111. Interaction between a turbulent wake and a shock wave 

The experiments were carried out for a freestream Mach number of 

Ma=2.2 and a Reynols number of Red = 7 .  104 based on the thickness of the 

plate. The turbulent wake was generated with a smooth flat plate 

(Fig.2). The time-averaged profiles of the velocity, the turbulence 

intensity and the Reynolds stress component of the undisturbed 

turbulent wake are similar to those in incompressible wakes behind a 

circular cylinder. When the flow is disturbed by a shock, the wake 

broadens, the minimum velocity decreases and the turbulence intensity 

increases with the shock intensity. Also the Reynolds stress grows 

strongly due to the shock wave (Fig.3 and / 3 / 1  



IV. Comparison between a turbulent and a vortical wake 

In order to study the influence fo the boundary layer characteristics 

on the wake the surface of the plate was roughenend. With the 

appropriate combination of the distance between the trailing edge and 

the beginning of the sandpaper, the relative roughness of the 

sandpaper and the shape of the trailing edge a vortex street develops 

in the wake. Otherwise a turbulent wake develops. 

First the existence of the vortex street for subsonic and supersonic 

freestream Mach numbers up to Ma=2.8 was confirmed by means of 

differential interferometry. The density distribution of the vortex 

street was measured by holographic interferometry. An example for the 

density profile is given in Fig.5 for Ma=1.9 for a rough plate with 

the beginning of the sandpaper 8  mm upstream from the trailing edge. 

The alternating form of a regular vortex street can be seen clearly. 

Fig.6 indicates a decrease of the minimum density of the vortex street 

as a function of the Mach number. 

The most important parameters which influence the formation of the 

vortex street are the distance between the beginning of the sandpaper 

and the trailing edge and the roughness of the sandpaper. Holographic 

interferograms were taken for a flat plate with smooth paper pasted on 

to it (GP), with sandpaper of an average roughness of 0 . 1 8  mm ( S 8 0 1  

and sandpaper of an average roughness of 0 . 4 3  mm ( S 4 0 ) .  The evaluation 

of these interferograms reveals that no vortex street develops in the 

wake of the smooth plate. For the flat plate with sandpaper S 8 0  there 

was no vortex street for trailing edge distances of 0 and 1 mm. For a 

distance of 3, 5, 7, and 9 mm a vortex street had developed. The wake 

of the plate with sandpaper S40 shows a vortex street for every 

investigated distance except for zero. The location where the vortex 

street appears to be fully developed was shifted upstream when the 

distance of the paper from the trailing edge was enlarged up to 5 mm. 

For greater distances the location remains constant. Fig.7 shows the 

dependence of the minimum density on this distance. It is evident that 

the wake of the plate with sandpaper S40 and a distance of the paper 

from the trailing edge of 5 mm contains the strongest vortices. A 

similar but attenuated effect is found with sandpaper S80. Extending 

or shortening the distance of the paper from the trailing edge reduces 

the strenght of the vortices until the vortex street dimishes. This 

means that there are optimum conditions for the formation of a vortex 

street in the wake of a plate and indicates a simple possibility of 



controlling the strenght of the vortices. 

The effect of the formation of a vortex street on the defect velocity 

is seen in Fig.8. It shows a histogram of the minimum velocities in 

the wake at 47 and 107 mm downstream from the trailing edge. When the 

roughness is increased, the minimum velocity decreases for every 

distance of the paper from the trailing edge. This means that the loss 

of kinetic energy increases with the roughness of the paper. 

If the roughness is held constant and the distance of the paper from 

the trailing edge is increased, the defect of velocity decreases in 

the wakes of the rough plates. This is explained by the stronger 

lateral exchange of momentum of a wake with a vortex street compared 

to a turbulent wake. Another result is a broadening of the wake which 

can be seen clearly in Fig.9. As a conclusion it can be said, that the 

stronger the vortices are, the greater becomes the half-width of the 

wake. 

A decent comparison of the profiles of the mean velocity, the 

turbulence intensity and the Reynolds stress between the turbulent and 

the vortical wake is shown in Fig.10. As expected, the wake is 

broadened and the turbulence intensity as well as the Reynolds stress 

are increased by the vortex street. 

V. Interaction between a wake containing a vortex street and a shock 

wake 

As in the case of the turbulent wake, the defect of velocity and the 

half-width of the vortical wake disturbed by shock waves of various 

strenght is increased with the shock intensity. The same is true for 

the turbulence intensity and the Reynolds stress (Fig.11). The 

increase of the latter flow quantities is not as strong as the 

increase in a turbulent wake disturbed by shocks of variable 

intensities (see also /l/ and / 2 / ) .  



- - ~-~ ~ - -  

VI. Calculation of the vortex shedding frequency 

With a Laser-Schlieren optic the vortex shedding frequency was 

measured as a function of the Mach number. For subsonic Mach numbers 

the Strouhal number is nearly constant while for supersonic Mach 

numbers the Strouhal number seems to approach the value of an 

incompressible cylinder wake (Fig.12). In order to calculate the 

vortex shedding frequency, a linear stability analysis of the near 

wake profiles at Mach number Ma=0.4 was carried out on the basis of 

measured velocity profiles. The basic equations are the two- 

dimensional instationary Euler equations. They are simplified by the 

parallel flow approximation, linearisation and a plane wave as a 

disturbance function. This results in the following disturbance 

diffential equation (/3/): 

where p is the complex disturbance pressure and M(y) is the measured 

Mach number profile. 

With the boundary conditions = O  for y at the boundary of the wake 
d y  

and p(y=O)=O this differential equation defines an eigenvalue problem 

for the complex values of W and a. 

Applying the resonance criterion as suggested by W. Koch (/3/), a 

bifurcation point of the dispersion relation with the imaginary part 

of W equal to zero has to be searched. At this bifurcation point which 

is associated with a specific frequency, the group velocity of 

disturbance wave packets is zero. Physically, the existence of such a 

bifurcation point means that there is a transition point between an 

absolute and a convective instability. This point acts as a partial 

reflector for waves with that specific frequency. The trailing edge of 

the plate acts as a second broad-band reflector, so that a strong 

self-sustained feedback loop is possible. Fig.13 shows the complex 

eigenvalues a, where each a is associated with a real frequency W. 

The bifurcation point can be identified as the saddle point in Fig.13 

and results in a Strouhal number of Sr=0.112. The corresponding 

measured Strouhal number is Sr=0.12, which is only about 6.7 % higher. 

If the curve fitting of the measured velocity profiles could be made 

more accurate, the difference between the measured and the calculated 

Strouhal number might be less. 



As a conclusion it can be said, that the concept of absolute and 

convective instability can describe some aspects of the formation of 

the vortex street in the wake of a flat plate sufficiently well. 

VII. Outlook 

The calculations of the Strouhal number will be continued for other 

Mach numbers in the subsonic and supersonic range. 

Admitting nonlinear terms for the derivation of the disturbance 

differential equation would allow to calculate the disturbance 

pressure p more realistically and to compare it with measurements. 

Further investigation will be conducted to clarify the important role 

of the distance of the paper from the trailing edge. 

[l1 Marenbach, G. : Stdrung ebener turbulenter Mischzonen durch 
StoQwellen. Diss. RWTH Aachen, 1982. 

[21 Tang, M.Z. : Wirbelstrapen im Oberschallnachlauf einer rauhen 
ebenen Platte. Diss. RWTH Aachen, 1983. 

[31 Koch, W .  : Local Instability Chracteristics And Frequency 
Determination Of Self-Exited Wake Flows 
Journal Of Sound And Vibration (1985) 99, 55-58 
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Abstract 

This paper considers some of the physical mechanisms by which fluid compressibility causes the 

generation of turbulence and affects turbulent mixing. All fluid velocity fields are composed of 

a rotational component, the curl of the velocity, a compressional component, the divergence of 

the velocity, and a potential component which is both curl and divergence free. In studying the 

physics of compressibility in turbulent mixing, different situations are distinguished by catego- 

rizing not only the curl and divergence currently in the flow but also by the existence of other 

properties induced by the prior effects of both rotation and compression. In this paper I will use 

the term "passive" to describe the integrated effects of prior compressibility which is currently in- 

fluencing the flow from "active" compressibility effects stemming from compression or expansion 

accelerations occurring dynamically in the system. 

These active and passive compressional interactions with rotational flow feed on each other in 

a dynamic three-stage cycle where fluid dynamic instabilities cascade through spatial and spectral 

scales to create a very complex flow field. These complex flows then distort and stretch physically 

meaningful surfaces in the flow such as fuel-oxidizer interfaces or vorticity layers. These convoluted 

surfaces in turn enhance molecular diffusion and transport between the separate materials, thus 

changing the overall energy balance in the system. This changed energy balance, in turn feeds 

back into the fluid dynamic channels of instability, closing the cycle. 

In our earlier work involving compressible systems, which is reviewed elsewhere (eg. [l-4]) ,  

these passive and active roles of compressibility were encountered primarily in the context of 

reactive flows with turbulence. Combustion, reactive shocks and detonation, as sources of strong 

and rapid compressibility effects, naturally are associated with compressible turbulence, empow- 

ering such relatively passive expansion-driven phenomena as bouyancy and vortex bursting as well 

as the more active, shock-driven situations. This paper considers a somewhat broader class of 

compressible mixing and turbulence generation mechanisms including shock-vortex interactions, 

expansion generated turbulence and aspects of Rayleigh-Taylor instability. 

Keynote Address & Proceedings, International Workshop on Physics of Compressible Turbulent 

Mixing, Princeton, NJ ,  24-27 October 1988. 



Three broad (and loose) classes of flow mechanisms couple together in an interactive cycle to give 

a simple conceptual way to view compressible turbulent mixing. The first class of mechanisms 

in this dynamic mixing cycle involve the rearrangement of the available energy in the system by 

mechanisms other than pure fluid dynamic convection. The mechanisms of interest here depend 

on the interaction of a compressible phenomenon with convoluted density or material interfaces 

in the fluid or with the rotational flows that bring them about. These mechanisms include shock 

and acoustic wave propagation through density and vorticity structures in the flow, the local 

introduction of energy into the system by chemical reactions or external deposition. This energy 

rearrangement promotes expansion (compression), giving rise to short term accelerations and 

long term motions in the flow. The available energy, via the accelerations and their associated 

pressure gradients, feeds into a number of possible channels of fluid dynamic instability leading 

to turbulence. 

The second class of mechanisms concerns these dynamic channels for instability and turbu- 

lence. It is useful to view turbulence as beginning in a fluid instability of a laminar macroscopic 

flow. The vorticity generated or released in this instability then cascades through additional fluid 

dynamic channels, spreading convectively over a broader spatial and spectral range. Thus tur- 

bulent mixing can be viewed as a cascade of systems of distinct instabilities [5]. The third class 

of mechanisms concerns mixing directly and relate to the contortion of interfacial surfaces in the 

flow which originally separate identifiably different phases or components of the fluid. We must 

follow and then predict the behavior of these surfaces as they move and stretch. It is here that the 

currently popular fractal notions have their greatest applicability. Figure 9, for example, shows 

the highly convoluted interface separating two gas species of different mass when the mixing due 

to a Rayleigh-Taylor instability has reached a very late stage. 

Steady increase of the interfacial surface area enhances molecular mixing and in the case of 

reactive flow, speeds reactions. With density gradients at these interfaces in the presence of gravity 

or pressure gradients, vorticity will actually be generated as well as rearranged convectively. Since 

energy generation and/or rearrangement results from these contorted interfaces, the three-stage 

compressible mixing cycle is closed. 

This cycle is shown in Figure 1 as specialized to the case of reactive flow turbulence where 

the energy feedback into the mixing cycle is particularly immediate. This view of the mixing cycle 

is two-dimensional. Using this framework, however, an additional way to characterize the roles 

of fluid compressibility is needed. Any fluid velocity field is composed of a rotational component, 

expressed mathematically through the curl of the velocity, a compressional component, expressed 

as the divergence, and a potential component which is both curl and divergence free. Different 

situations should be distinguished by categorizing not only the curl and divergence currently in 

the flow but also by the rates of change of these quantities induced by the current presence of or 

by prior effects of both rotation and compression on the fluid. 

In this paper I will use the term "passive" to differentiate prior flow field compressions or 

expansions which are having current effects from "active" compressibility phenomena which are 



occurring dynamically in the system. Figure 2 shows two important examples schematically in 

which an existing density gradient interacts with accelerations in the fluid. The first case is 

an active compressibility effect in since the density gradient is driven unstable by the adverse 

accelerations associated with an expanding region of gas. The second case shown is passive 

because the driving acceleration field arises from sources other than the fluid compressibility. 

In this taxonomy the phenonemon is highly active when the accelerations associated with 

the compressiblity are the mechanism of vorticity generation or energy rearrangement. Such is 

the case in the upper panel of Figure 2. When velocities resulting from the integrated effect 

of compressibility-related accelerations play a major role, the mechanism is moderately active. 

When the main effect of compressibility arises from density gradients in the flow attributable to 

time-integrated displacements of the compression- or expansion-induced velocities, the mechanism 

will be characterized as passive as in the lower panel of Figure 2. 

The characterization of compressibility effects using this active-to-passive scale determines 

a third dimension for the turbulent mixing cycle illustrated in Figure 1. This composite char- 

acterization of compressibility mechanisms in turbulence generation and mixing is illustrated 

schematically as the surface of a cylinder in Figure 3. On this figure a number of mechanisms of 

each class are indicated with successive 120 degree rotations in the top, middle and bottom pan- 

els. These mechanisms will be discussed further in the paragraphs below. In this taxonomy shock 

generation of turbulence is an active role for compression whether it occurs in a beam-heated 

channel [6,7] where geometric asymmetries in the heating induce a residual turbulent flow or in 

a supersonic shear layer where existing vorticity is moved about [g-101 by shocks. 

Existing density gradients, which drive Rayleigh-Taylor and Richmyer-Meshkov modes, exem- 

plify passive roles in the sense that the gradients were generated in the past by local compressible 

effects such as heating whose related flows have since decayed away. In vorticity generation by 

the Raylor-Taylor mechanism, the pressure gradients which drive the baroclinic source term often 

arise from pre-existing vortices in the the flow on a larger scale than the passive density gradients 

as indicated in Figure 2. In the classical Richtm~er-Meshkov scenario, the role of compression 

through the incident shock is highly active, causing the generation of turbulence through the 

shock associated accelerations of the fluid. At the same time compression is playing a passive role 

through the pre-existing density gradients. 

The fact that aspects of both passive and active mechanisms can be present at the same time 

in some situations complicates and confuses the taxonomy somewhat. This isn't surprising since 

turbulence is a complex and often confusing subject. There are no hard and fast rules for this 

categorization but the approach is nevertheless instructive. It is also noteworthy that the passive 

mechanisms can often be stronger and more important than the active ones. In Figure 2, for 

example, the accelerations associated with a pocket of fuel-ozidizer mixture burning are relatively 

weak and short lived though they are classed as active. The persistence of passive accelerations 

due to large scale vortices in the flow, even though they may be weaker instantaneously, can often 

lead to much larger long-term effects. 

In all of these compressible turbulent mixing cases, vorticity can actually be produced away 



from boundaries and boundary layers in flows that are initially irrotational through the inviscid 

equation for the evolution of vorticity W :  

Here v is the fluid velocity, P is the pressure, and p is the Inass density. When the pressure 

and density gradients are misaligned, the source term on the right hand side of Eq.(l) is nonzero 

and generation of vorticity occurs. Direct integration of Eq.(l) in two dimensions with some 

simplifying assumptions has yielded useful expressions for the circulation or vortex strength for 

each of the phenomena that have been studied [see 71. 

Since we are considering a cycle, any of the three classes of compressibility mechanisms could 

be used as a starting point for the discussion. Because I plan to finish with a discussion of an 

idealized type of Rayleigh-Taylor mixing problem, we will start by considering specific mechanisms 

which involve energy transport and rearrangement. 

Compressibility, Energy Transpor t  a n d  Rearrangelnent  

Energy can be transported fluid dynamically in two ways, convectively and through waves, both 

acoustic and gravitational. It also can be deposited esterna.lly or rearranged from internal degrees 

of freedom as in combustion or in temperature-controlled phase changes. In deposition of ene ra  

from external sources, the deposition is often determined by the local density and temperature of 

the fluid or by other properties which are influenced by the compressibility. Since the subsequent 

heating changes then feed back into the density via the compressibility runaway situations are 

possible. Cooling or condensation modes are also possible in which the radiated energy from a 

region depends on the square of the local density. a slight local reduction in the temperature 

causes an increased density in pressure balance situations. This increased density accelerates ra- 

diative cooling when the temperature dependence of the radiation efficiency has the proper slope. 

Phenomena of this sort are seen in several circumstances on the Sun and in other astrophysical 

situations. 

Reactive flows such as flames, reactive shocks and detonations, major systems involving 

highly active compressiblity effects in turbulence, are reviewed in this volume by Elaine Oran 

[g]. In many reactive flow systems the mixing of fuel and oxidizer is a turbulent process. The 
subsequent fluid dynamic motions in reactive flows are then energized by the accelerations of 

active expansion resulting from chemical energy release. Detonations are complex reacting flows 

in which a leading shock is driven through a combustible material by local chemical enerKv 

released by the temperature rise associated with the shock. In the gas phase, detonations leave 

behind product gases that are often turbulent and noisy. In detonations compressibility pla,ys a 

very active role because the pressures, accelerations, and velocities, more so than the resulting 

displacements, are the dominant effect. 

A supersonic shear layer is a case where compressibility effects play a very active role in 

energy transfer and rearrangement [g-131. The stability in compressible shear flows is affected h!. a 

number of parameters including the stream densities, their temperatures and their Mach numbers. 



The experimentally determined growth rates seem to correlate well with the convective Mach 

number, determined by measuring the speed of the individual streams relative to the convecting 

coherent vortex structures. 

There are intrinsically nonlinear phenomena as well which dominate the collective behavior 

of supersonic shear layers. As a shear layer separating high Mach number flows begins to deform, 

for example, growing spannwise vortices begin to stick out of the layer into the supersonic streams 

above or below. The embryonic roll generates a bow shock by partially blocking the supersonic 

fluid. The increased pressures in this bow shock iron the shear layer flat again, thus interfering 

substantially with the shear mixing [13]. 

The flow physics of vortex bursting is show in Figure 4. This mechanism, identified by 

Chomiak in 1977, and discussed recently [14,15], magnifies the already large rotational velocity of 

stretched vortex cores substantially. A small radial displacement of the relatively dense rotating 

vortex material creates room for a very rapid axial filling of the core by any hot, low density gas 

which comes into contact with the core somewhere along its length. A flame ignited at one point of 

a combustible vortex ring, for example, will engulf the entire ring one to two orders of magnitude 

faster by vortex bursting than by simple laminar propagation of the flame. Thus in vortex 

bursting, compressibility effects generate velocities which are greatly magnified by interaction 

with vortices, leading to rather rapid flows compared to what either the divergence or the curl 

component of the flow would cause by itself. 

Bouyant convection in a highly stratified medium such as the Sun, where the density of a 

rising plume drops by about six orders of magnitude, is a passive ramification of compressibility. 

The density changes resulting from integrated expansion-based displacements are the major con- 

tributor to the changing energy situation. The entire temperature structure of the Sun, however, 

is controlled by this convection which transports orders of magnitude more heat out of the core 

than could be accomplished by thermal conduction or radiation transport [16,17]. The strongly 

time-dependent compressible flows are found to be highly asymmetric. There appear to be con- 

centrated plumes and sheets of downflow with broader, weaker upflowing regions. Furthermore, 

coherence is seen in simulations over a number of scale heights. This situation is another prime 

example of the great importance "passive" compressibility effects can have. 

Finally, shock-vortex interactions are an example where the passage of a shock can actually 

be considered a passive phenomenon. Here compression of the vortex coupled with conservation 

of angular momentum determines the configuration after the shock has passed. Though most 

previous attention has been focussed on perturbations of the passing shock, the vorticity pattern 

left in fact undergoes a larger transformation as discussed elsewhere in this volun~e, see eg. 

[ls]. This resulting vorticity distortion depends on the resulting shock displacements and overall 

compression more than on the accelerations or velocities as long as the passage of the shock is 

fast compared to the velocities in the vortex. 

Colnpressiblity, Fluid Dyllalllic Channels a n d  Instabilities 

Compressibility mechanisms affect a number of fluid dynamic instabilities in the linear regime 



as well as the nonlinear and these effects range from destabilization of otherwise stable flows 

through partial or complete stabilization of otherwise highly unstable flows [19-201. An appeal- 

ing argument, often used, is that the incompressible limit is maximally unstable because the 

energy available to the instability goes entirely into the unstable modes without any fraction 

be sidetracked into compressillg the fluid [22]. This argument is not entirely correct because 

compressibility also allows fluid perturbations which are mathematically prohibited in the rather 

singular incompressible limit. Thus, for example, the usual incompressible modes will actually be 

slightly stabilized while the acoustic modes, essentially absent in any incompressible treatment, 

may be unstable. 

In boundary la.yers of high speed flows the presence of acoustic waves actually destabilizes the 

boundary layer faster than would otherwise occur [23]. Compressibility in these circumstances 

is usually thought of in terms of acoustics. An acoustic boundary layer, as well as a viscous 

boundary layer exists. In addition, new flow phenomena [24,25 and references therein] appear in 

the bulk of the fluid when acoustic phenomena and convective flow occur simultaneously. These 

include refraction phenomena of the sound waves and flow turning phenomena. There is, for 

example, a mechanism called Richardson's annular effect which describes an interaction between 

the mean and acoustic flow fields inside the acoustic boundary layer and which results in a mean 

flow velocity at the edge of the acoustic boundary layer. 

In Rayleigh-Taylor instability driven by laser ablation [26,27] thermal energy deposited in 

the plasma by the laser conducts thermally through a low density plasma to  the material surface 

where it heats cold target material very rapidly. The result is a high pressure region accelerating 

the cold dense material in one direction and accelerating the hot, ablated, "blowoff" material in 

the other direction. In the accelerating frame of reference of the solid or near solid target, the 

acceleration appears as an external gravity and the low density blowoff plasma appears to be 

supporting the heavier material in a Rayliegh-Taylor unstable configuration. 

This situation is shown in Figure 5 where the laser beam enters the fluid region from below 

and the effective gravity is downward. The two solid wavy lines across the figure mark the 0.1 

times solid and the 0.8 times solid contours of the dense target material. The upper part of the 

figure is essentially solid target material in which essentially no vorticity has been generated. The 

positive and negative regions of vorticity are shown as solid and dashed contours in the ablation 

region between the two wavy lines and in the blowoff plasma being driven out of the system to 

the bottom of the figure toward the incident laser beam. 

This laser-driven configuration deviates fi-om the classical Rayleigh-Taylor situation because 

of the rapid fluid expansion in the ablation layer where vorticity is being generated by misaligned 

pressure and density gra.dients. The velocity of the expanding gas drags the instability-generated 

vorticity away from the unstable solid-gas interface, as can be seen in Figure 5. This flow 

reduces the growth rates of the modes a.ppreciably and thus the tendency of a thin shell of target 

material to fragment. The multimode and late-time nonlinear evolution of this dynamic system 

are considered in some detail by Emery and Gardner elsewhere in this volume [27]. 

The last example of continuum fluid instability interactions involving compressibility and 



rotational flow to be considered in this section are the acoustic-vortex interactions. Small acous- 

tically-driven displacements of a thin vortex layer provide seed perturbations on which the usual 

Kelvin-Helmholtz instability and its compressible founterparts [19-211 can build. These mecha- 

nisms are generally passive in the sense that compressiblity acts principally through the integrated 

positional displacements of the thin shear layer arising at a corner or splitter plate. They can 

be important both for the initial linear growth and rollup of a shear layer and for the regular 

nonlinear reinitiation of coherent vortex structures in open systems. These mechanisms appear 

even stronger in driven systems where a particular frequency acoustic mode is imposed [30,31]. 

Ibilasanath et al. [32] discuss these acoustic-vortex interaction mechanisms elsewhere in this 

volume. A choked dump combustor configuration with a rearward facing step and cold flow 

is used for a number of these studies [31,33] because it closely resembles a reasonable ramjet 

configuration and yet is simple enough for careful nunlerical and experimental analysis. Complex 

but quite regular vortex shedding and merging patterns often appear at a subharmonic frequency 

near the center of the range of basic shedding frequencies of the rearward facing step which is 

present in a ramjet to hold the flame. The conlplicated sul~harmonic patterns are controlled by 

quarter wave modes of the relatively narrow inlet pipe. 

The acoustic frequencies of the chamber appear to be most important in low Mach number 

flow, probably because the chamber acoustic nlodes do not match the vortex shedding frequencies 

well when the flow velocities are high. However, even in the higher Mach number flows, acoustic 

effects become important once several mergings of the basic vortex shedding bring the characteris- 

tic frequencies closer together. It is significant and interesting that acoustic compressibility effects 

can be most important at low Mach number when a superficial look at the problem suggests that 

the importance of compressibility should diminish. 

Coinpressibility Effects in Interface Dyllalllics 

In the previous section instability mechanisms occuring in the bulk of the flow and in constant 

entropy regions were considered. The existence of interfaces in the fluid between different types 

or phases of material or simply regions of different temperature and density provide another class 

of mechanisms where compressibility and turbulence can interact. Figure 6 shows schematically 

why interfaces are so important to reacting flows. The turbulent interpenetration of two materials 

greatly increases the area of the interface and it stretches the flow, steepening gradients of species 

concentrations in many regions. Both of these effects tend to increase the rate of molecular 

diffusion of the two materials into each other. This increases the rate of chemical reactions and 

feeds back into the energy transport and rearrangement portion of the three-stage compressible 

turbulent mixing cycle. 

The generation of vorticity at convoluted interfaces is of particular interest because it provides 

a way that strong turbulence can feed on previous mixing in the flow actually generating additional 

turbulence in place. 111 incompressible constant-density turbulence, the vorticity arises only at 

boundaries and in boundary layers and has to be convected into the bulk of the flo\v. It can be 

rearranged in these incompressible cases but new vorticity is not as easily generated. 



Several categories of compressible vorticity-generation by shocks and compressibility-related 

expansions can be identified: 

(1) irregular reflections of shock waves from surfaces or nonlinear interactions among shocks, 

(2) gas expansion into or shock wave propagation through a region of nonuniform mass density, 

e.g. shock-bubble interactions and Richtmyer-Meshkov modes, and 

(3) expansion of an irregular volun~e of gas, produced for example by asymmetric energy deposition 

in a gas. 

Mechanisms in category 1 and the highly active shock generation of turbulence via Richtmyer- 

Meshkov planar interfaces in category 2 are considered elsewhere in this volume and will not be 

considered in detail here. The Richtmyer-Meshkov generation of turbulence occurs in a very short 

interval as the driving shock passes through the nearly planar interface. It is hardly compressible 

during most of its subsequent evolution bat the presence of strong density gradients means that 

the remnants of compressibility are always present. In this sense these three categories of vorticity 

generation must be viewed as simultaneously active and passive in our taxonomy. 

An important example of vorticity (turbulence) generation which has received much attention 

lately is the propagation of shocks through a slow laminar flame [36] or through light and heavy 

bubbles in an ambient gas. The passage of the external diffracted shock and the internal refracted 

shock over and through the bubble produces residual vorticity at the interface of the bubble. The 

vorticity then rolls into a vortex ring, inducing a jet of ambient gas along the bubble axis. The 

simulations and theory [38] have agreed closely with recent experiments by Haas and Sturtevant 

[371. 
Expansion-driven turbulence generation mechanisms of the third type are classed as mod- 

erately active because the strength of the coherent vortex structures which result depend on 

characteristic expansion velocities. As shown by Picone and Boris [6,7 and references therein], 

the vorticity evolution equation specialized to two dimensions can be integrated in a Lagrangian 

frame of reference. It is usually found that the velocities and hence displacements associated with 

the vorticity being generated are quite small compared to the shock- or expansion-related veloc- 

ities driving the system. Thus the calculation of the strength of vortex pairs generated by the 

baroclinic source term on the right side of Eq. (1) can proceed with reasonable accuracy ignoring 

the a.ccumulating rotation during the vorticity generation process. This means that the path of 

fluid particles, their acceleration from rest, their deceleration back to rest, and their asymptotic 

displacement (in the absence of the rotational component of the flow) can be approximated quite 

accurately. 

Integration of Eq. (1) under these assunlptions gives the follo\ving expression for the strength 

of the vortices generated (usually in pairs): 

Here U is a characteristic velocity of expansion to pressure ecluilibrium, R(T)  and R(0) are the 

final and initial characteristic scale sizes of the expanding region, p, is the ambient unexpanded 



density, p0 is the relatively low density left at the center of the expanded channel, and the form 

factor f, between zero and unity, is related to the asymmetry of the energy deposition. 

Problems to which this theory applies include turbulent cooling of lightning, laser, and lab- 

oratory discharge channels in a gas, shock-flame interactions, and shock propagation through 

inhomogeneous, compressible fluids. Reference 7 shows examples of experiments and numeri- 

cal simulations of this mecha.nism. Subsequent experiments confirm the predictions of Eq. (2) 

in a wide variety of circumstances when nulnerical experiments are performed to evaluate the 

geometric form factor and characteristic velocity appearing. 

A Rayleigh-Taylor Problem and the NumericaJ Model 

Strong bouyancy driven convection, as described above and the nonlinear evolution of the Ray- 

leigh-Taylor instability are examples of turbulent mixing involving passive compressibility effects 

if we assume that the driving density variations arise as the integrated result of compression 

or expansion effects. The existing density gradients "originally" embedded in the flow interact 

baroclinically with pressure gradients, whatever their source, to generate and rearrange vorticity. 

The very late time interpenetration of two compressible fluids of different density is the last 

example we will consider, discussing some new calculations incorporating a rather novel approach 

to the late-time Rayleigh-Taylor problem. Since the nonlinear stage of the R-T problem is 

usually viewed as an intrinsically unsteady situation, the study of an R-T problem, no matter 

how idealized, which has a dynamical steady state, is extremely interesting. 

To limit the computational scope of the problem, doubly periodic geometry is attractive but 

the problem definition requires some manipulation to remove the secular pressure gradient which 

characterizes the equilibrium configuration of a heavy fluid unstably supported by a light fluid. 

This average pressure gradient can be removed by studying a problem which has no net force. The 

two fluids are accelerated in opposite directions with two different "gravitational" forces which 

are inversely proportional to the mass density. This could be be viewed as two oppositely charged 

fluids in an electrostatic field or as the usual Rayleigh-Taylor problem in an accelerated frame 

of reference. By ensuring that the total force on the system is zero, the net momentum of the 

system is constant for all time and can be taken as zero though the two fluids are being pulled 

through each other and will have a nonzero net interpenetration drift. 

The fluids can be expected to reach this terminal interpenetration velocity when their average 

rate of extraction of energy from the opposed "gravities" equals the dissipation of flow kinetic 

energy into heat due to viscous heating at  small scales. 

Four scalar ideal gasdynamic equations are solved for conservation of mass, two components 

of momentum and energy. Two additional fluid equations, 



are solved for the advective transport of the two distinct species nu~nber density fractions, 

f l  ( X ,  Y, t )  = 1 2 ~ / ( 1 2 2  + 121 ) and .f2(x. y. t )  = 122/(122 + 111). f l  and f 2  clearly sum to unity and are 

advected without the compression term. .The overall mass density, p(%, 9, t ) ,  is defined by 

P(X, Y, t )  = PllZl + p2n2 

where 

A series of simulations of this problem have been performed using Flux-Corrected Transport 

algorithms [39] on the LCP&Fd's parallel processing Graphical and Array Processing System in a 

doubly periodic square domain. FCT algorithms are conservative and monotone with fourth-order 

phase accuracy. During a convective transport timestep, FCT first modifies the linear properties 

of a high-order algorithm by adding diffusion. This prevents dispersive ripples from arising, and 

it ensures that all conserved quantities remain monotonic and positive. Then FCT subtracts out 

the added diffusion unless nonpllysical oscillations in the computed solution would reappear. This 

antidiffusive step is necessary to maintaining the sharp gradients between the two fluids in the 

calculations shown below and it maintains a high order of accuracy while enforcing positivity and 

monotonicity. 

Results of the Silllulatioils 

Several cases have been run varying the density ratio between the two fluids, the strength of the 

opposed accelerations acting on the two fluids, and the system size. Figure 7 shows the spatially 

averaged upward velocity of the light fluid, VyaUg - the solid line, and the root mean square 

vertical velocity, VyrmS - the dashed line, as a function of time. In this case the light density 

averages 1 kg/m3 with the heavier density averaging 10 kg/m3. The lighter fluid feels an upward 

acceleration of G1 = 105m/s2; the heavier fluid is accelerated downward with G2 = 1O4m/s2. 

The system size for this calculation was 100 X 100 cells of size 1 cm by 1 cm. 

The horizontal solid line marks the light fluid vertical drift of 20.0 m/s averaged over the 

30,000 timesteps of this simulation. Significant fluctuations in the system averaged vertical drift 

are observed with short periods when the lighter fluid actually moves downward on average 

throughout the system. The accelerations are ten thousand and one thousand times the normal 

acceleration of gravity, enough to accelerate the heavier fluid to a velocity of three or four times the 

speed of sound and the light fluid much faster. Nevertheless, the Kelvin-Helmholtz interactions 

between the oppositely moving fluids keeps the interpenetration drift velocity orders of magnitude 

smaller. 

The light fluid velocity does show large excursions about the average drift, typically with an 

rms speed of 100 to 150 m/s. Thus transient local flows with Mach number over 0.3-0.5 are not 

uncommon. This means that the average interpenetration drift of the two fluids is much smaller 

than the speed at which most of the fluid is moxing. Strong vortices and shear flows occur on all 



scales in this problem but the mixing of the two fluids is correspondingly fine grained so almost 

a.s much light fluid is moving downward as upward at any time. Shear of the two fluids at an 

interface tends to mix the two fluids in a coarse-grained way, as shown in Figure 8 for three 

different system sizes. This tendency to mix on finer and finer scales is counterbalanced by a 

tendency for like fluids to coagulate under the influence of the opposed accelerations. One forcing 

factor in this coagulation is the radial pressure and density gradients in a strong vortex which 

tend to spin the heavier fluid out. Thus coherent vortex structures tend to drift in the direction 

of the lighter fluid. 

When the gravity and the density ratio are varied, the resulting situation is very similar. 

The mass ratio was varied in three runs using values 21, 10:l and 50:l with the lower density 

held fixed at 1.0 kg/m3. The system size was taken as 100 X 100 cells and G1 = 104 m/s2. The 

corresponding interpenetration drifts, averaged over 30,000 timesteps, are 5.2 m/s, 7.8 m/s, and 

10.7 m/s. A set of three 100 X 100 runs were performed using a species mass ratio of 10 : 1 

with the acceleration of the light fluid taking the values 104 m/s2,  3 X 104 mls ,  and 105 m/s2. 

The corresponding light fluid drift velocities, 11 m/s, 14 m/s, and 20 m/s, roughly support a 

square root scaling of the interpenetration drift with gravitational acceleration. Another series 

of three runs, with the species mass ratio of 1 : 2 and with corresponding accelerations fixed at 

104 m/s2 and -5 X 103 m/s2,  were performed with system sizes of 100 X 100 cells, 200 X 200 

cells, and 400 X 400 cells. The corresponding drift velocities were 5.2 m/s, 8 m/s and 12 m/s, 

also supporting a square root scaling of interpenetration drift speed with system size. 

This approximate square root scaling cannot be viewed as surprizing since the only charac- 

teristic velocity which can be constructed out of the one spatial scale in the problem, the system 

size, and the acceleration is 

What is surprizing is that the velocity actually calculated from this expression for the 400 X 

400 cell case mentioned above, Vchar = (104 X 4)''' = 200 m/s,  is a factor of twenty larger than 

actually measured from the simulations. 

This disparity can only be explained by the near uniform coarse-grained mixing indicated 

above and is well illustrated in the heavy species number density plots of Figure 8. The overall 

macroscopic interaction seems to involve slightly denser mixtures moving in one direction with 

slightly less dense mixtures drifting the other way. The density imbalance results in a much 

smaller effective differential acceleration which reduces the interpenetration drift appreciably. 

The Atwood number, A = (p2 - pl)/(p2 - pl),  is the wrong non-dimensional number to describe 

this effect. Since the two fluids are accelerated separately, the effect still exists even when the 

Atwood number is zero. 

Figure 9 shows vertical fluid velocity color encoded with green-yellow-orange hues indicating 

downward velocities and the blue-magenta-red hues indicating upward velocities on the figure. 

The saturated green (and blue) regions show a velocity in excess of 80 m/s. This flow field cor- 

responds to the density distribution of Figure S. In these figures, the direction of the opposed 



accelerations are such that the denser fluid 2 is actually pulled upward. As can be seen, there are 

relatively extensive regions of up and down flowing fluid within which very detailed density struc- 

ture is evident. Further, the characteristic scales lengths and general character of the structures 

is similar in the three cases even though the system size varies greatly in the three cases shown. 

Further work on this problem will be aimed at developing a model to explain these slow 

relative drifts quantitatively. 

A number of mechanisms involving the interaction of compressibility and rotational flows includ- 

ing turbulence have been discussed. A framework for organizing this discussion was built out of 

the obvious cycle of energization, fluid dynamic instability, and evolution of convoluted material 

interfaces. This cycle characterizes each stage of the cascade of energy which occurs in turbulence 

and in turbulent mixing. The effects of compressibility on the three stages of the cycle were cat- 

egorized on a more or less continuous scale ranging from "active" effects where the accelerations 

associated with the compression or expansion of the fluid are of paramount importance to "pas- 

sive" effects which depend primarily on the integrated conlpression or expansion displacements 

and resulting density gradients in the fluid. 

While useful, this taxonomy is hardly rigorous. Some problems of how to categorize a given 

phenomenon clearly arose above. Since the velocity is an integral of the acceleration and the 

displacement is an integral of the velocity, where on the scale from passive to active a given 

mechanism lies sometimes depends on what timescale is used to measure the process. In other 

cases, for example when both active shock accelerations and passive density gradients interact as 

in the Richtmyer-Meshkov instability, the characterization again depends on the point of view. 

What is most interesting is the diversity of phenomena involved. In some cases the predom- 

inant compressibility mechanisms are destabilizing, again as in the Richtmyer-Meshkov instabil- 

ity or in a supersonic boundary layer. In others, i.e. the free supersonic shear layer or in laser 

ablation, compressibility can significantly reduce the growth of otherwise highly unstable fluid 

dynamic modes. It becomes clear, however, that compressibility, even in rather low Mach number 

flows usually plays a surprizing important role. Extremely low amplitude acoustics can dominate 

vortex shedding in important simple cases. In flames the pressure is also essentially constant and 

yet multidimensional propagation and extinction of flames depends critically on compressibility. 
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THREE INTERACTIVE ASPECTS OF 
REACTIVE FLOW MIXING 

Figure 1. The three cyclic aspects of reactive flow turbulence, the classic model for compressibility 
effects in turbulence and mixing. 



ROLES OF COMPRESSIBILITY IN MIXING 

& GENERATION OF TURBULENCE 
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Figure 2. The active and passive roles of compressibility in mixing and in the generation of turbulence. 
A passive density gradient interacts unstably with expansion driven (active) accelerations 
and with rotationally-induced (passive) accelerations. 



COMPRESSIBILITY IN MIXING & 
GENERATION OF TURBULENCE 

SOURCES OF EXPANSION 

FLUID DYNAMIC INSTABILITIES 

- 
INTERFACE DYNAMICS 

Figure 3. A schematic characterization of compressibility in mixing and the generation of turbulence 
is shown as a combination of the information in Figs. 2 and 3. 



Figure 4. A schematic diagram of vortex bursting as enabled by compressibility in the flow. The 
azimuthal flow kinetic energy in the tight vortex core is converted to a rapid axial flow of 
low density material when expansion occurs near the vortex core. 



BLOWOFF PLASMA 

LASER 

Figure 5. In the ablative Rayleigh-Taylor instability, here driven by a laser beam from below, the 
convection of vorticity away from the ablation layer by the strong expansion significantly 
reduces the Rayleigh-Taylor growth rate. 
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Figure 7. Average interpenetration drift velocity versus time for differentially accelerated fluids in a 
doubly periodic geometry. 



Figu re 8. Heavy species number density contours for a doubly periodic simulation of 
the asymptotic Rayleigh-Taylor interpenetration of two fluids. 
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ABSTRACT 

Effects of density and velocity variations between two streams of an unconfined, spatially-develop- 

ing shear layer are studied by numerical solutions of the time-dependent Euler equations using 

a second-order Godunov scheme. The inviscid calculations duplicate quite well the major flow 

features that have been observed in the experiments of Brown and Roshko and of Oster and 

Wygnanski. These include the visual spreading rates and the mean-flow velocity and density 

profiles. This study suggests then that the mean-flow evolution is dominated by two-dimensional, 

inviscid effects. 

INTRODUCTION 

This paper presents results of numerical simulations of unconfined, unsteady, spatially developing, 

two-dimensional shear layer with large density variations between the two streams. This work is 

motivated by the experimental studies of Brown and Roshko [l] who showed clearly the effects 

of density on the rate of growth of large-scale vortex structures which are the intrinsic features 

of a turbulent shear layer. There have been many recent numerical studies of turbulent shear 

layers [24] .  However, these efforts were mainly devoted to the computation of the development 

and evolution of those vortex structures in a constant-ambient-density environment. The present 

paper is an extension of our previous work [5,6] to study specifically the effects of large density 

variations between the two streams and to provide quantitative comparisons with the experimental 

data. 

FORMULATION 

The governing equations used are the unsteady, inviscid conservation laws of gasdynamics. 

In contrast with the vortex methods [2,3], there is no large-Mach-number limit with this approach 

and the baroclinic generation of vorticity is automatically included. Numerical results were 



obtained by means of an explicit second-order Godunov scheme [7] that gives nondiffusive solu- 

tions for gasdynamics. Hence, this approach represents a large-Reynolds-number approximation 

to the flow. This numerical scheme has produced accurate solutions to a variety of blast wave 

reflection problems [8] and constant-ambient-density shear layer problems [5,6]. 

The computational grid consisted of 500 fine cells in the streamwise (X) direction and 80 fine cells 

in the transverse (y) direction across the shear layer (Ax = Ay = 1); a few coarse zones were 

used above, below and to the right (downstream) of the fine mesh to cover a large computational 

domain of 8800 by 3000. Typically, 10,000 to 20,000 time steps were run in one calculation so 

that reliable quantitative statistics can be obtained from the computed unsteady results. Tracer 

particles introduced into the flow field from the origin were tracked to follow the distortion of the 

interface. A typical calculation was run for about 10 hours on the LANL CRAY XMP computer. 

The initial shear layer was represented on the computational grid by Tanh(y) velocity and density 

profiles: 

where the shear layer parameters are: 

Note that these profiles have the proper asymptotes (U1, p1 at y = m and U2, p2 at y = -m). 

The left-hand boundary of the grid was then driven by these same profiles with sinusoidal per- 

turbation~ on the streamwise velocity only (and no pressure perturbations). Their frequencies 

corresponded to the frequency of maximum amplification rate (according to linear stability the- 

ory) and its first nine subharmonics. The maximum perturbation amplitude was one percent. A 
more complete description of this calculational approach may be found in [g]. 

RESULTS AND DISCUSSION 

The shear layer parameters for the three cases presented in this study are listed in Table 1. 

Case 1 corresponds to the high velocity helium flow over a low velocity nitrogen flow as studied 

by Brown and Roshko [l], where the dynamic pressures of the two streams are equal; case 2 uses 

the same velocity profile but inverts the density profile. Case 3 corresponds to a constant density 

shear layer studied by Oster and Wygnanski [10]. 



TABLE 1. Calculational Matrix 

The calculated material interface plots are shown in Figures l(a),  (c) and (e). For comparison, the 

shadowgraphs of the helium-nitrogen interface recorded during the experiment [l] are presented 

in Figures l (b)  and l(d). Similarities between the calculated and experimental interface are 

remarkable. The shape and wavelength of these large-scale vortex structures are quite similar. 

Comparing Figures l(a),  (c) and (e), we see graphically the effect of density on the rate of growth 

of large-scale vortex structures. 

In Figure 2, the calculated visual spreading rates 6ti, are compared with the experimental data 

given in Figure 7 of Brown and Roshko [l]. We have also included in Figure 2 the results based 

on our earlier calculations [5] at X = 1 for X p  = 0. The bars over the calculated results represent 

the variation in the visual spreading rate over time. The calculated results and the experimental 

data are seen to be in good agreement. 

CASE 

1 - Brown & Roshko [l1 

2 - Brown & Roshko [l1 

3 - Oster & Wygnanski [ l  01 

Monitoring stations located at three constant X locations were used to store the flow field time 

histories. These were then integrated in time to establish the mean shear layer profiles. The mean 

velocity and density profiles are depicted in Figures 3, 4 and 5. The three stations for each case 

are compared by means of the scaling variable 

r 

0.378 

0.378 

0.600 

h 

0.45 1 

0.451 

0.250 

where X, denotes the effective origin of the breakdown of the shear layer (X, = 25, -42, 25 for 

cases 1, 2 and 3, respectively). As can be seen from these figures, the profiles seem to collapse 

reasonably well with this scaling. 

X P  

-0.75 

0.75 

0 

The shaded regions in these figures denote the mean profiles as measured by Brown and Roshko 

(Figures 13(b) and (c) of [l]) and Oster and Wygnanski (Figure 6(d) of [10]). The calculated 

density and velocity profiles are seen to agree well with the measured profiles. 

We have also computed r.m.s. time averages about the mean values. The peak values of the 

fluctuating quantities are given in Table 2. The present peak u'and shear stress values for case 3 

are quite close to the experimental data of Oster and Wygnanski [10], but the peak v' value is 

about two times larger than the data because of our two-dimensional flow approximation. A 

detailed discussion of the r.m.s. profiles will be given in a forthcoming paper [l l]. 



TABLE 2. Comparison of Peak Fluctuating Quantities 
( 1 0 - ~ )  at X = 400. 

CONCLUSIONS 

The present inviscid calculations seem to capture the major flow features that have been observed 

in experiments. These include the formation and growth of vortex structures, the visual spreading 

rates and the mean-flow velocity and density profiles. Therefore, this study suggests that the 

mean-flow evolution of unstable shear layers is dominated by inviscid effects. The principal 

limitation of the present calculations is the two-dimensional flow approximation. 

CASE 

1 

2 

3 

data [ l  01 
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Figure 1. Material interface plots showing the development 
of rotational structures: (a) and (bj Case 1; 
(c) and (d) Case 2; ( e j  Case 3. Photographs 
ib )  and (d) courtesy of Brown and Rosnko (1974). 



Figure 2. Visual spreading rate, ''vis' versus A .  



F i g u r e  3 .  Mean v e l o c i t y  and d e n s i t y  p r o f i l e s  f o r  
Case 1 ( h =  0 . 4 5 ,  r = 0 . 3 8 ,  p1/p2 = 1/71:  
shaded r e g i o n  d e n o t e s  t h e  d a t a  band of  
Brown and Roshko (1974) . 



F i g u r e  4 .  Mean v e l o c i t y  and d e n s i t y  p r o f i l e s  f o r  
Case 2  ( A =  0 . 4 5 ,  r = 0 . 3 8 ,  P 1 / P 2  = 7 / 1 1 ;  
shaded r e g i o n  d e n o t e s  t h e  d a t a  band of 
Brown and Roshko ( 1 9 7 4 ) .  



Figure 5. Mean velocity profile for Case 3 ( X  = 0 . 2 5 ,  
r = 0 . 6 ,  p  / p 2  = 1); shaded region denotes 
the data band of Oster and Wygnanski ( 1 9 8 2 1 .  



APPLICATION OF A TWO-EQUATION TURBULENCE MIX  MODEL^ 
W.P. Crowley 

Lawrence Livermore Na t iona l  Labora to ry  

Introduction 

A mass averaged  k -eps i l on  model was d e r i v e d  by L e i t h [ l , 2 ]  
u s i n g  a moment expans ion  and a p p r o p r i a t e  c l o s u r e  models.  
Moving t h e  mesh w i t h  t h e  mass averaged  v e l o c i t y  r e s u l t s  i n  a 
Lagrangian model w i t h  c o n s t a n t  mass i n  each  zone.  I n  t h i s  
pape r  L e i t h ' s  model i s  t r ans fo rmed  i n t o  an  "Almost 
Lag rang ian f f [3 ]  model by t a k i n g  t h e  mesh v e l o c i t y  t o  be t h e  
ensemble averaged  f l u i d  v e l o c i t y .  Here t h e  mass i n  each  
zone may change w i t h  t i m e .  The r e s u l t i n g  l - D  model i s  used  
t o  s i m u l a t e  t h e  Smits  and Muck[4] s u p e r s o n i c  wind t u n n e l  
exper iment  i n  which p r e - e x i s t i n g  t u r b u l e n c e  i s  a m p l i f i e d  by 
a shock wave. From t h e  model r e s u l t s  w e  deduce a s i m p l i f i e d  
k-E model t h a t  i s  a p p l i c a b l e  t o  t h e  Smi ts  and Muck (S&M) 
exper iment .  I n  t h e  a n a l y t i c  s o l u t i o n  f o r  t h e  s i m p l i f i e d  
model w e  f i n d  t h e  shock t h i c k n e s s  t o  b e  i n c r e a s e d  by a 
f a c t o r  o f  105; beh ind  t h e  shock t h e  t u r b u l e n t  ene rgy  decays 
a s  t-l. 

L e i t h  i n t r o d u c e s  an ensemble average  < f >  and a mass average  
I f }  where t h e  mass ave rage  i s  d e f i n e d  by  

<pf> = <p>{f} 

Each ave rage  has  i t s  own a s s o c i a t e d  f l u c t u a t i o n s  d e f i n e d  by 
f  = < f >  + f "  = { f }  + f' 

For  v e l o c i t y ,  t h e  component ave rages  a r e  r e l a t e d  by  
{ u i }  = <u i>  + <pWui">/<p> 

and t h e  eddy mass f l u x  i s  d e f i n e d  t o  be 
m i  = < P " u ~ " >  

H e  d e r i v e s  t h e  f o l l o w i n g  e q u a t i o n s  i n  an  E u l e r i a n  c o o r d i n a t e  
system: 

t w o r k  p e r f o r m e d  u n d e r  t h e  a u s p i c e s  o f  t h e  U . S .  D e p a r t m e n t  o f  E n e r g y  by t h e  
Lawrence L i v e r m o r e  N a t i o n a l  L a b o r a t o r y  u n d e r  C o n t r a c t  N o .  W-7405-ENG-48. 



Here p i s  mass d e n s i t y ,  p  i s  f l u i d  p r e s s u r e ,  e i s  s p e c i f i c  
i n t e r n a l  e n e r g y ,  h  i s  s p e c i f i c  e n t h a l p y ,  k  i s  s p e c i f i c  
t u r b u l e n t  e n e r g y ,  and  E i s  t h e  d i s s i p a t i o n  r a t e  o f  s p e c i f i c  
t u r b u l e n t  e n e r g y .  I n  one  d imens ion  t h e  Reynolds  stress 
t e n s o r  becomes 

* 4 a c u ]  
Q T = - P $ ~ I = - ~ P ~ ~  

Q -  CS-E BWBQA@@B 
C o n s i d e r  a  c o n s e r v a t i o n  law i n  a n  E u l e r i a n  c o o r d i n a t e  s y s t e m  
where  e r e p r e s e n t s  some i n t e n s i v e  q u a n t i t y ,  s a y  i n t e r n a l  
e n e r g y  [e rgs /gm]  : 

ape a ~ e u k  = R e  +- 
at axk 

W e  t r a n s f o r m  t o  a  c o o r d i n a t e  s y s t e m  moving w i t h  v e l o c i t y  s k  
a n d  t h e  c o n s e r v a t i o n  law becomes 

6pe + a ~ e ( u k  'r) + pe&= R e  
6t a x  k a x  k 

o r  

where 
6 X = s  
6t 

s k  i s  a r b i t r a r y  and,  i f  w e  choose  s k  t o  be { u k } ,  t h e n  t h e  
mass i n  a zone i s  c o n s t a n t  and  t h e  eddy mass f l u x ,  mk, must 
be chosen  a c c o r d i n g l y .  To e l i m i n a t e  t h e  c o n s t r a i n t  on mk w e  
let 

Sk = <Uk> 
Uk = {uk}  

and  t h e n  
Uk - Sk = {uk}  - <uk> = mk/p = nk 

Under t h i s  c h o i c e  o f  mesh v e l o c i t y  t h e  mass i n  a  zone can 
change  w i t h  time, and  i n  ID, t h e  p r e f e r r e d  e q u a t i o n s  a r e  
t h e n  : 

Mass f l u x  due  t o  t u r b u l e n t  d i f f u s i o n  
mk = - D- ap  , D = clr2/c 

a x k  

d i f f u s i o n  v e l o c i t y  
nk = mk/P 

momentum 

mesh v e l o c i t y  = f l u i d  v e l o c i t y  - d i f f u s i o n  v e l o c i t y  



mesh k i n e m a t i c s  

mas S 

s p e c i f i c  i n t e r n a l  e n e r g y  

PT ah a(- -1 6pe demi oh axi 
- + pe- - - - - + a(u i )  axi  axi axi -@+Q-- P(S  -E)  6t 

t u r b u l e n t  k i n e t i c  e n e r g y  

t u r b u l e n t  d i s s i p a t i o n  r a t e  

The e p s i l o n  e q u a t i o n  i s  " d e r i v e d "  from t h e  k - e q u a t i o n  b y  
m u l t i p l y i n g  t h e  k - e q u a t i o n  by &/k, f o r g e t t i n g  t h e  r u l e s  o f  
a l g e b r a  a n d  i n t r o d u c i n g  t h r e e  c o n s t a n t s  t h a t  may be a d j u s t e d  
t o  f i t  e x p e r i m e n t a l  d a t a .  W e  a l s o  have  i n t r o d u c e d  a n  
a r t i f i c i a l  v i s c o s i t y  [ 5 ]  . 

I n  t h i s  s e c t i o n  w e  compare r e s u l t s  from t h e  model  w i t h  
r e s u l t s  from t h e  wind t u n n e l  e x p e r i m e n t s .  The "2-D" 
e x p e r i m e n t a l  s e t u p  i s  r o t a t e d  i n t o  a l - D  c o n f i g u r a t i o n  
normal t o  t h e  shock  a s  s u g g e s t e d  i n  Appendix A.  The 
s i m u l a t i o n s  a r e  done w i t h  t h i s  k-E model embedded i n  a  l - D  
Lagrang ian  hydrodynamics c o d e  which i s  b a s e d  on t h e  
a r t i f i c i a l  v i s c o s i t y  method o f  R ich tmyer  and  von Neumann[S]. 
To compare w i t h  t h e  l a b o r a t o r y  d a t a  w e  t r a d e  l a b o r a t o r y  
d i s t a n c e  f o r  ( shock  s p e e d ) x ( t i m e )  . 

F i g u r e  1 shows S&M d a t a  f o r  t h r e e  wedges. F i g u r e  2 shows 
t h e  t u r b u l e n t  e n e r g y ,  k ,  i n  a  "zone" o f  t h e  f l u i d  a s  a  
f u n c t i o n  o f  t i m e  f o r  d i f f e r e n t  i n i t i a l  c o n d i t i o n s  f o r  t h e  
tes t  p rob lem b a s e d  on t h e  16' wedge (Appendix A ) .  F i g u r e  1 
shows o n l y  t h e  s t r e a m w i s e  component o f  t u r b u l e n t  e n e r g y  and 



t h e  model c a l c u l a t e s  t h e  t o t a l  t u r b u l e n t  energy  s o  t h e r e  i s  
some ambigui ty  h e r e  on comparing t h e  i n c r e a s e  o f  k a c r o s s  
t h e  shock. W e  can,  however, compare t h e  f u l l - w i d t h ,  h a l f -  
max (FWHM) v a l u e  of  each  c u r v e  and  compare t h e s e  v a l u e s .  
Fo r  S&M, FWHM - 12 .5  c m ,  and t h i s  t r a n s l a t e s  i n t o  4 x 1 0 4  
seconds.  

The b a s e l i n e  problem has  an  i n i t i a l  t u r b u l e n t  ene rgy  of 
1.82e7 ergs/gm (about  1% of  t h e  i n i t i a l  i n t e r n a l  energy)  and 
a n  i n i t i a l  v a l u e  f o r  E of  4.55e10 ergs/gm/sec.  Using an 
expe r imen ta l  s e t u p  s i m i l a r  t o  t h a t  u sed  by S&M, S e t t l e s ,  
F i t z p a t r i c k  and Bogdonoff[6]  e s t i m a t e  t h e  incoming boundary 
l a y e r  t o  be 2 .3  c m  t h i c k .  Using t h i s  v a l u e  f o r  a l e n g t h  
s c a l e ,  and t h e  above v a l u e  f o r  k, w e  compute E t o  be 3.4e10 
ergs/gm/sec.  

F i g u r e  2 shows t h e  e v o l u t i o n  of  k f o r  d i f f e r e n t  i n i t i a l  
v a l u e s  o f  k and E. W e  conc lude  t h a t  t h e r e  a r e  v a l u e s  of kg 
and EO w i t h i n  a f a c t o r  o f  f o u r  t h a t  a l l o w  u s  t o  match model 
r e s u l t s  w i t h  e x p e r i m e n t a l  r e s u l t s .  

F i g u r e  3 shows t h e  r e l a t i v e  impor tance  of  t h e  d i f f e r e n t  
components o f  ene rgy  i n  zone 109. The m a t t e r  energy  i s  
g r e a t e r  t h a n  t h e  mean k i n e t i c  energy  which is g r e a t e r  t h a n  
t h e  t u r b u l e n t  ene rgy .  The t u r b u l e n t  p r e s s u r e  is  always an  
o r d e r  of magni tude less t h a n  t h e  matter p r e s s u r e .  

I n  F i g u r e  4 w e  p l o t  t h e  t i m e  i n t e g r a l  o f  v a r i o u s  terms i n  
t h e  k-equa t ion  v s  t i m e  i n  zone 109. W e  see t h a t  t h e  dominant 
terms a r e  t h e  work term (cu rve  E )  and t h e  d i s s i p a t i o n  term 
(cu rve  C ) .  T h i s . r e d u c e s  t h e  complex i ty  o f  t h e  model and 
s u g g e s t s  t h a t  an  a n a l y t i c  s o l u t i o n  may be p o s s i b l e  i n  t h i s  
s i t u a t i o n .  I t  a l s o  l e a d s  t o  q u e s t i o n s  abou t  t h e  s e n s i t i v i t y  
o f  t h e  model t o  t h e  c o e f f i c i e n t  o f  t h e  work t e r m ,  C16, i n  
t h e  &-equation 

Rapid D i s t o r t i o n  Theory s u g g e s t s  t h a t  C16 = 2 .  F i g u r e  5 
shows k and E v s  t i m e  i n  zone 109 f o r  C16 = 1, 2 and 4 .  
From k and  E a r e  d e r i v e d  a t i m e  scale, k/& and a l e n g t h  
s c a l e ,  k1-5 /& and t h e s e  q u a n t i t i e s  a r e  p l o t t e d  v s  t i m e  i n  
F i g s .  6 and 7 .  

F i g u r e  6 shows t h e  t i m e - s c a l e  v s  t i m e .  I f  w e  t h i n k a o f  k/& 
a s  t h e  age  of  t h e  t u r b u l e n c e ,  t h e n  w e  e x p e c t  t h e  pas sage  of 
a shock t o  c r e a t e  new (young) t u r b u l e n c e .  F i g u r e  6 t h u s  
s u g g e s t s  t h a t  a v a l u e  f o r  C16 g r e a t e r  t h a n  1 i s  c a l l e d  f o r .  

F i g u r e  7 shows t h e  t u r b u l e n t  l e n g t h - s c a l e .  The r a p i d  
p a s s a g e  o f  a shock cannot  c r e a t e  new, l a r g e - s c a l e  t u r b u l e n c e  
immediate ly .  I n  f a c t ,  t h e  shock p robab ly  c r e a t e s  new, 
s m a l l - s c a l e  t u r b u l e n c e  and compresses  t h e  e x i s t i n g  
t u r b u l e n c e  by t h e  compression r a t i o  o f  t h e  shock.  For  t h e  
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16O wedge, t h e  normal compression i s  2.1, and  F i g u r e  7 
s u g g e s t s  t h a t  a  c h o i c e  o f  2 f o r  C16 is  n o t  unreasonable .  

F i g u r e  8 shows k and E v s  t i m e  i n  zone 109 f o r  t h e  16' wedge 
(dashed l i n e )  and f o r  t h e  8' wedge ( s o l i d  l i n e ) .  For  t h e s e  

model pa rame te r s ,  w e  see no growth i n  t h e  8 O  wedge c a s e  
which seems t o  a g r e e  w i t h  exper iment .  
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Figure  9 shows k, PT and  QT vs t i m e  i n  zone 109 f o r  t h e  16' 
wedge (PT and  QT have bo th  been  m u l t i p l i e d  by 1 0 0 ) .  W e  see 
t h a t  t h e  p r o c e s s  of  t u r b u l e n t  ene rgy  g e n e r a t i o n  i s  i n i t i a t e d  
by an almost  d e l t a - f u n c t i o n  QT. 
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From t h e  numer ica l  s o l u t i o n s  w e  see t h a t  t h e  dominant terms 
a r e  t u r b u l e n t  work, d i s s i p a t i o n ,  and t h e  t i m e  d e r i v a t i v e .  
Ignor ing  o t h e r  terms, t h e  e q u a t i o n s  become 

dk - ~ k + ~ k ~ / c - D &  
dt 

and  t h e  r a t i o  produces  a n  homogeneous e q u a t i o n  of  degree  3. 
We change v a r i a b l e s ,  k = x: and  o b t a i n  

de - -- (y + a z  - pz)dz 
E p y ) r  + (A - a)z2 - (B - p)z3 
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where 

F o r  commonly u s e d  model c o n s t a n t s  (C1 = 0.125,  C5 = 1.833, 
C13 = 0.7 ,  C16 = 2 )  t h e  t h r e e  e x p o n e n t s  e v a l u a t e  t o  
E2 = -2.2, E3 = -0 .1 ,  E4 = -1 .6  a n d  f o r  l a r g e  z, w e  t h u s  
e x p e c t  t o  f i n d  E - 2-2 a n d  k  - z-1 

The e q u a t i o n  f o r  &/E i s  s i n g u l a r  a n d  w e  examine t h e  
b e h a v i o r  i n  t h i s  r e g i o n .  S e t t i n g  t h e  denomina to r  t o  z e r o  
and  s u b s t i t u t i n g ,  w e  h a v e  

F o r  t h e  above  model c o n s t a n t s ,  t h i s  r e s u l t s  i n  

I n  a  shock ,  o (=au /a r  0  a n d  s o  mc -1 a n d  zc t h u s  
c o r r e s p o n d s  t o  t h e  t i m e  scale o f  t h e  s h o c k .  E s t i m a t i n g  o 
from t h e  e x p e r i m e n t ,  f o r  t h e  16' wedge, 

which g i v e s  a t i m e  scale be tween  6 . 6 ~ 1 0 - 6  a n d  33x10-6 sec, 
which is less t h a n  t h e  FWHM o f  4 x 1 0 4  sec o b s e r v e d  by  S&M 
b u t  it is  much g r e a t e r  t h a n  t h e  t i m e  scale a s s o c i a t e d  w i t h  a  
c l a s s i c a l  n o n t u r b u l e n t  shock .  The c o l l i s i o n a l  mean-free-  
p a t h  i n  a i r  i s  a b o u t  10-7 m a n d  i f  t h e  shock s p e e d  is  300 
m / s ,  t h e  c h a r a c t e r i s t i c  c l a s s i c a l  shock  t i m e  i s  a b o u t  3x10- 
1 0  sec. Thus t h e  s i m p l i f i e d  model p r e d i c t s  a  b r o a d e n i n g  o f  
t h e  shock  wave d u e  t o  t u r b u l e n c e  b y  a f a c t o r  o f  105  o r  more. 

Thanks, a n d  happy a n n i v e r s a r y ,  Chuck. 

F o r  t h e  16' w e  t a k e  y = 1 . 2 2  a n d  a shock a n g l e ,  o = 33.0'. 
From t h e s e  w e  have  a normal  Mach number Mln = 1.55,  p2 = 

2.107p1, p2 = 2 . 5 3 9 ~ 1 .  S&M p r o v i d e  ups t ream c o n d i t i o n s  of 
s t a g n a t i o n  p r e s s u r e  = 6.  9x105~/m2 = 6. gatm, Mach number = 
2.85,  r e f e r e n c e  v e l o c i t y  = V 1  = 576m/s. These c o n d i t i o n s  
a n d  gamma p r o v i d e  p 1  = 1.174atm, p 1  = 3.45e-3 a n d  V l n  = 



314m/s.For the shocked gas, p2 = 2.9808atm1 p2 = 7.269e- 
3g/cc and Vzn = 149m/s. 

To simulate this situation on a Lagrangian code, we subtract 
Vln from all velocities so that the shock is moving into 
quiet turbulent gas. With U = V - Vln , we have ul = 0, u2 
= -165, and the shock speed is S = p2u2/ (p2-pl) = 314. 

The 8' wedge has a somewhat ambiguous shock angle. We 
somewhat arbitrarily choose Mln = 1.1 which then gives a 
shock angle of 22.7'. For EOS purposes, we choose y = 1.22. 
The upstream conditions are: p1 = 1.174atmr p1 = 3.45e- 
3g/cc and Vln = 222m/s. The jump conditions are: p2 = 

1.185p1, p2 = 1.231~1. For the shocked gas, p2 = 1.445atmI 
p2 = 4.088e-3 and V2n = 187. Subtracting, u2 = V2* - Vln = 

-34.6, and we have a shock ve1ocity"of 222m/s. 
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A Numerical Study of Inviscid, Supersonic Mixing Layers' 

S c o t t  E b e r h a r d t , '  J a m e s  J. R.iley? M o e l j o  ~ o e t r i s n o , i  and J e f f r e y  A.  ~ r e e n o u ~ h n  
University of Washington, Seattle, Washington 

A b s t r a c t  

T h e  purpose of this research is to  understand the  physical processes associated with turbulent  mixing in supersonic 

shear layers. Specifically, the evolution of instabilities in  two and three-dimensional, confined and unconfined, 

temporal shear layers a re  studied. Both linear stability theory and  direct numerical simulation are used. For 

the two-dimensional, supersonic, confined layer, two distinct modes of instability are found, a symmetric and  an 

asymmetric mode. In both cases the  instability grows nonlinearly with large amplitude disturbances t h a t  never roll 

u p  like the classical Kelvin-Helmholtc instability. Another mode of instability is found for the confined, transonic 

layer where a higher mode is excited from a nonlinear interaction of the walls with the fundamental mode. T h e  most 

unstable modes for the  three-dimensional layer a t  supersonic relative Mach numbers is purely three-dimensional, i.e. 

oblique to the flow direction. 

I n t r o d u c t i o n  

Efficient sopersonic mixing is a key requirement in the  development of supersonic combustion ramjets (Scramjets). 

To date,  very little is understood about  supersonic mixing except t h a t  supersonic flows a re  more stable than their 

subsonic counterparts. Only by understanding these flows can we expect t o  devise techniques t o  enhance the  mixing in 

a supersonic mixing layer. In this s tudy,  a n  a t tempt  is made  t o  understand the  behavior of two and three-dimensional 

supersonic shear layers. 

Subsonic shear layers have been the  focus of at tention for many years. In 1974 a fundamental  break-through was 

made when Brown and  Roshko[l] discovered t h a t  t h e  layer is partially composed of discrete, quasi-two-dimensional, 

organized structures. These structures a re  large a n d  roll u p  in  a coherent manner. Winant  a n d  Browand[2], also in 

1974, showed tha t  the  growth of t h e  layer is governed by t h e  pairing mechanism of these structures. 

W h a t  little tha t  is  known about  supersonic shear layers has been learned in the  last few years, particularly 

regarding the relationship of Mach number t o  growth. Brown and  Roshko[l] showed t h a t  slower growth of supersonic 

mixing layers is not due t o  density effects alone, a departure from previous theories. Papamoschou and  Roshko[3] 

introduced a "convective" Mach number,  obtained by treat ing braids as stagnation points in the transverse flow, 

and found that  compressibility effects dominate only above convective Mach numbers of a b o u t  one. This  result is 

a t  first startling since i t  implies t h a t  only the relative Mach number of the  two layers determines the growth rate. 

However, if one does a Galilean transformation t o  follow t h e  vortex structures a t  their average speed the relationship 

to  convective Mach number makes more sense. 

In the case of the confined mixing layer no experimental studies have been performed t o  correlate confinement 

with shear-layer growth. On the theoretical side, T a m  a n d  Wu[4] recently reported on the linear stability of confined, 
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f Assistant Professor, Department of Aeronautics and Astronautics. 
f Professor, Deportment of Mechanical Engineering. 
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!Graduate Rcsenrch Assistant, Department of Applied Mathematics 



three-dimensional, spatially developing shear layers. His conclusions are t h a t  in a confined layer reflected Mach waves 

can interact such that  perturbation growth is reinforced. An interpretation of this is tha t  pressure fluctuations can 

be brought out of phase with the disturbance, as is natural  in subsonic flows, if the reflected pressure waves are out  

of phase. This interesting result is also found in this s tudy and is reported in Greenough, e t  al.[5]. 

T h e  Galilean transformation into a moving frame of reference can be a convenient tool. Then ,  the time history 

of a single structure can be traced from its creation (see fig. 1). If one simplifies further and  assumes the  structure 

is periodic, i.e. it  exists in equal magnitude ahead and behind, then the problem reverts to  t h a t  of a temporally 

growing shear layer. The  temporal shear layer is much simpler to  s tudy since boundary conditions are simplified and 

computational requirements are reduced significantly. In this s tudy the two and three-dimensional temporal shear 

layers are studied in both subsonic and supersonic flows. 

Linear stability analysis for the two-dimensional, unbounded inviscid, compressible, vortex sheet has been studied 

by Landau[G], Hatanaka[7], and Pai[8]. All three arrived a t  the important  result tha t ,  for identical streams of fluid, 

the layer would remain stable above a relative Mach number of d. Note tha t  this Mach number is the Mach number 

difference across the layer, which implies that  the streams have a Mach number of -+A. This is in contrast to  the 

convective Mach number which, for identical gases in both streams, is one-half of the relative Mach number. Miles[9] 

confirmed the result and ,  by solving the eigenvalue problem, found tha t  below A4 = d there is a t  most one unstable 

mode. Extensions to continuous velocity profiles have been made by Blumen[lO], Blumen et d . [ l l ] ,  and Drazin et 

a1.[12]. The  three papers introduce three modes of instability, the first corresponding to Miles result. A second 

instability appears which is actually a pair of modes with equal and opposite signed phase speeds. This  instability, 

however, is a n  order-of-magnitude smaller than the first. T h e  paper by Drazin et al. identifies yet a third instability 

which provides a cornplicated picture of stability of the unbounded mixing layer. The important  result, however, is 

tha t  for any  Mach number there exists unstable modes, although their growth rates may be extremely small. 

Linear stability analysis and direct simulations of the Euler equations are both used to investigate compressibility 

effects on shear layers. The  stability analysis is used as a guide to the types of instabilities possible, their initial 

characteristics, etc . ,  to provide comparisons for initial linear growth rates and  to provide appropriate eigenfunctions 

for starting the nonlinear, numerical simulations of the confined layers. The  direct numerical simulations give the 

nonlinear development after the initial linear growth. The  simulations are performed for both the bounded and the 

unbounded case. 

D i s c u s s i o n  

The  numerical simulations make use of the two or three-dimensional, non-steady Euler equations governing the 

motion of inviscid, non heat-conducting gases. The  two-dimensional Euler equations in cartesian coordinates are 

written 

where. 



where, r is the  internal energy per unit mass, e is the  total  energy per unit volume and the  pressure p is determined 

from the Equation of S ta te  

p = (7 - 1)  e - - p ( u z  + v Z )  . ( : ) 
In three-dimensions a z-component is added to  the  fluxes a n d  a fifth, 2-momentum, equation is added. 

T h e  equations a re  normalized, a s  in Soetrisno e t  al.[13], for simplification and  lead t o  new variables defined by 

. z  
Z = -  Y * P 

y = -  p = -  
8 e Pm 

* U 
U = -  * v 

V = -  P P* = - 
cm cm pm CL 

* e e =-  t t' = - 
pm c& - c- 

2 ii 
= 1:' 121 (l  - d~ 

M =  m - d @ = 3  
Cm c, 

where M is the  Mach number difference between t h e  two stream, c is the sonic velocity a n d  8 is here taken to  be 

the momentum thickness of the initial mixing layer. ii is the  averaged streamwise velocity. Since the two streams 

are identical gases, the  ( ), values can be taken from either stream. Hereafter the  superscript ( I )  is dropped, and 

all variables used are assumed to be nondimensionalized variables. 

Numerical Method 

Studies of the large scale s tructure evolution in free-shear flows require a robust scheme with minimal diffusion. The 

Euler equations are cast in conservation law form so  tha t  any  shock waves a n d  contact  surfaces are captured a s  part 

of the  solution without special t reatment.  This  work follows t h a t  of Soetrisno e t  al.[13] where the Yee, Warming 

and  Harten[l.i] second-order, total variation diminishing ( T V D )  algorithm is used. T h e  scheme is total variation 

diminishing in the nonlinear scalar and  constant coefficient system cases, consistent with entropy inequality, and 

consistent with conservation laws. Since it is T V D ,  the  algorithm guarantees no t  to  generate spurious oscillations. 

T h e  only difference between this work and Soetrisno et. al.[13] is t h a t  a Cartesian form of the algorithm is used 

in this study. An explicit scheme is chosen to  resolve the  t ime  evolution of the  large scales in turbulent flow fields. 

A CFL number of 0.2 is used to  insure numerical stability a n d  t o  resolve the  t ime evolution. T h e  Yee, Warming 

and  Harten scheme is second-order accurate in  space a n d  second-order accuracy for the  t ime integration is obtained 

using a second-order Runge-Kutta method. 

Note t h a t  during t h e  course of the study comparisons have been made with spectral numerical calculations for 

shock-free flows and  the results were nearly identical. Also, grid refinement studies for t h e  temporal shear layer 

showed consistent results for grid resolutions 64 X 64 or greater. Comparisons of linear growth rates predicted from 

the simulations agree within a few percent to  the linear stability analysis also adding to  our  confidence. Higher-order 

schemes are being studied to  ensure t h a t  diffusion a n d  dispersion are minimized, although we d o  not think tha t  these 

factors have significant bearing on this particular study. 

One reason for retaining the second-order T V D  algorithm over the others we have tried is i t s  efficiency. By solving 

the  two-dimensional Euler equations in cartesian coordinates, rather t h a n  generalized coordinates, the memory 

requirement is reduced t o  8 pieces of d a t a  and  297 calculations per grid point. Larger simulations are possible on 

our limited computational resources by using this efficient algorithm. 



T h e  mean flow for the two-dimensional simulations is initialised with the  following properties, 

where B is the initial momentum thickness. T h e  stagnation energy per unit volume, e ,  is calculated from p, p and U. 

No three-dimensional simulations have been completed t o  date.  

The  initial perturbation functions used for the confined layer are obtained from the linear stability solutions. The 

following section outlines the linear stability theory which is used to predict initial growth rates and to determine 

the correct, unstable, perturbation function. In general, the  most unstable eigenfunction solution of the Rayleigh 

equation, together with the first subharmonic of this mode, a re  superimposed on the mean velocity profile. 

L i n e a r  S t a b i l i t y  A n a l y s i s  

The linear stability analysis applied t o  the bounded, temporal layer is discussed in a paper by Greenough et a1.[5]. 

Briefly, the continuous profile problem is solved for flow in  a channel. The  fluid is assumed to  be inviscid, non heat- 

conducting, and adiabatic. The  equations solved are thus  the  Euler equations given above except that  the  equation 

of s tate and energy are replaced by the isentropic relation 

- P = cons tan t  
P' 

The uniform flow conditions are perturbed and substituted into the governing equations. Linearizing these equations 

and assuming a normal mode formulation gives a system representing a nonlinear eigenvalue problem. The  eigenvalue 

is the complex phase speed, c t  = c, + ic,. T h e  problem is solved with a fourth-order Runge-Kutta shooting method 

coupled with a Newton-Raphson iteration. This  procedure gives the flow field perturbations for both the two and 

three-dimensional simulations. 

Perturbations for the two-dimensional, unbounded layer are of the form 

U: = Aluj (y) cos [ k  (X + 8)) + A2u. (y) COS 
( 3 x 1  

where 2 x l k  is the wavelength of the fundamental mode, B is is the phase shift between the fundamental and subhar- 

monic modes, uj  and  U, are chosen as the  most unstable eigenfunctions for the  given wavenumber and normalized to 

a maximum value of 1. A I  and AI are  the  amplitudes of oscillation of the  harmonics. These are chosen so tha t  the 

disurbance is 1% of the mean flow energy for the numerical simulations when used to  compare with the Linear analysis 

and is 10% when the simulations are used to  explore the nonlinear behavior. T h e  fundamental mode wavelength, the 

wavenumber, k ,  and the amplitudes are given as solutions to  the eigenvalue problem for the stability theory The 

wave number chosen can be the one found by the eigenvalue problem for fastest intial growth,  or any other wave 

number (e.g. 1) of interest. 

2D R e s u l t s  - U n b o u n d e d  

Numerous numerical simulations of the unbounded shear layer have been performed. hluch of this work was recently 

presented in a paper by Soetrisno et a1.[13]. Figure 2 shows the predicted growth rate of the unbounded shear layer 

as a function of relative Mach number for a fixed wavelength. As predicted by Miles[9] the layer is stable above a 

relative Mach number of d. Figure 3 is a contour plot of spanwise vorticity after pairing for a A i  = 0.5 layer. The 

behavior of the vortices is essentially the same as for the  incompressible, unbounded layer. 



The higher Mach number cases, however, show quite different results. Soetrisno performed calculations for many 

relative Mach numbers and  found tha t ,  a s  the  relative Mach number increases, the  vortices become more elongated 

along the streamwise axis. Figure 4 shows the vorticity contours for a simulation a t  a relative Mach number of 2.25. 

The layer evenually rolls u p  but  a t  a much slower rate than the  lower Mach numbers. In Soetrisno's calculations the 

g o w t h  stops for layers with relative Mach numbers of about  4 and above. 

2D R e s u l t s  - B o u n d e d  

The  two-dimensional, bounded shear layer has introduced several interesting features not  found in the  unbounded 

case. In particular, additional unstable modes appear with relative Mach numbers above about  2.  We call these 

modes "wall modesn and  they have also been identified in a paper by T a m  and  Wu[4] for the  three-dimensional 

spatially developing shear layer. 

All the calculations presented in this paper on the  two-dimensional, confined shear layer have a channel half-width 

20 times the initial momentum thickness, i.e. 2d lB  = 40. Only symmetric channels, where the channel half-width 

above and below are equal, are presented here. (Results for asymmetric channels can be found in Greenough e t  a1.[5]) 

The  growth rates a s  a function of relative Mach number, with streamwise wavenumber k = 1, are shown in fig. 

5. The  most striking result is the additional peaks above a relative Mach number of 2. T h e  series of peaks represent 

a reinforcing Mach wave system created by the  initial perturbation. These Mach waves reflect off the walls and  then 

interact with the perturbation to  produce an instability. 

Each of the peaks can be characterized a s  being either symmetric or asymmetric disturbances, where symmetry 

pertains to  the magnitude of the pressure eigenfuction a b o u t  the flow centerline. Also it should be noted tha t  

symmetry implies a zero real phase speed, i.e. there is no oscillation in time associated with the exponential linear 

growth. T h e  asymmetric modes, therefore, travel in t ime since they have non zero real phase speed. W i t h  k = 1 

fixed, both symmetric a n d  asymmetric modes exist as  alternating peaks beginning with the  symmetric modes a t  the 

lowest Mach number. For symmetric channels, if only the  most unstable disturbances for each Mach number are 

considered, the symmetric perturbations are t h e  important  ones. But ,  for a fixed wavenumber, k ,  there are some 

Mach numbers where t h e  Mach wave system travels in order to  give instability. 

T h e  direct numerical simulations have been performed on  a variety of cases. However only three Mach numbers 

are considered here. Each case is for k = 1 and  t h e  predicted growth rates a re  shown on  fig. 5 .  T h e  first simulation 

is for a relative Mach number 1.5. We call this a transonic convective Mach number case. T h e  transonic convective 

Mach number occurs when each stream is subsonic but  is accelerated t o  supersonic speeds a s  the layer rolls up. 

Figure 6 shows the  calculation during the  nonlinear growth period. The  layer is excited with only the fundamental 

mode, k = 1, yet a triplet of vortices begins t o  grow quickly. Spectral analysis shows t h a t  the three mode ( k  = 3)  

has been highly excited. This is a nonlinear self-excitation of the three mode and may provide interesting avenues 

of further study. These vortices ultimately aglomerate a n d  the  fundamental mode dominates. Clearly, there is an 

atypical energy cascade, with respect to  incompressible temporal mixing layers, in t h a t  energy is seen to  flow to 

small scales and  then back t o  large scales. Note t h a t  since each stream is initially subsonic we believe the  roll u p  is 

Kelvin-Helmholtz in nature instead of a wall-mode t h a t  relies on  a system of Mach waves. 

T h e  cases for supersonic convective Mach numbers illustrate the physical significance of both symmetric and 

asymmetric disturbance wall modes. Figure 7 is a Mach 2.9 numerical simulation of a n  asymmetric mode a n d  fig. 8 

is a Mach 4.975 simulation of a symmetric mode. T h e  basic evolution of the  two types of modes is the same except 

tha t  the asymmetric mode has a standing wave character in  addition to  t h e  growth. T h e  initial layer is seen to 

develop into a sawtooth-like pat tern which ultimately fills the channel. There is no roll u p  behavior t h a t  we can 



detect. Since the streams are supersonic shock waves form due to the flow deviation. In the hiach 4.975 case, these 

shock waves s ta r t  obliquely and then become stronger as the layer grows. Eventually they become normal shocks a t  

which time they dramatically pinch the layer which then proceeds to grow quickly 180' out  of phase. At this time 

we are still unsure of why this unusual situation occurs. 

3D Results 

Linear stability analysis and direct simulations have also been performed for three-dimensional shear layers. There is 

significant doubt  in the  community t h a t  the large scale structures in a three-dimensional compressible shear layer are 

two-dimensional as in the incompressible counterpart .  However, a Squire's theorem analogy for compressible flows 

can be  made which says tha t  any three-dimensional instability can be obtained from a two-dimensional problem a t  

a reduced Mach number.  The  details of this analogy and  its consequences are given in Greenough e t  a1.[5]. The  

theorem says tha t  an instability in three-dimensional flow oriented a t  angle 9 in wave space from the streamwise, 

k ,  direction can be solved as a corresponding two-dimensional problem a t  Mach number Af cos@. Or ,  conversely, 

the two-dimensional problem can be solved and applied to any three-dimensional field by computing 0 and  using an 

inverse transformation. This result can be conveniently used when solving the three-dimensional eigenvalue problern. 

The  results tha t  illustrate and justify this approach will now be discussed. 

Figure 9 is a contour plot of growth rates in k ,  I wavenumber space at  hlach 0.5 for a bounded shear layer, where 

k is the streamwise wave number and 1 is the spanwise wave number. In this figure it is clear t h a t  the maximum 

growth rate occurs on the k axis which signifies that  the primary instability is two-dimensional in nature. Thus  wr 

find that  the compressible, but subsonic, case is similar to the incompressible case in how it transitions t o  turbulence. 

Figure 10 is a contour plot for the Mach 1.5 confined, temporal layer. The  peak has moved off of the  k axis. 

This means that  the primary instability leading to growth in a three-dimensional, supersonic shear layer is truely 

three-dimensional in nature.  The  peak, in fact, moves off of the k axis when the relative Mach number first becomes 

supersonic. This instability has the characteristics of a Kelvin-Helmholte instability. 

Lastly, fig. 11 shows yet a higher Mach number, well above the unbounded, twedimensional  limit of d. This 

result a t  M = 2.975 shows that  the maximum growth rate has moved significantly off the k axis. The  fastest growing 

disturbance is now very oblique to the main, streamwise direction. The  interesting feature t o  note in this plot are 

the regions of zero growth and the additional, local maximums a t  higher wave numbers in k. These correspond 

t o  the wall modes shown in the two-dimensional analysis. These wall modes have growth rates t h a t  a re  smaller in 

magnitude yet still of the same order as the fastest growing disturbances, which are Kelvin-Helmholtz a t  oblique 

angles. Therefore, in the three-dimensional layer wall modes should be explored since they might have interesting 

consequences. 

C o n c l u s i o n s  

Many new ideas and  new presentations of old ideas have been presented in this paper.  First ,  in the two-dimensional 

mixing layer some interesting, unexpected results are found. The  transonic simulation shows self-excitation of the 

third harmonic and atypical energy tranfer. The  "wall-modes," also found by T a m  and Wu[4], have some fascinating 

features when they become nonlinear. T h e  instabilities grow to  fill the channel width but  never give any  indication 

tha t  they will roll up. The "wall-modes" are either asymmetric, which gives a non zero phase speed, or symmetric, 

which gives zero phase speed for ccrtain modes (e.g.  k = 1) but  are always symmetric when k = kmaz, i.e. the wave 

number for maximum growth is used. In all cases the nonlinear simulations reproduce the  linear results exactly but 



develop the tnore interesting features during the nonlinear growth period. 

The three-dimensional, linear stability analysis demonstrates tha t  the primary instabilities are indeed three- 

dimensional for supersonic shear layers. These primary instabilities are of the  Kelvin-Helmholte type. In addition, 

the "wall-modes" appear as both two and  three-dimensional instabilities. 

The  results shown in this paper a re  only a few of the  cases run a t  the  University of Washington. These specific 

cases are the most interesting and101 show the most typical characteristics of the problems tested. Numerical 

solutions of three-dimensional shear layers a re  important  for studying the  nonlinear growth of a layer after its initial 

linear growth. 
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Fig. 1. Relationship of spatial and temporal shear layers. 

Fig. 2. Growth rate verses Mach number for 
unbounded vortex sheet. 

Fig. 4. Vorticity contours for relative Mach num- 
ber 2.25 a t  T = 22.5 for the unbounded tem- 
poral shear layer. 

Fig. 3. Vorticity contours for relative Mach num- 
ber 0.5 a t  T = 22.5 for the unbounded tem- 
poral shear layer. 

W - calculations 

L 

Fig. 5. Growth rate verses Mach number for a 
symmetric channel with = 40. 



Fig. 6. Vorticity contours of bounded layer at M = 1.5 showing "three-mode" instability. 

Fig. 7. Vorticity contours of bounded layer at M = 2.9 showing the growth of an asymmetric wall mode. 

Fig. 8. Vorticity contours of bounded layer at M = 4.975 showing the growth of a symmetric wall mode 
just as the shock waves pinch the layer. 



Fig. 9. Growth rate contours in k - l space at 
relative Mach number 0.5. 

Fig. 10. Growth rate contours in k - 1 space at 
relative Mach number 1.5. 

Fig. 11. Growth rate contours in k - l space at 
relative Mach number 2.975. 
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I. Introduction 

Previous experimental and theoretical studies have shown that unstable subsonic shear 

layers evolve into a pattern of large-scale vortices which engulf fluid as they rotate in the flow 

field. In many cases, these large vortices break down even further due to conditions in the 

flow that allow new instabilities to develop. This convective mixing process is particularly 

important in combustors in which ignition of the premixed gases depends upon adequate 

mixing of the hot and cold fluids. In supersonic mixing layers, the structure of the shear layer 

can resemble what we see in subsonic mixing layers if the relative Mach number between the 

two layers is subsonic. However, the presence of shock waves may have a significant effect on 

the vortices and on the large-scale mixing process. 

Both experimental and numerical studies on the effect of a shock on the mixing process 

have been conducted previously. Andronov et al. (1,2) measured the turbulent mixing zone 

between two gases of different density and showed that the width of the mixing zone increases 

rapidly after the passage of a shock. Numerical simulations of a shock passing over a single 

low-density bubble (3) show that vorticity is generated at the boundary of the bubble and 

rolls up into a vortex filament pair. This agrees with experimental observations of a shock 

wave interacting with a flame (4) and with a gas inhomogeneity (5). Passot and Pouquet 

simulated a shock passing through a turbulent field and suggest that the individual vortices 

may be flattened by the shocks, vortices may be formed behind the shock, or vortices may be 

formed in strong colliding shocks (6). 

In this paper, we present numerical simulations of a single element of the mixing process: 

the interactions between a shock and a single vortex representative of those found in mixing 

layers. The effects on two vortices of different strengths will be examined. 

11. Numerical Model and Method 

* Berkeley Research Associates, Springfield, VA 



These equations are solved assuming that the gases obey the thermal equation of state, 

and that the relation between internal energy, e, and pressure, P ,  is given by 

This set of equations is rewritten in terms of finite-difference approximations on an Eu- 

lerian mesh. The solution to the convection of conserved quantities is obtained with the 

Flux-Corrected Transport (FCT) algorithm which is an explicit, finite-difference algorithm 

with fourth-order phase accuracy. FCT has been used extensively in supersonic flows, and has 

shown excellent agreement with theory and experiment (7). 

The geometry for the simulations is shown at the top of Figure 1. The inflow conditions 

on the left are determined from the normal shock relations. The top, bottom, and right 

boundaries are reflecting. In each simulation, the shock propagates from the left boundary to 

the right and then reflects off the wall. The shock Mach number is 1.5 and the pressure ratio 

across the shock is 2.45. The fluid velocity behind the shock is 236 m/s. 

A vortex is initialized on the left side of the computational domain. The velocity field 

consists of two regions: an inner region where the velocity is described by solid body rotation 

of the form 

and an outer region where the velocity decays to zero according to 

where v,,, is the maximum velocity, occuring at r = r l ,  and equals 10 m/s or 236 m/s for 

the two cases presented in this paper. Constants A and B are chosen such that the velocity 

matches that determined by equation 7 at r = r l  and decays to zero at r = r2. The inner 

radius, r l ,  equals 0.75 cm and the outer radius, r2, equals 1.75 cm. Test runs with different 

inner and outer radii did not reveal qualitatively different behavior. 

111. Results 

Weak Vortex 

Figure 1 shows a sequence of pressure and vorticity distributions for a shock with a 

pressure ratio of 2.45 passing over a vortex with v,,, = 10 m/s. The shock is not visibly 

deformed by the interaction at t = 0.06 ms, but the vorticity is significantly redistributed. 



The maximum vorticity has increased by a factor about 2.5 from its initial value at t = 0 to 

its value immediately after the shock interaction at t = 0.06 The vortex is compressed into an 

ellipse and is convected with the flow behind the shock until t = 0.26 m/s. The shock reflects 

off the right wall and passes over the vortex again at t = 0.29 ms, bringing the background 

flow velocity to zero and increasing the maximum vorticity by about 30%. The vortex then 

continues to rotate by stopes moving across the system. 

Figure 2a shows v, along the centerline of the domain. Initially, at  the centerline v, = 0 

and V, = v,,,. At t = 0.06 ms the shock is passing over the vortex and increases the 

maximum velocity to approximately 1.5 times v,,,. The line connecting v,,, with -v,,, 

remains straight during and after the shock passes indicating that the core is behaving as a 

rotating solid body with v proportional to r ,  but the inner radius has been decreased due 

to the compression of the vortex. The maximum velocity decays after the shock has passed 

and is approximately 1.2 times its original value. Figure 2b is the same as Figure 3a except 

that more time steps have been plotted. This clearly shows the initial amplification of the 

maximum velocity at t = 0.06 ms. Between 0.09 ms and 0.26 ms, the vortex is convected with 

the flow but the maximum velocity and the shape of the profile does not change. At t = 0.29 

ms, the reflected shock passes over the vortex a second time and the maximum (negative) 

velocity increases by a factor of 1.3 but rapidly decays. 

Very Strong Vortex 

The final simulation shows the interaction of a shock with a very strong vortex. In this 

case, the maximum rotational velocity of the vortex is equal to the velocity behind the shock. 

The pressure contours in Figure 3 show that the shock front is extremely distorted as it 

passes over the vortex at  t = 0.06 ms. The vortex is rotating in a counter-clockwise direction, 

and the local velocity is decreased which retards the shock propagation on the upper half of 

the vortex. The pressure difference across the shock increases in this region; and the shock 

velocity increases due to the change in local conditions, returning the shock to a nearly planar 

front at t = 0.15 ms. The reverse process occurs on the lower half of the vortex, where the 

shock is initially accelerated. Comparison with the first simulation indicates that the shock 

velocity has not been significantly affected by the interaction. The reflected shock is distorted 

somewhat when it passes over the vortex. 

The maximum vorticity increases again by a factor of approximately 2.5 after the shock 

passes the vortex at  t = 0.09 ms. The vortex is compressed into an ellipse and rotates about 

its axis until the shock passes it again at  t = 0.26 ms where there is another 60% increase in 

maximum vorticity. 

Figure 4 shows v, along the centerline of the domain for several timesteps during the 

simulation. At t = 0.06 ms, the maximum velocity has increased by a factor of 1.2 which 

is less than that observed for the weak vortex. The maximum velocity decays rapidly and 



then starts increasing again at t = 0.15 ms, but this is due to the rotation of the "elliptical" 

vortex. The velocity through the central core is linear with r, as for solid body rotation, but 

the velocity does not decrease as rapidly at t = 0.15 ms because the major axis of the ellipse 

is now aligned with the centerline and the fluid further from the center is moving faster. 

IV. Conclusions 

Our major conclusions are: 

1. A shock passing through a vortex increases the rotation rate of the vortex and affects the 

weaker vortex more than the stronger vortex. 

2. Either a strong or a weak vortex is compressed into an ellipse which then rotates about 

its central axis. 

3. The shock front itself is not distorted by a weak vortex and is only temporarily distorted 

by a very strong vortex. 
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Figure 1. Contours of pressure difference, (p - patm)/patrn, and vorticity (11s) for several 
time steps with v,,, = 10mls (continued on next page). 
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Figure 2a. v,/v,,, along centerline of domain for v,,, = 10 m/s a t  t = 0.0, 0.06, 0.15 
ms. 

Figure 2b. vy/vm,, along centerline of domain for v,,, = 10 m/s a t  several time steps. 
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time steps with v,,, = 236 m/s (continued on next page). 
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Figure 4. v,/v,,, along centerline of domain for v,,, = 236 m/s  a t  several time steps. 



MIXING PATTERNS AND THE GENERATION OF VORTICITY IN A 

DENSITY STRATIFIED SHEAR LAYER 

Ahmed F. Ghoniem and Anantha Krishnan 

Department of Mechanical Engineering 

Massachusetts Institute of Technology 

Cambridge, MA 02139 

ABSTRACT 

Numerical solutions of the unsteady inviscid, two-dimensional vorticity and 

mass conservation equations for an incompressible density-stratified flow in a 

Lagrangian, grid-free form are used to investigate the effects of vorticity 

generation due to baroclinicity on the development of the Kelvin-Helmholtz (K-H) 

instability beyond the linear range. Continuous, although sharply-decaying, density 

stratification is considered, and large overall density ratios are assumed. 

Solutions are also obtained for the corresponding linear stability problem and are 

used to complement the numerical solution within the initial stages of the 

instability. 

Results show that the generation of baroclinic vorticity due to the 

acceleration of fluid elements in a non-uniform density field imparts certain 

asymmetry on the structures that develop due to the K-H instability. This asymmetry 

is associated with the convective motion of the structure in the direction of the 

heavy fluid but towards the light fluid, and causes a bias in the composition of the 

fluid within the structure towards the light fluid. 

I. INTRODUCTION 

Density-stratified flows are of utmost importance fundamentally and in 

practical applications. Fundamentally, the presence of a density gradient in an 

otherwise incompressible flow is the first deviation from the incompressible, 

uniform-density limit. In this paper, we study the effect of density stratification 

on the growth of the Kelvin-Helmholtz instability in which the vorticity layer and 

the density gradient layer initially coincide and are of the same thickness. This 

flow is a good, while not perfect, model of a mixing layer, defined as a shear layer 

which exists between two streams of different fluids. For the purpose of studying 

these flows, we have developed a numerical scheme based on vortex methods to compute 

the generation and transport of vorticity and of a scalar, in this case the density, 

in the inviscid limit. The algorithm used to compute the transport of scalars is a 

grid-free Lagrangian method constructed on the basis of the relationship between the 

distortion of the flow map and the gradients of a passive scalar. 



We also present comparisons with the corresponding linear stability theory for 

small amplitude perturbations to: (1) provide preliminary information on the 

possible effects of baroclinic vorticity generation on the flows of interest; and, 

(2) obtain a rigorous check on the accuracy of the numerical methods by comparing 

their results on the growth of the perturbations to those obtained analytically. 

The accuracy of the results during the non-linear stages can only be ascertained by 

using numerical convergence criteria, i.e., refining the numerical parameters until 

the results are shown to be independent of the choice of these parameters. 

Experimental results are also used to validate the results of the numerical 

computations. 

11. FORMULATION AND NUMERICAL SCHEMES 

11.1. GoVnWING EQUATIONS 

The appropriate form of the governing equations when vortex methods are 

considered is the vorticity transport form. For an incompressible, inviscid, 

density-stratified flow in two dimensions, the governing equations can be written in 

the following form: 

where a = dwdt is the material acceleration, u = (u,v) is the velocity, u and v are 

defined in the X and y directions, respectively, X = (x,y) is the space coordinate, 

X and y are the stremise and cross-stream directions, respectively, d/dt = a/at + 
u V is the material, or Lagrangian derivative, V = (a/ax,a/ay), t is time, w k = V 

X u is the vorticity, p is the density, k is the unit vector in the direction normal 
2 to the X-y plane, and K = -1/2nr (-y,x), is the kernel of the Poisson equation, 

2 2 2  where r = X + y . 
Equation (1) is derived from the momentum equation: p a = -m. This allows the 

computation of the source term in the vorticity transport equation without 

explicitly computing the pressure. The velocity uw is solenoidal, V uw = 0, and 

is due to the vorticity distribution within the computational domain. To obtain the 

total velocity, u is complemented with another velocity component to satisfy the w 
boundary condition if the domain is not the free space, i.e., u = u + u and V u 

P '  
= 0 from incompressibility. This model implicitly assumes that the Mach number of 

the flow is very small and thus spatial pressure variations and density variations 

are uncoupled (see Rehm and Baum [l]). 

For the shear layer, the reference velocity is: U o =(U 1 2  -U )/2 where U1 and U2 

are the free-stream velocity in the high-speed and lar-speed sides, and the 



reference length is L. = ASP where AS is the vorticity thickness. We assume an 

infinite domain in the y-direction and apply periodic conditions in the X-direction. 

The potential component of the velocity, U due to these periodic boundaries is 
P' 

obtained by summing over the sister vortices outside the computational domain. 

11.2. THE VORTEX ELEMENT METHOD 

In the vortex method for an incompressible, uniform density flow, dw/dt = 0, 

the vorticity field is discretized into a number of vortex elements of finite and 

overlapping cores: 

2 where Ti = wih is the total circulation of an element, N is the total number of 

vortex elements, h is the average distance between the centers of neighboring 

elements in two principal directions, h2=h h d is the core radius of a vortex 
X Y' 

element, and f = 1/d2 f (r/i) is the core function. The importance of the core 

function in stabilizing vortex computations was realized, among others, by Chorin 

and Bernard [21 and was shown to be necessary for the convergence of the method by 

Hald [ 3 l and Beale and Majda [ 4 l .  
The accuracy of the discretization depends on: (1) the choice of the core 

function f; (2) the initial distribution of the particles that will be used to 

transport the vorticity; ( 3 )  the method of determining the initial values of values 

of wi or Tit i = 1, 2, ... , N; and, ( 4 )  the ratio of &/h. For details on the four 

points, see Ghoniem, Heidarinejad and Krishnan [51. 

The velocity field of a distribution of vortex elements is given by: 

where 

r where K6(x) = K(x) ~(r/d), and ~ ( r )  = 2n f(rr) rr drl. 

The generation of strong strain with the growth of perturbations into the non- 

linear stages increases the distance between neighboring elements, &X, beyond the 

"target" value of h. To avoid this problem, more elements are introduced in areas 

where 6x > Bh where f3 - 1.5, and the circulation of the original elements is locally 
redistributed among the newly introduced elements. The redistribution of circulation 

is accomplished by dividing the value of h2 of the original element equally among 

the newly generated elements and the original element. 

For consistency, and to satisfy the condition of conservation of vorticity, 
2 2 do/dt = 0, the value of li2 should also be adjusted so that the ratio of 6 /h is 

maintained constant in Equation (4). This helps minimize the numerical diffusion 



which may accumulate to unacceptable levels if the area on which the vorticity 

exists is allowed to grow beyond its original size. 

The numerical scheme is extended to the incompressible, density-stratified flow 

by allowing the strength of the vortex elements to change with time according to the 

source term in Equation (1). At each time step, and after vortex elements have been 

transported by the local velocity field, their strength, Ti(t), is updated according 

to the following equation: 

The material acceleration of an element is computed by numerically differentiating 

its velocity between two time steps, and the local value of the density gradient is 

computed using the transport element method. 

11.3. THE TRANSPORT EL- METHOD 

Given that p is a conserved scalar described by Equation (2), the equation 

governing the transport of its gradient g = Vp is: 

showing g changes due to the straining and rotation of the material lines by the 

local strain field and vorticity. If the material is exposed to a strong strain in 

the direction normal to the gradient, the value of g must increase by the same 

amount as the stretch in the material element. This can be seen by deriving an 

equation that governs g = I gJ .  To do this, Eq. (8) is expanded in terms of g n, 

implementing kinematical relations that describe the variations of n = g/g, the unit 

normal vector to the iso-scalar line. After some lengthy manipulations (see Ghoniem 

et a1 [ 6 ]  for details), we get: 

2 where hi = bli.bni, and bpi is the initial density variation across the line &li. 

&li, the length of the material element is given by bli(t) = ()(+1-)(..1)/2 and ni-li 
= 0. These relations can be used to construct a scheme which is compatible with the 

vortex method to compute the evolution of the density field. The density gradient 

field is discretized among a number of elements which are transported along particle 

paths while the gradients vary according to equation (9). Thus; 

Given the location and strength of the transport elements, the scalar concentration 

is computed by direct integration over the fields of the transport elements: 



where OiA(x) = (xty)/2nrL K(~/A). Note that this formulation is fully compatible 

with the vortex method since all the information needed to compute the scalar 

transport are already a part of the vortex computations, including all the 

expressions for the Green functions. For extended derivations, discussions and 

validations, see Ghoniem et al. [5,6]. 

111. NUMERICAL SIMULATION OF THE KELVIN-HELMHOLTZ INSTABILITY 

We have run computations for density ratio r = pl/p2 = 1, 2, 3, and 4. In all 
P 

cases, the high-density fluid is on top, in the fast stream, and the low density 

stream is on the bottom, the slow stream. All results were obtained with the shear 

layer initially perturbed at a wavelength A= 6.6 AS using a sinewave displacement of 

the vortex elements with an amplitude E = 0.01 X. This wavenumber is very close to 

the most unstable wavenumbers for all the density ratios considered. The initial 

vorticity and density distributions are Gaussians with standard deviation U = ASD. 

The results of the linear analysis for this problem are shown in Figures 1 and 

2. The linear growth rate of the shear layer as a function of the wavenumber is 

plotted in Figure 1 for different values of r . Figure 2 shows the phase velocity 
P 

as a function of wavenumber for the corresponding cases. The symbols shown in the 

two figures represent the results of numerical simulations. It is seen that the 

maximum growth rate in all the cases is almost independent of the density ratio. 

There is a small increase in the wavenumber of the most unstable mode with 

increasing density ratio. Moreover, perturbations with longer/shorter wavenumbers 

than that of the most unstable mode behave differently; they grow faster/slower as 

the density ratio increases. In Figure 2, we see that the phase velocity of the 

waves increases with density ratio. Thus, Kelvin-Helmholtz waves in a density 

stratified flow are dispersive, with longer waves propagating at higher phase 

speeds. 

Figures 3(a) and 4(a) show the location and velocity of all the transport 

elements used in the computations for r = 1 and 3 respectively and figures 3(b) and 
P 

4(b) show the corresponding streamlines. The non-dimensional times are t= 5.5, 16.5 

and 24.0. The growth of the initial vorticity perturbation leads to the roll-up of 

the vorticity layer into a coherent elliptical structure that entrains all the 

initial vorticity within the layer and, for r > 1, engulfs the newly generated 
P 

vorticity. Contrary to the case of r = 1, the vorticity generated by baroclinicity, 
P 

the only extra dynamic process in the density stratified flow, causes a definite 

asymmetry in the developing structures, and advances the structure at a finite 

velocity in the direction of the high-density stream. 

Now we turn our attention to the streamline plots shown in Figures 3(b) and 

4(b). A structure resembling a "catrs eye" forms due to the roll-up of the 

vorticity into a single coherent structure. The maximum volume of fluid entrained 



into the structure is reached with the maximum growth of the instability, around 

time t = 20 for the r = 1 case. Beyond this stage, fluid start to leak out of the 
P 

structure and join the original free streams. The total volume of fluid within the 

structure can be estimated by the value of the stream function at the core. The 

bounding streamline of the structure is set to zero in all the cases. At t=24, the 

values of the streamfunction at the core are 2.96 and 3.26 for r = l and 3 
P 

respectively. This clearly indicates the increase in total volumetric entrainment 

into the eddy with increasing density ratio. Also, the beginning of the collapse 

stage is delayed for the density stratified eddies. Thus, the vorticity generated 

due to acceleration, or inertia effects, results in the formation of a stronger eddy 

that can entrain more fluid and survive longer before it collapses and fluid starts 

to leak out in the flow direction. 

The distribution of vortex elements indicate that more light fluid is being 

entrained into the structure than heavy fluid, which is shown by the presence of a 

deeper tongue of lighter fluid than that of the heavy fluid. This asymmetric 

entrainment has been observed in experiments [ 7 ] .  We note that all these effects 

are dynamic consequences of the generation of vorticity by the baroclinic torque due 

to the interaction between the pressure field and the density gradient. Thus, we 

plot the contours for the light fluid concentration and the vorticity for the two 

cases in Figures 5 and 6 respectively. A clear picture of the asymmetric 

entrainment is depicted in the plots of the concentration contours showing how the 

motion of the eddy in the direction of the heavy fluid promotes the entrainment of 

more light fluid into the core of the eddy. 

The vorticity contours reveal that as the eddy grows, a layer of intense 

negative vorticity forms on the right side of the x(A/2,y,t) point while positive 

vorticity is forming on the left side of the same point. The negative vorticity is 

constantly being entrained into the core of the eddy while the positive vorticity 

forms a "wing" on the top side of the eddy. The positive vorticity concentrated on 

the top side of the eddy leads to a net positive velocity component at the center of 

the eddy. Notice that the vorticity intensity is increasing in the eddy core and 

this helps its coherence beyond the maximum entrainment stage. 

In summary, all representations of the flow indicate that: (1) the structure 

moves horizontally in the direction of the high density fluid attaining a constant 

velocity beyond the linear range. Meanwhile, it moves vertically towards the light 

fluid. By inspecting experimental data on a spatially-growing mixing layer, 

Dimotakis [ 7 ]  suggested the following formula for determining the structure 

velocity: 

where rU and S= l/r are the velocity ratio and density ratio across the layer, 
P 

respectively. This formula can be used to predict the structure velocity in a 

temporal frame of reference and the resulting expression is: 



The convective velocity of the structure in the temporal frame of reference is 

plotted as a function of s=l/r in Figure 7 using expression (13). The results of 
P 

the numerical simulations are represented by symbols. Dimotakis [ 7 ]  also obtained 

an empirical expression for the volumetric entrainment ratio as a function of the 

density ratio and the velocity ratio in a spatial shear layer. This expression is 

given as: 

E = slfl (1.0 + 0.68 (l - ru)/(l + ru)) ) v (14) 

'Ev' is defined as the ratio of volume of fluid entrained from the heavier top 

stream to that entrained from the lighter bottom stream. For a temporal shear layer 
the velocity ratio, rU is close to unity and the above expression is simplified as: 

E = s  1fl 
v (15) 

This expression is plotted as a function of s=l/r ..in Figure 8. The symbols 
P 

represent the entrainment ratio estimated from the numerical simulations at a non- 

dimensional time of 24.0. It is observed that the results of the numerical 

simulations compare very well with the empirical results of Dimotakis. 

The temporal picture of a mixing layer has been shown to be a good 

representation of the forced spatially-growing mixing layer, except for the fact 

that the latter exhibit one more mechanism of growth asymmetry. This mechanism is 

associated with the difference in velocity across the layer which again biases the 

growth towards the high speed stream. 

IV. CONCLUSIONS 

The Vortex-Transport element method has been used to study the development of 

the K-H instabiliity in a density stratified shear flow. The results obtained are 

validated using the linear theory in the initial stage of the growth of the 

perturbation and comparisons with experimental and theoretical work are used to 

support the results in the non-linear regime. The generation of vorticity due to 

baroclinicity in a density stratified temporal shear layer leads to the asymmetric 

development of the large scale structure and simultaneously imparts an extra 

convective velocity to the eddy in the direction of the heavier stream. The 

entrainment ratio and the convection velocity of the eddy calculated from the 

numerical simulations compare well with experimental results. Since the entrainment 

ratio is found to be a strong function of the density ratio, the effect of 

baroclinicity becomes very important in studying and understanding chemical 

reactions occuring in flows dominated by large scale structures. These structures 

serve to entrain the reactants and bring them into contact with each other thus 

promoting mixing and hence the reaction. Therefore the relative entrainment of the 

respective fluids will have an important effect on the reaction. 
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Figure 1. Plot of linear growth rate versus the wavenumber for the K-H instability. 
Curves 1, 2, 3 and 4 represent values of r = 1, 2 ,  3 and 4 respectively. The 
symbols represent results of numerical simulatfon. 
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Figure 2. Plot of real part of the phase velocity versus the wavenumber for the K-H 
instability. Curves 1, 2 and 3 represent values of r = 2, 3 and 4 respectively. The 
symbols are the results of numerical simulation. P 
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Figure 3. (a) Transport element location and velocity vectors for the K-H 
instability for r = l at t-5.5, 16.5 and 24.0 respectively. (b) the streamline 
plots corre~~ondi8~ to the case in (a). 
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Figure 4. (a) Transport element location and velocity vectors for r = 3 at t= 5.5, 
16.5 and 24.0 respectively. (b) the streamlines corresponding to the ease in (a). 



Figure 5. (a) The light fluid concentration (or normalised temperature) contours for 
r = 1 at t= 5.5, 16.5 and 24.0. (b) the corresponding vorticity contours. 

P 



Figure 6. (a) The light fluid concentration contours for r = 3 at t= 5.5, 16.5 and 
24.0 (b) the corresponding vorticity contours ( the d8shed contours represent 
positive vorticity and the continuous contours the negative vorticity). 
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Figure 7. Plot of eddy convective velocity versus S= l/r . The symbols represent 
results of numerical simulation. P 

Figure 8. Plot of entrainment ratio versus S= l/r . The symbols represent results 
of numerical simulation. P 
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Abstract 

We describe a series of numerical simulations of a confined axisymmetric jet in which the inflow 

Mach number is varied, but the geometry and properties of the gas are held fixed. Of particular 
interest is how the acoustic-vortex interactions change as the inflow velocity varies from 50 to 300 m/s, 

corresponding to Mach numbers from 0.15 to close to one. When the velocity is increased, the natural 

instability frequency of the shear layer increases. If the gas properties and the geometry of the system 

are fixed, the acoustic frequencies remain essentially the same. Thus by varying the inflow velocity, 

we can examine the coupling between the acoustics and the flow instabilities. We find that when a 

dominant acoustic frequency is near the natural instability frequency, the shear layer first rolls up at 
the acoustic frequency. However, when these frequencies are very different, the shear layer rolls up at 

the natural instability frequency. In all cases, the acoustic frequencies strongly affect the downstream 
vortex mergings. 

Introduction 

A characteristic feature of the geometric configuration of many propulsion systems is an abrupt 
increase in cross-sectional area. The flow separates at this location and the separated shear layer is 

usually turbulent. Such transitional shear layers are characterized by large-scale coherent vortical struc- 
tures. Interactions among these structures can generate acoustic waves, and the interactions themselves 

can be affected by the acoustic waves imposed on the system by, for example, the geometry or outside 
driving. 

The geometry we are considering is shown in Figure 1. A premixed gas flows through a cylindrical 

inlet into a chamber of larger diameter, and then exits through a choked nozzle at which the the flow 

becomes sonic. For this system, the quarter-wave mode of the inlet is 150 Hz, the first longitudinal 

acoustic frequency is 450 Hz, and the transverse acoustic frequency is 2960 Hz. 
Earlier studies of the effects of acoustic forcing in this particular geometry [l-31 showed that 

forcing at the first longitudinal acoustic mode of the chamber induces vortex rollup near the entrance 

to the chamber at the forcing frequency. However, in these simulations, the frequency of the first 

longitudinal mode of the chamber was close to the initial vortex-rollup frequency observed in the 

unforced calculations. Comparisons of calculations with and without forcing [3] also showed that 

the predicted vortex-rollup frequencies were in good agreement with experimental observations [4]. 
There was also an overall low-frequency at which the entire confined flow was periodic, and this 

low frequency is determined by the acoustics of the inlet [5]. The effects of independently changing 

the acoustics of the inlet and the chamber have also been studied [51. In all of the cases simulated, 
vortex rollup near the inlet-chamber junction occurs at the first longitudinal mode of the chamber. 

The merging pattern of the vortices in the chamber is, however, significantly different in the different 
cases. These merging patterns result from an interaction of phenomena occuning at the vortex-rollup 



frequency and the frequency of the quarter-wave mode of the inlet. In all of these studies, the inflow 

velocity was kept constant at Mach number 0.153. 

In this paper, we discuss the effects of increasing the Mach number of the incoming gas. We 

have effected this by increasing the inflow velocity while maintaining the same pressure and density, 
thus varying the natural shedding frequency of the shear layer. This approach was taken so that the 
acoustic frequencies of the system are essentially held fixed, but we can vary the shear-layer instability 

frequency through changes in the velocity. Hence this study provides a way to probe the interaction 

between the acoustic frequencies and the natural instability frequencies of the system. 

The Numerical Model 

The numerical model solves the compressible, timedependent, conservation equations for mass, 
momentum and energy in a two-dimensional axisymmetric geometry. The algorithm used for fluid 

dynamic convection is Flux-Corrected Transport (FCT) [6] ,  a conservative, monotonic algorithm with 
fourth-order phase accuracy. FCT algorithms can be constructed as a weighted average of a low-order 
and a high-order finite-difference scheme. During a convective transport timestep, FCT first modifies 

the linear properties of the high-order algorithm by adding diffusion. This prevents dispersive ripples 

from arising, and it ensures that all conserved quantities remain monotonic and positive. Then FCT 

subtracts out the added diffusion in regions away from discontinuities. Thus it maintains a high order 

of accuracy while enforcing positivity and monotonicity. With various initial and boundary conditions, 
this algorithm has been used to solve a wide variety of problems in both supersonic reacting flows 

[7-91 and subsonic turbulent shear flows [1,3,5,10,11]. 
The calculations presented below are inviscid, that is, no explicit term representing physical vis- 

cosity has been included in the model. Also, no artificial viscosity is needed to stabilize the algorithm. 
There is a residual numerical diffusion present which effectively behaves like a viscosity term for 

short-wavelength modes on the order of the zone size. Unlike most numerical methods, however, the 
damping of the short-wavelength modes is nonlinear. Thus the effects of this residual viscosity dimin- 

ish very quickly for the long wavelength modes, which result in a high effective Reynolds number. 
In the problem considered in this paper, we are primarily interested in the interaction of the acoustic 

modes with large-scale vortex structures, which is essentially an inviscid interaction. 

The calculations reported here are essentially large-eddy simulations which model the fluid insta- 

bilities leading to a transition to turbulent flow. Although a subgrid turbulence model is not explicitly 

included in these calculations, the nonlinear cutoff of high-frequency modes by the FCT algorithm acts 

as a subgrid model. The question of exactly how this high frequency filter acts is currently a topic of 

research. 
The choked outflow conditions force the flow to become sonic at the throat of the exit nozzle. At 

the solid walls, the normal flux is set to zero and the pressure is extrapolated to the normal stagnation 

condition. At the inflow, the pressure is allowed to fluctuate, but the mass flow rate and the inflow 

velocity are specified. These conditions allow the acoustic waves to reflect without amplification or 

damping at the inflow. These inflow boundary conditions could be modified to damp the acoustic 

waves originating downstream. More detailed discussions and tests of the boundary conditions have 

been presented in earlier papers [1,3,121. 
The computational cell spacing was set up at the beginning of the calculation and then held fixed 

in time. Fine zones were used near the entrance to the step in the larger chamber in both the radial 
and axial directions. In both directions the cell sizes gradually increased away from the dump plane. 



The effects of numerical resolution were checked by comparing calculations with different grids and 
these results have been reported elsewhere [1,3,12]. In the calculations described in this paper, a 60 X 

120 grid is used. 

Results and Discussion 

The numerical simulations predict values of the density, momentum, and energy for each of the 

computational cells as a function of time. From this information, we can selectively generate the various 

physical diagnostics. In this presentation, we use the Fourier analysis of local, time-dependent velocity 

fluctuations at various locations in the flow and instantaneous velocity streamlines to provide flow 
visualization. Streamlines are a useful visual diagnostic of the structure of the flow and they also allow 

us to correlate and track the coherent structures and their mergin patterns. 

Inflow Mach Number 0.31, An Intermediate Value 

The series of instantaneous velocity streamlines shown at intervals of 1000 timesteps in Figure 2 

show that vortex shedding occurs at approximately every 2000 timesteps, corresponding to a frequency 

of about 1330 Hz, and two of these merge at about every 4000 timesteps, corresponding to a frequency 

of about 665 Hz. Figure 2 also shows vortices growing by entraining the surrounding fluid and merging 
with other vortices. For example, the vortex shed at step 123,000 grows by entraining the surrounding 

fluid before it merges with another vortex. 
Because it is difficult to determine the vortex shedding and merging frequencies from streamlines 

shown at every 1000 timestep intervals, it is useful to look at fluctuations of the physical variables 

such as pressure or velocity to determine the more global features of the flow more precisely. Figure 3 
shows Fouier analyses of velocity fluctuations at two locations close to the step. At the distance 

0.57 D downstream, there is one dominant line, 1380 Hz, which is the passage frequency of vortices 

at this location and also corresponds to the vortex-shedding frequency of the shear layer at the step. 
At the distance 1.63 D, the strongest line is at 690 Hz, the first subharmonic of the vortex-shedding 

frequency and the passage frequency of the larger vortex formed by the first merging of vortices that 

occurs upstream. Therefore, based on these Fourier analyses and on the instantaneous streamlines, 

we conclude that vortex shedding occurs with a frequency of about 1380 Hz and these vortices merge 

within 2 D at a frequency of about 690 Hz. 
In these simulations, the momentum thickness is 0.106 cm. Using this thickness and a frequency 

of 1380 Hz, the Strouhal number is 0.015. In laboratory experiments 1131, an initially larninar shear 

layer rolls up at Sto = 0.012 when the theoretical value is 0.017 [141. From this analysis, we estimate 
that the natural instability frequency of the shear layer in the simulations is 1380 Hz. 

Vortex mergings further downstream become highly erratic. Occasionally a merging is seen at 

450 Hz, but mergings are also seen at 442,295,884, 662, and 531 Hz. The frequency of 884 Hz is close 

to the passage frequency following the first vortex-merging, 690 Hz, and the 662 and 531 Hz lines are 

beat frequencies between this and the quarter wave mode frequency of the inlet, 150 Hz. The 442 and 

295 Hz lines are close to the first longitudinal frequency of the chamber and a beat frequency between 

the inlet and chamber frequencies. 

In summary, the first vortex roll-up and merging behaves as if the jet is free and rolling up at 
the natural instability frequency of the shear layer. Vortex mergings in most of the chamber occur at 
frequencies resulting from the interaction between the vortex shedding frequency and its subharmonics 
and the dominant acoustic frequencies of the system. 



Inf70w Mach Numtler 0.15, A Low-Speed Case 

In this case, the natural instability frequency is 700 Hz and because this is considerably closer to 

the acoustic frequency of 450 Hz, we expect some coupling between the two. The Fourier analyses of 

velocity fluctuations shown in Figure 4a at 0.98 D from the step shows that 450 Hz is the dominant fre- 

quency but that there are also weaker lines at 550 Hz and at 150 Hz. Streamlines of this system confirm 

that vortex shedding no longer occurs at one frequency. In contrast to the case higher Mach-number 

case discussed above, here the acoustics influence the vortex shedding process: there is shedding at 

three frequencies, two acoustic frequencies, 450 and 150 Hz, and at a beat frequency, 550 Hz. It appears 

that the acoustic mode has suppressed the natural mode. 

The Fourier analyses of velocity fluctuations shown in Figures 4b and c are at two locations further 

downstream in the chamber between whch frequent vortex mergings are observed. Two dominant 

frequencies in the spectra are 150 and 300 Hz, frequencies close to either acoustic frequencies of the 

system or beat frequencies of acoustic modes. At 1.97 D, there is no d i s t i n p h a b l e  line at  450 Hz but 

the 300 and 400 Hz beat frequencies appear and the inlet frequency, 150 Hz, is still strong. The 400 Hz 

line is a beat between one of the shedding frequencies, 550 Hz, and the 150 Hz mode. Even further 

downstream at 3.04 D, only the 150 and 300 Hz lines remain strong. 

Note that in a slightly different calculation that was made for a case in which the natural instability 

frequency was equal to the first longitudinal mode, the 450, 300, and 150 Hz lines dominate and the 

beat frequencies are not seen. These conditions were created in the calculation by changing the natural 

shedding frequency by adjusting the shear-layer thickness. 

In contrast to the previous case with a higher Mach number and larger separation between the 

acoustic and natural frequencies, now vortex shedding takes place primarily at the first longitudinal 

mode of the chamber. The trend illustrated by this case is consistent with the conclusions of a paper 

describing a case for which the two frequencies essentially equal [3]. In both that and the case de- 

scribed here, the acoustics played an important part in determining the frequency of the first vortex 

rollup. When the frequencies were very close, the effect was even stronger and beat frequencies were 

suppressed. 

Mach Numbers above 0.60 

Figure 5 shows the Fourier of velocity fluctuations for the case of Mach number 0.61, corresponding 

to an inflow velocity of 200 m/s. Close to the step, at 0.57 D, the dominant frequency is 2960 Hz, which 

is close to the transverse acoustic frequency and natural vortex-shedding frequency of 2760 Hz. At 1.3 D, 
the dominant frequency is 1360 Hz, the passage frequency of the first vortex merging. Thus, near the 

step, the flow is qualitatively similar to that seen in the first case when Mach number was 0.31. In both 

cases, vortex shedding occurs at the natural shedding frequency and an initial vortex merging occurs 

within 1.5 D from the dump plane. However, the spectra are noisier and there are other frequencies 

almost equally as strong that appear as the flow becomes more and more compressible. 

Figures 5b and c, velocity-fluctuation spectra at two and three diameters downstream, show three 

dominant frequencies: 430, 580 and 730 Hz. These are close to either acoustic frequencies of the system 

or beat frequencies of acoustic modes at 150 Hz and 450 Hz. There are also fluctuations at  1360 Hz 

corresponding to the passage frequency of the first merged vortex. 

As in the first case considered, the downstream spectra are very noisy and there are many frequen- 

cies that usually correspond to beat frequencies between the acoustic and natural instabilitity modes. 



The vortex shedding and the first vortex merging are not affected by the acoustics of the system for 

these high-speed flows. In simulations for even higher Mach numbers, for example, 0.90, the same 

trend appears, and there is even less order in the spectra far from the step. 

Summary and Conclusions 

In this paper, we have presented numerical simulations of vortex shedding and merging in an 

chamber whose flow is fed by a relatively long channel and choked at the exit. The purpose of the 

paper was to examine the effects on the structure and merging patterns in the flow by varying the 

inflow Mach numbers, while keeping fixed the acoustics of the system, the thermodynamic properties 

of the gas, and the momentum thickness of the shear layer. The effect then was to vary the natural 
instability frequency of the shear layer by varying the velocity of the flow. Row velocities ranging 

from 50 to 300 m/s were considered, which corresponded to Mach numbers ranging from 0.15 to 0.90. 

The calculations show complex interactions among the natural instability frequency of the shear 

layer at the inlet of the chamber and the acoustic frequencies of both the inlet and the chamber. For the 

highest Mach number cases, vortex shedding occurs at the natural instability frequency of the shear 

layer and the first vortex merging occurs at the first subharmonic of the shedding frequency. That is, 
the shear layer near the inlet to the chamber (within about 1.5 D) is not affected significantly by the 

acoustics of the system. This is perhaps because the dominant acoustic frequencies of the system are 
significantly lower than the shear-layer instability frequency and its first subharmonic. However, even 

for these two cases, the acoustic frequencies of the system do affect the vortex dynamics downstream 
from the step. The dominant low-frequency oscillation observed in earlier simulations [1,3,5] did not 

appear at high Mach number, probably because the chamber is not long enough to accomodate the 

mergings which are required to attain low frequencies from the high vortex-shedding frequencies. 

At low Mach number, the acoustic frequencies are more important. For Mach number 0.15, vortex 

shedding occurred primarily at the first longitudinal frequency of the chamber, which is similar to 

previous numerical simulations [1,3,5]. For this case and for the earlier simulations, the first longitudinal 

mode frequency is close to the natural instability frequency of the shear layer, and the acoustic mode 

of the inlet remains important. 

From this series of calculations, we conclude that the shear layer in a confined chamber rolls up 

at either its natural instability frequency or at a dominant acoustic frequency of the system, if that 

frequency is nearly equal to or greater than the natural instability frequency. In all the simulations, the 

acoustic frequencies strongly affect the vortex mergings occurring within the chamber. 
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Figure 1. Schematic of the axisymmetric configuration described in the simulations. Flow through a 
long inlet cylinder exits into an axisymmetric, confined chamber. The flow exit is a choked, annular 
region. The initial chamber pressure is 188 kPa. 
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Figure 2. Sequence of instantaneous velocity streamlines for inflow l t c h  number 0.31, showing vortex 
shedding and merging near the step in the chamber. 
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Figure 3. Frequency spectra of velocity fluctuations in the shear layer at two locations near the step in 
the chamber for Mach 0.31 flow. 

Figure 4. Frequency spectra of velocity fluctuations in the shear layer at three locations in the chamber 
for Mach 0.15 flow. 
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Figure 5. Frequency spectra of velocity fluctuations in the shear layer at four locations in the chamber 
for Mach 0.61 flow. 
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ABSTRACT 

The paper provides an assessment of the turbulence modeling of incompressible non- 

reacting flows and focuses on the main physical processes associated with the density 

non-uniformity in such cases. Experimental evidence from plane mixing layers under 

various conditions is used to deduce some controlling mechanisms and to arrive at a 

proposed modeling to represent those mechanisms. 

Introduction 

MacInnes [l9851 made an extensive examination of the modeling of each term in the 

exact transport equations for the second moments. The performance of the models was 

judged in comparison with data from self-preserving non-reacting and incompressible flows 

with sustained density gradients resulting from either a variation in molecular weight or a 

large temperature variation in gas flow. Each of the cases considered showed behavior which 

the standard models failed to capture even qualitatively. After assessing the possible 

influence of each of the terms in the moment equations associated with density non- 

uniformity, it could be firmly concluded that none of these terms could help to explain the 

experiments. 

A more promising prospect for bringing agreement with the experiments was found to 

lie in the modeling of the dissipation rates of both the turbulence kinetic energy and the 

scalar property variance. New terms may reasonably be introduced into the modeled dissipa- 

tion rate equations to represent the effects of density non-uniformity. The focus of the 

paper is on the new terms in the dissipation equations. Before discussing the dissipation 

modeling, a brief overview of the key experimental evidence is given, followed by a sum- 

mary of how density non-uniformity enters into the second-moment modeling generally. 



Guiding experiments 

There are few reports of measurements in flows with large density non-uniformity that 

are at the same time sufficiently simple to provide solid guidance in the modeling. Obtaining 

good measurements in flow with variations in both velocity and density is extremely difficult. 

It is perhaps not surprising, therefore, that only three experimental studies are directly help- 

ful in developing models and that each has settled on measuring just the mean field quanti- 

ties. The first two, Brown and Roshko [l9741 and Rebollo 119731, employ the same 

apparatus at Caltech to study the plane turbulent mixing between helium and nitrogen gas 

streams. The density ratio between the two gas streams is 1:7 and various velocity ratios are 

tested. 

Two cases are representative of the basic phenomena observed throughout the various 

data sets. The case measured by Rebollo in which the low-density helium flows at about 

three times the speed of the nitrogen shows two striking features: the rate of spreading of 

the mean velocity profile is about 25% greater than for the uniform-density mixing layer (in 

this case the value used for the uniform-density limit is that measured in the same rig for 

nitrogen mixing with air) and the turbulent Schmidt number drops from around 0.6 to 0.7 in 

the uniform density mixing layer to  around 0.2. These observations are reinforced by the 

other case reported in Brown and Roshko in which the helium stream is the slowest moving 

of the two, having only about one third the speed of the nitrogen stream. Here, the spread- 

ing rate drops by about 30% relative to the uniform density case and the Schmidt number 

increases to around 0.8. These results are summarized in Table 1 for reference since they 

are the central guiding facts in the present study. 

A third and much different flow case is considered in MacInnes [1985]. Mean tempera- 

ture distributions in a highly heated plane thermal mixing layer were measured with a fine- 

wire thermocouple probe. The flow is formed by passing a hot and an ambient air stream 

through a turbulence grid and allowing mixing to proceed beyond the grid. The mean velo- 

city is uniform and hence no important augmentation of the turbulence energy created in the 

vicinity of the grid can occur. 

Measurements in three cases of density ratio between the two streams are reported: 

1.03, or  approximately uniform density, 1.26, and in the case of greatest heating 1.95. The 

results for the thermal layer growth are shown in Figure 1. The data are plotted so that the 

virtual origins coincide (theoretical considerations dictate that the layer width increase as the 

one-half power of the downstream distance). The striking feature displayed by the data is an 

increase in the growth rate of the layer width with density differential. In the case with 

medium heating the layer width is 23% greater than with passive heating, in the case of max- 

imum heating it is 43% greater. From the latter increase one can infer an approximate dou- 

bling of the turbulent diffusivity level. 



Modeling 

A turbulence model intended for application in cornbusting and compressible flow must 

be capable of simulating the gross effects outlined above. This section presents a brief over- 

view of second-moment level modeling highlighting the possible roles that density non- 

uniformity could play. 

In variable density flows the most common method of decomposing the instantaneous 

variables is to use density-weighted means for all variables except pressure and the density 

itself. As is widely known, this approach leads to equations which are nearly identical in 

form to the uniform-density ones, but written in terms of the density-weighted quantities. 

The simplicity of the equations is often construed as a sign that density-weighting is the 

"natural" way to form averages and models developed in uniform-density flows are com- 

monly translated into a variable-density form by simply replacing the standard un-weighted 

mean quantities with the weighted ones. However, no solid justification has been given for 

such a scheme. 

The other approach of using standard mean values is adopted here, as it was in 

MacInnes [1985]. Of course, the two decompositions are equivalent expressions of the con- 

servation laws and modeling developed under one decomposition scheme can in principle be 

converted to the other scheme. 

In the following, attention is restricted to flows which are steady in the mean as this 

allows simplification in presentation and is applicable to all experimental cases considered. 

The mean equations for momentum, scalar, and mass conservation are 

C is the mean value of the scalar quantity and c denotes its fluctuation about the mean. 

Generally, upper case letters designate the mean while lower case letters designate the 

fluctuation. An exception is made for Greek letters in which case the fluctuation is desig- 

nated by a prime, eg  p is mean density, p'is the fluctuation about the mean. As a result of 



density fluctuations an additional four correlations enter the set of mean equations joining 

the two, u z a n d  u 7 ,  found in uniform density. 

MacInnes [l9851 reports the influence of including the triple moments which occur in 

equations (1 )  and finds only minor alterations to the calculated mean profiles and turbulence 

quantities in the shear flows examined. Note that the mass flux p'u, appearing in the con- 

vection terms is important in the direction transverse to the main flow direction since then 

the mean velocity is small. (In the thin flows considered here p'u, does not need to be 

explicitly introduced into the calculations, as it can be eliminated using mass continuity.) 

The models for u x a n d  u 7  employed are at what is termed second-moment level. 

This means that the second moments are found by solving modeled versions of their exact 

transport equations. Higher moments are modeled with at most algebraic formulas. To 

sketch briefly what is involved in modeling the second moments the exact form of the uiuj 

equation will be considered. 

where the terms on the right-hand side represent the terms providing production, dissipa- 
- 

tion, pressure smearing, and diffusion of the uiuj components, respectively. These are 

-au, a u ,  a u ,  -aui 
- (pfuiuk- + ~ ' u ' u  P) +Uk(p'ui-+pfu'-) axk axk axk axk 

a -- p -- 
D.. = -- 

11 a ~ ,  ( p ~ ~ ~ ~ ~ ~ + p ~ ~ 6 ~ ~ + p ~ ~ 6 & - u ~ ~ ~ ~ ' u ~ ~ ~ ~ ?  



There are a number of new terms relating to interactions with the mean flow incorporated in 

Pij .  These turn out to be less than about 10% compared with the main terms and do not 

play an important role. The pressure correlation may be analyzed using the quasi-isotropic 

model (QIM) of Naot et a1 [l9731 and developed in Launder et a1 [1975]. The pressure 

fluctuation is represented in terms of mean and fluctuating velocity (and density) using the 

solution to its Poisson equation formed from the fluctuating part of the momentum equa- 

tion. Substitution for p in + i j  leads to an integral expression involving two-point correla- 

tions. The QIM amounts to assuming the two-point correlations to have properties strictly 

true only in isotropic turbulence but allowing the one-point limit to be anisotropic. 

MacInnes [l9851 has examined the QIM path with regard for density fluctuation and has 

derived the series of new terms which are implied. Test calculations show that, much as the 

non-uniform density Pij terms make little impact on the calculations, the refinements in $J~, 

modeling are not very important in the flows considered. One indication of that study, how- 

ever, seems to be that the practice of translating the pressure models by just rewriting them 

in terms of density-weighted variables, Jones [1980], is probably acceptable. The extra QIM 

terms are incorported into the density-weighted averages. 

The diffusion terms, Dij, are unlikely to hold much sway over the calculated uiuj. Even 

in uniform density flows of the thin, unidirectional sort examined here these terms are of lit- 

tle importance. It is interesting, however, to note the appearance of a quadruple moment. 

Vandromme and Kollmann [l9821 introduced modeling for the quadruple moments to 

account for the quite steep gradients in second moments in calculations of the Caltech mix- 

ing layers. 

None of the effects due to density non-uniformity mentioned up to this stage proves to 

have much effect on either the calculated rate of spread or the Schmidt number level in a 

mixing layer. The values calculated will be essentially those which are calculated with uni- 

form density. One must evidently turn to modeling the dissipation rates of uiuj  and c2 in 

order to capture the observed behavior. It is reasonable to expect to be isotropic since 

the eddy sizes in which this term is important are far removed from the small wave number 

spectra where the mean flow gives the turbulence an orientation. Thus, ~ ~ ~ = 2 / 3 ~ 6 ~ ,  may be 
- 

used, leaving only E together with E,, the dissipation rate of c2, to be found. 

Dissipation rate modeling 

Rather than model the actual dissipation process one models the process by which the 

large scale motions are converted, by stretching, into smaller and smaller scales, to the point 

where molecular dissipation becomes important. It is the spectral transfer which must be 

described by the model and not the actual dissipation associated with sharp velocity gradients 



or scalar gradients. 

Model transport equations for E and E, are constructed by using invariant parameters 

depending on the mean field variables and the turbulence correlations. For E 

where D (E) represents the rate of change of E due to diffusion processes and is usually 

modeled using a gradient diffusion hypothesis. The crucial element of the model is the 

dimensionless sourcelsink function y,. This term should naturally act to increase the dissi- 

pation rate (spectral transfer rate) when turbulence generation increases but to decrease it as 

the dissipation rate grows. The form commonly used to represent these effects is 

The '0' superscript on y, emphasizes that this is a model for uniform density flow. The 

same sort of approach can be used to develop an equation for E,. More terms enter into the 

y,, function since the spectral transfer of scalar fluctuation depends not just on the scalar 

fluctuation processes of generation and dissipation but also on the same parameters that 

make up y, since scalar fluctuations depend on the state of the turbulent motions. Such an 

equation has been developed by Newman et a1 [l9811 and is being used in this study. 

In order to extend the model to include density effects one must consider the possible 

ways in which the density non-uniformity might affect the way turbulent eddies are 

stretched. There appear to be two main influences. The first is associated with the presence 

of density fluctuation, even when mean gradients of density are locally absent. The idealized 

picture is in Figure 2. Solid and open circles represent heavy and light elements of fluid 

respectively. In Figure 2a the elements are shown evenly distributed in a region of the fluid. 

Imagining now that the fluid in this region is in rotational motion, caught up in an eddy 

motion, the heavy elements will be forced through centrifugal action to the outer regions of 

the eddy, the light ones to the center, as illustrated in Figure 2b. With the mass concen- 

trated on the outer rim of the eddy the angular speed must decrease in order for angular 

momentum to be conserved. The slower eddy rotation causes a reduction in induced lift and 

the consequent stretching of the eddy, which in effect means the eddy will be stabilized. The 

result is reduced transfer of energy to smaller-scale eddies. This process can be used to 

explain the observed higher levels of turbulent transport in the thermal mixing layer experi- 

ments, the density non-uniformity acting to reinforce the turbulent motions against erosion 



into smaller scale motions. 

The second effect is more global in nature, having to do with mean spatial variation in 

density. When a large eddy is aligned with its rotation axis perpendicular to the mean den- 

sity gradient, the eddy is influenced by centrifugal forces in a rather more complicated way. 

Again, an idealized picture is useful to understand what results. Figure 3 shows an eddy 

region in which high density fluid and low density fluid mutually entrain ( the density gra- 

dient, which is downwards, is perpendicular to the axis of the eddy motion which is out- 

ward). At the interfaces between the two fluids there will be either a stable or an unstable 

balance depending on the curvature. In the illustration, sections of the interface subject to 

destabilization are indicated by an irregularly drawn line while stabilized interface is desig- 

nated with a smooth line. Since the largest eddies will be most prone to this effect, the indi- 

cation is that the eddy will be destabilized and broken down into small scale motions in the 

low density region, while the break-down will be suppressed on the high-density side. 

Correspondingly, turbulence energy should be more rapidly transferred spectrally and, hence, 

dissipated in the low density region and less rapidly on the high density side. While the first 

effect described would always tend to increase the level of turbulence regardless of the orien- 

tation of the mean density and the mean velocity gradients, the second may be expected to 

lead to an overall increase or decrease in the turbulence level depending on the mean flow 

conditions. Hence, the second effect may be able to account for the opposite result found in 

the Caltech mixing layers when the density gradient is reversed. 

Many possible terms can be imagined with which to represent the above effects in the 

vE and the vEc functions. All terms appear to be of two main types as far as their behavior 

in boundary layer type flows is concerned. One type of term maintains the same sign across 

the entire layer and corresponds to the first effect. The other type reverses sign and could be 

used to represent the second effect. For the purposes of initial explorations, a model com- 

posed of two terms which are the most convenient from a computational point of view are 

chosen to represent the two effects in the v, functions. The new terms 

are added to to represent the two processes.This additive function has been used with the 

same coefficient values Cpl and Cp2 in both the e and E, equations in calculations of the 

Caltech mixing layers. It was found that the coefficients could, indeed, be selected to bring 

perfect agreement with the observed layer growth rates in the two cases. The second term 

produced a greater spreading rate in one case than in the other, though as the gap widened 

the spreading rates of both cases were underpredicted. The first term was needed to increase 



[he growth rate in both cases in order to bring agreement with the experiments. The  

Schmidt number,  on the other hand, is predicted as before - -  nearly equal to the uniform- 

density value in both cases. This indicates that the coefficients need to be selected indepen- 

dently for the E and the E ,  equations. This step has yet to be taken. 

Summary 

An overview of the second-moment modeling of non-uniform density but incompressi- 

ble turbulent flows has been made, giving strong support for modifying the dissipation rate 

equations. Two mechanisms whereby the density non-uniformity influences the  spectral 

transfer rates have been described and corresponding addition terms in the dissipation rate 

equations representing these mechanisms have been presented. The  limited amount  of test- 

ing which has at present been completed indicates the model can bring agreement with the 

observed spreading rates of mixing layers. However, it cannot be determined whether the 

observed variation of the turbulent Schmidt number  can be accounted for by the model  until 

tests are carried out  in which the model coefficients in the scalar and kinetic energy dissipa- 

tion equations are adjusted independently. 
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Table 1. Experimental findings in variable density mixing layers. 

(Subscript '0' indicates uniform density value.) 

Case PA IPB UA /U, SC,/SC,~ 
ak 

Figure 1. Thermal layer growth for three density ratios. M is the distance between grid wires 

and X l .  is the virtual origin of the thermal layer. 



Figure 2. Centrifuge mechanism operating in non-u niform density turbulence. Uneven dis- 

tribution of density in fluid caught up in an eddy motion leads to heavy elements of fluid (0) 

concentrating at the rim of the eddy leaving light elements of fluid (0) in the center. 

Heavy Fluid 

Figure 3. An idealized eddy that has its rotation axis perpendicular to the direction of mean 

density gradient. Light and heavy fluid mutually entrain, as shown, producing stabilization 

or destabilization at the interface. 
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A new method of nonintrusive diagnostics in air based on vibrational excitation of 

oxygen, laser-induced fluorescence and Rayleigh scattering, is applied to a 

supersonic axisymrnetric free jet and a supersonic Mach 3 boundary layer to generate 

instantaneous velocity profiles and density cross sections. The velocity profiles 

give a quantitative measure of the velocity across the jet at any location 

downstream of the nozzle exit. Numerous such images are taken at several 

locations to generate average velocity profiles as well as turbulence intensity and 

axial velocity correlations across the turbulent free shear layer. Simultaneous 

Rayleigh scattering gives a two-dimensional cross section of the density. In the 

boundary layer, Rayleigh scattering is used to generate instantaneous density cross 

sections, two-dimensional density correlations, and probability density 

distribution functions of the density. This new measurement technique introduces a 

promising method to make quantitative comparisons with computational models. 

DISCUSSION 

Our newly developed capability of writing lines into air flows (1) gives us a 

unique tool for measuring instantaneous velocity profiles and determining the 

statistics of the turbulent flow in shear layers. Lines are tagged and 

interrogated by Raman Excitation and Laser-Induced Electronic Fluorescence 

(RELIEF) . Vibrational tagging occurs during a 10 nsec interval by simultaneously 

passing two high-power pulsed laser beams colinearly through the flow region. 

These beams are separated in frequency by the vibrational frequency of oxygen and, 

consequently, write a line of vibrationally excited oxygen by stimulated Raman 

excitation. Since the oxygen molecules are excited to the same rotational state 

from which they came, there is virtually no heating associated with this tagging 

mechanism. 

Tlie vibrational lifetime of oxygen is in excess of 100 psec in air, so the line 

persists in the flow until it is interrogated by laser-induced electronic 

fluorescence using a far W argon-fluoride laser. The interrogation also occurs 

over approximately 10 nsec, and the fluorescence is imaged with a high-sensitivity 

video camera. The displacement of the line between tagging and interrogation 



gives a quantitative measure of the velocity profile. If the interrogating laser 

is expanded into a thin sheet of light passing through the flow field, the Rayleigh 

scattering can be simultaneously imaged to give a two-dimensional cross section of 

the density. 

Two experiments are reported in this paper. The first is the measurement of 

velocity profiles, turbulence intensities, and correlations in the free shear layer 

of an underexpanded sonic jet. The second experiment shows preliminary 

measurements of density cross sections in a Mach 3 supersonic boundary layer. Work 

on velocity tagging in the boundary layer is currently underway, and is not 

included in this paper. 

Free Jet Experiment 

A diagram of the underexpanded supersonic jet is shown in Fig. 1. This jet was run 

with a pressure ratio of 10.2 to 1 into a one atmosphere chamber, leading to a 

maximum Mach number of 4.06 at the Mach disk, and a maximum flow velocity of 621 

meters/sec. Table I shows the computed velocity, pressure, temperature, Mach 

number, and density as a function of distance from the orifice (2). The orifice 

was 6.35 mm in diameter (.25"), and the Mach disk was located approximately two 

orifice diameters downstream of the exit. Figure 2 shows the image of a single 

line which was written across the supersonic expansion 2 psec before the picture 

was taken. The line was written approximately 2 mm upstream of the Mach disk, 

which can be seen in the figure due to the large difference in Rayleigh scattering 

associated with the change in density. Other features including the reflected 

shock, the barrel shock, and the turbulent free shear layer are also apparent in 

this figure. 

By placing a far W-blocking filter over the camera, only the fluorescence from the 

marked line is visible. Figure 3 is a close-up view of four separate images 

showing four examples of the instantaneous turbulent structure. By observing 

hundreds of such images, the average velocity profile and the turbulence intensity 

across the free shear layer can be determined. Furthermore, since each individual 

image contains the instantaneous profile of the axial velocity component, these 

images may be used to find the correlation of the axial velocities across the free 

shear layer. Figure 4 shows the computed velocity profile, turbulence intensity, 

and the correlation with the axial velocity at the center of the free shear layer. 

Figure 5 is a composite indicating the growth of the free shear layer as a function 

of the distance from the nozzle exit to the Mach disk. Each inset shows the 

turbulence intensity and the transverse correlation of the axial component of the 

velocity. Figure 6 shows a plot of the width of the shear layer versus distance 



from the exit, and Fig. 7 shows the normalized integral length scale taken from the 

correlations as a function of distance from the exit. The velocity along the 

centerline of the jet was also measured, and Fig. 8 shows a plot of the measured 

center velocities compared with the computed values (2). The velocity uncertainty 

in this figure is caused by inaccuracies in the measurement of the line position 

due, largely, to the finite resolution of the camera. The position uncertainty 

reflects the distance the line moved between tagging and interrogation. 

Supersonic Boundary Layer Experiment 

Preliminary measurements were also made in a the boundary layer of a small Mach 3 

wind tunnel facility. A time-frozen Rayleigh scattering cross section of that 

boundary layer is shown in Fig. 9. The brightness is a direct measurement of the 

density. The density is lowest near the wall where the temperature is high, and 

highest in the free stream where the temperature is low. The flow is from right to 

left, the Reynold's number is 15,000 based on the boundary layer momentum 

thickness, and the boundary layer is 5 mm thick. Many such images can be combined 

to generate the average density variation, and the spatial fluctuations of the 

density can be correlated to generate a two-dimensional density correlation 

function which shows the shape and extent of the turbulent structure. Figure 10 

shows three correlations in the boundary layer where the correlation points have 

been chosen at a y/6 of 0.4, 0.6, and 0.8. High brightness indicates strong 

correlations and the dark lines indicate constant correlation contours. Note that 

the angle of the correlation at y/6 - 0.4 agrees with the structure angles measured 
by hot wire probes (3). 

By changing the wind tunnel orientation, a plan form view of the boundary layer can 

also be taken at selected heights above the wall. Figure 11 shows the picture of a 

plan form view at a y/6 of 0.6. Since the brightness is a measure of the density, 

a probability density distribution function of the density can be created from each 

plan form image. The variation of that probability density distribution function 

with distance from the wall is shown in Fig. 12. An expanded view at y/6 = 0.6 is 

shown in Fig. 13. These curves are similar to the probability density distribution 

of mass-flux fluctuations measured by Hayakawa et al. (4) in a similar flow, giving 

indirect support to the Strong Reynolds Analogy. In Fig. 14 a 16" angle wedge has 

been placed in the flow to show the dynamics of shockwave boundary layer 

interactions. 

Work is currently underway to better quantify the probability density functions of 

the density as well as the density correlations. By marking lines in the boundary 

layer we also expect to be able to see the correlation between velocity and density 



fluctuations. By crossing the tagging laser beams, small football-shaped volume 

elements can be written into the flow and tracked to give three-dimensional 

velocity and vorticity vectors. We expect that the development of this new 

technique will open the door to volumetric measurements of both low-speed and high- 

speed flows. 
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TABLE I 
CENTERLINE PARAMETERS (CALCULATED) 

PO - 1.03 X 106 pascal (150 psia), To = 250 K, 
Pambient - 1.01 X 105 pascal (14.7 psia) , 

Exit Diameter = 6.35 mm (.25") 

LOCATION VELOCITY PRESSURE TEMP. MACH DENSITY 
(mm) (m/sec) (pascal) (K) # g/cc 

.l27 292 5.40 X lo5 208 1.01 .00906 

2.69 433 2.02 X lo5 157 1.72 .00449 

5.23 529 5.95 X lo4 111 2.51 ,00187 

7.80 576 2.33 X lo4 85 3.13 ,00096 

MEASUREMENT LOCATION--10.3 604 1.12 X lo4 68 3.64 .00057 

MACH DISK-------------12.6 621 6.27 X 103 58 4.06 ,00038 

MEASUREMENT LOCATION--13.5 134 1.06 X lo5 241 .43 ,00153 



F i g u r e  1. S t r u c t u r e  o f  an underexpanded 
s o n i c  j e t .  

F i g u r e  2 .  Dens i ty  c r o s s  s e c t i o n s  o f  an 
underexpanded s o n i c  j e t  w i t h  
a l i n e  t agged  b e f o r e  t h e  Mach 
d i s k .  Flow i s  from bot tom t o  
top .  



Figure  3 .  Composite p i c t u r e  o f  
f o u r  s e p a r a t e  r ecorded  images o f  
l i n e s  a c r o s s  t h e  f r e e  s h e a r  l a y e r  
2 . 2  mm b e f o r e  t h e  Mach d i s k .  

F i g u r e  2. Turbulence i n t e n s i t y  and 
v e l o c i t y  c o r r e l a t i o n  a c r o s s  
t h e  f r e e  s h e a r  l a y e r .  

F igure  4 .  Measured v e l o c i t y ,  t u r b u l e n c e  
i n t e n s i t y  , and c o r r e l a t i o n  
f u n c t i o z  2 . 2  mm ups t ream o f  
the  Mach d i s k .  



F i g u r e  6 .  Width o f  s h e a r  l a y e r  
v e r s u s  d i s t a n c e  from 
e x i t .  

F i g u r e  7.  I n t e g r a l  s c a l e  
no rmal i zed  by s h e a r  
l a y e r  w i d t h .  

F i g u r e  8. C e n t e r l i n e  v e l o c i t y  
downstream of t h e  n o z z l e .  The 
p o i n t s  a r e  measured v a l u e s  and 
t h e  l i n e  i s  computed. 



F i g u r e  9 .  I n s t a n t a n e o u s  ( e n s i t y  c r o s s  
s e c t i o n  o f  a  Mach 3 t u r b u l e n t  boundary 
l a y e r .  Flow i s  from r i g h t  t o  l e f t .  

F i g u r e  10 .  D e n s i t y  c o r r e l a t i o n  a t  y /6=0 .4 ,  
0 . 6 ,  and  0 . 8  i n  a  llach 3 t u r b u l e n t  boundary 
l a y e r .  Flow i s  from r i g h t  t o  l e f t .  



F i g u r e  11. I n s  t a n L a n e o u s  
d e n s i t y  c r o s s  s e c t i o n  i n  
a >lac11 3 t u r b u l e n t  b o u n d a r y  
l a y e r .  I ' l an  Earn  vie^^ a t  
y/& = 0 . 6 .  

F i g u r e  13.  P r o b a b i l i t y  d e n s i t y  
d T s t r i b u t i o n  f u n c t i o n  o f  t h e  
d e n s i t y  a t  y j 6  = 0 . 6  ( expanded  
v i e w ) .  

F i g u r e  12. P r o b a b i l i t y  d e n s i t y  
d i s t r i b u t i o n  f u n c t i o n s  o f  the  
d e n s i t y  a t  y / 6 = 0 . 3 ,  0 . 4 ,  0.5 ,  0 . 6 ,  
0 . 7 ,  0 . 8 ,  0 . 9 ,  and 1 . 0 .  



Figure 14. Shock wave/boundary layer interaction 
in a Mach 3 flow with a 16' angle 
wedge. 
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Introduction 

The mechanism of the formation of vortex streets in the wake of a bluff body can be studied by 

considering the interaction of two infinite vortex sheets which are initially a fixed distance apart. This 

idea was conceived by Abernathy and Kronauer [l] who, by this consideration, succeeded in explaining 

essential features of the mechanism in an inviscid incompressible fluid In this paper, we take up this 

idea in order to study the formation of vortex streets in a compressible fluid at different Mach 

numbers. This is done by direct numerical simulations based on the two-dimensional compressible 

Navier-Stokes equations. To follow the development of the vortex sheets we combined the numerical 

simulation of the flow field with a marker particle algorithm. At the beginning of our calculations the 

vortex sheets are marked by a set of particles. They are advected during the calculation in a 

Lagrangean fashion according to the calculated flow field. The formation of the vortex street is then 

visualized by graphically displaying these marker particles, similar to streaklines in experiments. While 

in practice flows usually develop streamwise, in our numerical calculations we assume two infinite 

vortex sheets which are periodically disturbed in space and the results show the development of vortex 

streets in time. This flow model enables us to perform largescale computations with good resolution, 

and the solution does not leave the computational domain. 

It is obvious that the numerical approximation of nonlinear instabilities is a very difficult problem Any 

disturbance introduced may rapidly increase and it is a hard task to determine the meaning of 

small-scale details revealed by the simulations. The main limitation of the direct simulation of 

instabilities and the transition to turbulence is given by the grid. Structures which are smaller than a few 

grid zones cannot be captured. Hence, either physical viscosity must be large enough to suppress 

"subgridscale structures" or a statistical treatment of these structures must be incorporated The second 

way implies a difficult problem because numerical dissipation or dispersion acts on these scales. 

Furthermore, each statistical treatment reduces the possibility of finding coherent structures. We 

decided to adopt the first way. To obtain a clear physical meaning we required in our calculations the 



following features. The numerical scheme should be stable for all inviscid problems which admit a 
stable solution This guarantees that calculations with high Reynolds numbers can be performed without 

introducing numerical instabilities and no physical viscosity is consumed to stabilize the numerical 

scheme. Nevertheless, the inherent numerical dissipation should be one order of magnitude smaller than 

the real viscous terms. Increasing the Reynolds number this requires a drastic mesh-refinement and 

large-scale computations can be performed only on superamputers. If these requirements had been 

satisfied, the calculations of stable problems produced quite similar results for different mesh sizes. 

Governing Equations and Numerical Method 

We consider the two-dimensional compressible Navier-Stokes equations, written in conservation form 

where U is the vector of the conserved variables, p is the density, U and v are the velocity components in 

X- and y-direction and e is the total energy per unit volume. The functions F(U), G(U) are the Euler 

fluxes, while the functions R O ,  S(U) stand for the dissipative terms: 

with 

7 1  = (2p + X)ux + Xvy , r 2  = p(uy+vx), 7 3  = (2p + X)Vy + Xux , 

qx = .,g € X ,  qy = Y #!L pr  f y  . 

Here, p denotes the pressure, p and X are the aff icients  of shear viscosity and bulk viscosity, 

respectively, c is the specific internal energy, y denotes the adiabatic exponent and Pr the Prandtl 

number. We assume a polytropic equation of state p = (7-1)pc. Furthermore, we assume that the 

viscosity coefficients are constant and we use Stokes' hypothesis X = -2~13. 

For fluid flow at high Reynolds and Mach numbers strong gradients or shock waves may occur and the 

Euler terms dominate the dissipative terms. In numerical calculations it is important to approximate the 

Euler terms very accurately. The equations (1) should be considered as an inviscid hyperbolic system 

with a small parabolic perturbation Our numerical method for the compressible Navier-Stokes 

equations is a difference scheme based on a "High Resolution Scheme" for the Euler equations and the 

usual central differencing of the dissipative terms. The high resolution schemes which have been 

developed recently are shock-capturing schemes with the following properties: They are at least 

second-order accurate on smooth parts of the flow, but they sharply resolve discontinuities without 

generating spurious oscillations. The main building block is an upwind scheme which incorporates into 



the numerical solution the direction of nonlinear wave propagation as given by the direction of the 

characteristics. Thls upwind differencing establishes the shockcapturing property of the scheme. The 

high resolution scheme used in the calculations below is a MUSCLtype scheme with upwind 

differencing based on the flux-vector splitting of van Leer; a detailed description is given in [4]. 

For high resolution schemes the discretization error is reduced to a level such that any numerically 

introduced dissipative terms are very small. In a range where the vortex streets are laminar and stable 

we obtained in calculations with different mesh sizes quite similar results and the results seemed to 

converge, when the mesh sizes tend to zero. For higher Reynolds numbers the development of the 

interfacial instabilitites and the formation of the vortex street tend to a chaotic system In the inviscid 

limit convergence cannot be achieved. On a finer grid smaller structures are captured the number of 

small vortices increases and due to the different interactions of these vortices the solutions disagree 

after a short time. In this chaotic state, noise which is always introduced from roundoff or truncation 

errors will rapidly grow, no matter what computational method is applied. Small disturbances in the 

initial data produce quite different solutions. The large-scale solutions may be similar again Hence, for 

a practical problem the solution should be given in terms of statistical probabilities rather than in a 

deterministic way. Wlt what can we learn from deterministic calculations? These calculations provide 

insight into the interaction of vortices and the mechanism of the transition to turbulence. 

Two-dimensional direct simulation can resolve very small structures which may be impossible with 

three-dimensional calculations even with the next generation of supercomputers. On the other hand, if 

turbulence starts in a two-dimensional vortex street, then threehensionality may evolve and become 

important. 

Numerical Results 

In the low Reynolds number regime a laminar and stable Karrnan vortex street develops in the wake of 

a bluff body. The vortices decay slowly due to viscous dissipation and no turbulent motion will exist. If 

the Reynolds number is increased, transition from the laminar vortex street to a turbulent wake will 

start (see, e.g. [5], [6]). Abernathy and Kromuer [ l ]  explained the formation of a vortex street in an 
incompressible fluid by the interaction of two sinusoidally disturbed parallel shear layers. It is 

considered that the bluff body has the role only to generate the shear layers. In our numerical 

calculations the shear layers are idealized as vortex sheets. A diagram of the initial values and the 

computational region is given in Fig. 1. A fluid flow to the right is separated by a jet flowing to the left. 

Density and pressure are unity in the whole domain. The velocity into ydirection is sinusoidally 

disturbed inside the whole jet 

At the right-hand and left-hand side of the computational domain we prescribed periodic boundary 

conditions, at the upper and lower boundary outflow conditions. The disturbance of mode 2 as given by 

(3) needs finer grids than a mode 1 disturbance, but has the advantage that a breakdown of periodicity 
may be recognized 



The Mach and Reynolds numbers of the jet 

are defined by 

where 2uo is the initial relative velocity of 

the shear flow and Q the sound velocity 

Jm. The characteristic length X is 
chosen to be the wavelength of the 

perturbation : X = 0.5. AU calculations were 

performed with y = 1.4 and Pr = 0.712. We 

will show numerical results for Reynolds 
-0.5 numbers R = 1475, 5900, 11800, 59000. With 

-0.5 0.5 
increasing Reynolds number we refined the 

grid from 200 X 200 to 500 X 500 grid zones. 
Fig. 1: Computational domain and initial values Each vortex sheet is marked by 20000 

Lagrange points, which are restricted to a 

purely passive tracer role. These Lagrange points are adveded in each time step according to the flow 

field The advection velocities are determined by bilinear area weighting interpolation (see [4]). 

Fig. 2: Mach number M = 1, Reynolds number R = 1475 
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At first we will present results for Mach number M = 1. Fig. 2 shows the temporal development of the 

vortex sheets at Reynolds number R = 1475, graphically visualized by the marker particles. Initially, the 

disturbance of the velocity inside the jet leads to a sinusoidal geometric disturbance of the jet. Then a 

laminar roll-up of the shear layers starts and two parallel rows of staggered vortices develop. At this 

Reynolds number the Karrnan vortex street is stable for large time spans. If the Reynolds number is 

increased to 5900, aditional secondary vortices occur during roll-up (Fig. 3). But they are rapidly 

entrained and merge with the primary large eddies. The overall structure of the flow is quite similar to 

that at R = 1475. At Reynolds number R = 11800 eight small vortices occur in addition to the four big 

ones. The first plot at t = 0.4 indicates that, besides the growth of the sinusoidal disturbance, small 

wavelength disturbances arise and grow more rapidly than the long wavelength disturbance. The small 

disturbances are initiated by approximation errors. Due to the Kelvin-Helmholtz instability of the shear 

layer, smallscale errors introduced will rapidly grow. The classical linearized stability analysis for the 

inviscid equation predicts exponentially explodmg modes. Because viscosity has a stabilizing effect, 

disturbances of a certain magnitude grow, while stability for disturbances of smaller wavelength is 

established 

The influence of the Kelvin-Helrnholtz instability becomes much more obvious at R = 59000. Fig. 5 

shows that smallscale disturbances arise. These disturbances rapidly grow and besides the four large 

eddies introduced by the long sinusoidal wavelength perturbation 12 smaller vortices are created. Figs. 4 

and 5 show the development of an asymmetric street of cloudy vortex lumps each of which consisting of 

a number of smaller vortices. The vortices inside these clouds interact and rotate round each other. Due 

to darnping by viscosity, the smaller vortices may decrease and, finally, merge with the big ones. This 

situation occurs at Reynolds number 11800 where the largescale solution is a stable vortex street 

similar to those obtained at lower Reynolds numbers. At R = 59000 the interaction of the different 

vortices leads to a breakdown of the calculations, because vortices are swept outside the computational 

domain The wake seems to become completely turbulent. 

The results at Mach number M = 1 are quite similar to experimental results for an incompressible 

fluid The streaklines and the geometry of the vortex street correspond well to results of water flowing 

past a cylinder (see, e. g. [3], [5], [6]). In this case the Reynolds number is usually defined by choosing 

the diameter of the cylinder as characteristic length and the freestream velocity as characterstic velocity. 

They determine the wavelength of the disturbance of the shear layers. We observed that the so-defined 

cylinder Reynolds number R,j is about 20 times smaller than the Reynolds number used within this 

context. Hence, the numerical results may be compared with incompressible experimental results for the 

range of cylinder Reynolds numbers from 80 up to 4000. The experimental results show that at Rd = 40 

to 150 a regular vortex street is formed After a transition stage the irregular range begins at about 300 

in which turbulent fluctuations accompany the periodic formation of vortices. At ~eynolds numbers up 

to the critical one R,j = 2.105 periodic arrangements of vortices are observed experimentally in a 

turbulent ground flow. In our results the spacing ratio of the vortex street is in the range 034 ... 0.38 

which exceeds the classical Karrnan ratio of 0.28 for an invisicid potential flow. This is in accordance 

with experimental observations and may be explained by the finitesize viscous core of the eddies. 

Cornpressibility effects kcome visible by the plots of the flow field of the laminar vortex street in 

Fig. 6. A 20 per cent density drop in the vortex enters is observed. The pressure drop is of the same 
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magnitude and the turning point of the pressure profiles indicates the size of the vortex core. 7he  

vortices have a circumferential velocity distribution which is aptly modelled by a Hamel-Oseen vortex 

The expansion in the enters caused by the roll-up is an irrevessible process which can also be 

recognized at the entropy distribution The contourlines of the entropy have the same shape as the 

streaklines. Besides the wavelength of the disturbance another length-scale is the initial width of the jet. 

We observed that a change of the width does not affect the spacing ratio of the vortex street. 

Futhermore, defining a Strouhal number as the product of the shedding frequency of the large vortices 

and the characteristic time to (to = &/2uo, & initial jet width), the numerical results indicate that this 

number is also largely not affected by changes of do. A decrease in jet width is accompanied by an 

inversely proportional increase of the vortex propagation velocity and shedding frequency of the 

evolving Karrnan vortex street. 

Entropy 

Fig. 6: Mach number M = 1, Reynolds nurnber R = 1475 

The classical linearized stability analysis for the single vortex sheet predicts stability for Mach numbers 

M > 2 2 . However, Artola and Majda [2] - induced by numerical results obtained by Woodward - J 
showed that nonlinear instabilities arise. Via asymptotic analysis by a high frequency perturbation 

expansion they found nonlinear kinks appearing on the slipstream surface. These kink modes grow in 
time, collide and interact; ultimately, enough vorticity ist generated through nonlinear interaction of the 

kink modes so that the compressible vortex sheet rolls up. Our calculations bear out that supersonic 

vortex sheets are unstable and that the mechanism of vortex sheet roll-up and vortex street formation 

changes for higher Mach numbers. They clearly demonstrate that a Karrnan vortex street may also arise 
at high Mach numbers by nonlinear interaction of two vortex sheets. The vortex street is more stable in 



Fig. 7: Mach number M = 3, Reynolds number Re = 4425 

Fig. 8: Mach number M = 5, Reynolds number Re = 7375 
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the sense that secondary disturbances are more strongly damped. It seems that the wave patterns 
stabilize the vortex street. Steaklines of the flow at M = 3 and R = 4425 are sho~m in Fig. 7. The 

sinusoidal disturbance of the jet increases much slower than at M = 1. The spreading rate of the wake 

increases monotonously to a smaller value. That the instability of the vortex sheets must have another 

origin becomes more obvious at higher Mach numbers. Figs. 8 and 9 show results for Mach number 

M = 5. At R = 7375 no clear sinusoidal displacement of the vortex sheets appears, and only the width 

of the wake increases. At t = 0 3  small disturbances of the vortex sheets appear as kinks which do not 

roll up to srnall vortices at once. Two different kinds of kink modes seem to emerge. At t = 0.8 they 

are visible as a clear kink and as a thickening, respectively. Both move to the right and left. At time 

t = 1.2 they collide and then a roll-up inside the wake takes place. A Karman vortex street ist formed 

consisting of vortices with a triangular shape, moving to the right. At higher Reynolds numbers the 

instability increases more rapidly. At R = 59000 a number of kinks in the streaklines appear at t = 02. 
At this time a sinusoidal displacement of the vortex sheets occurs. Fig. 9 shows the streaklines at time 

t = 0.4 where a chaotic roll-up of the shear layers starts. Shortly afterwards four big and for small 

vortices appear. Later on the flow becomes more regular and a stable vortex street is formed. At 

t = 3.2 the srnall vortices besides the big ones are still visible. They merge with the big eddies and 

disappear. 

Fig. 10: Pressure distribution for M = 5, R = 7375, t = 0.8, 1.4, 3 2  

Fig. 10 shows the contour lines and 3-D plots of the wake at M = 5, R = 7375 for three different 

times. Due to the disturbance waves are initially created inside and outside the wake travelling parallel 

to the vortex sheets. The outside waves leave the computational region at about t = 0.4, and are 

followed by an asymmetric regular pattern of Machwaves. These form an angle of inclination of about 



20'. This angle increases up to 600 when the roll-up process begins and the vortices have evolved further 

to the right. This is due to the decrease of relative velocity between wake boundary and outer flow. At 

about t = 5.6 the Machwaves leave the computational region When the vortices are formed at about 

t = 2.0 the inside wake structure shows shocklets orthogonal to the vortex contours. They disappear at 

about t = 4.0 

Conclusions 

We considered the mechanism of the formation of a vortex street in a compressible fluid by interaction 

of two infinite vortex sheets. The numerical results were obtained by direct numerical simulations. At 

relatively low Mach numbers they correspond well to experimental observations for incompressible fluid 

flow. The calculations were performed for the range of Reynolds numbers where systematic 

arrangements of vortices have been experimentally observed in the wakes of bluff bodies. For 

increasing Reynolds number the numerical results show larninar-turbulent transition and interaction of 

the asymmetric long wavelength disturbance with fine-grained turbulence. The results at high Mach 

numbers indicate that the mechanism of the instability of shear layers changes and kink modes appear 

as predicted by Artola and Majda [2]. Our results demonstrate that at high Mach numbers a stable 

Karrnan vortex street is formed as well. The shock wave patterns support the formation of the vortex 

street. All calculations have been performed on a Fujitsu VP 50 vector processor. The computational 

effort varied between about 15 minutes and 5 hours depending on grid size, Mach and Reynolds 

number. 
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Outstanding Issues In the Area of Compressible Mixing 

By Dimitri Papamoschou 
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Issues that arose from the experimental investigation of the turbulent compressible shear layer in a variable-gas, 

variable-Mach number facility are explored. In that investigation, the growth rates were correlated with the con- 

vective Mach number M,, i.e., the Mach number in the frame of reference of the large-scale structure. Initially, 

M, was obtained theoretically, using arguments which give it approximately the same value on the two sides of 

the layer. The growth rate, normalized by its incompressible value, versus M ,  falls on a universal curve that 

decreases with M,. Implications of that curve, as well as possible intuitive scenarios for the growth-reduction 

mechanism, are discussed. Recent double-exposure photos of the flow reveal that, at high compressibility, M, has 

substantially different values on the two sides of the layer. Reasons for this difference between experiment and 

theory are suggested. The effect of the walls and the possible three-dimensionality of the flow are identified as 

open questions whose resolution is very important. 

Introduction 

The mixing layer between two parallel compressible streams (Fig.1) represents an interesting and 

challenging area of fluid mechanics. The unique nature of compressibility renders it a very different 

problem from that of its incompressible counterpart. Lately, it has attracted a lot of attention because of 

applications such as supersonic-combustion (scramjet) engines and chemical lasers. 

Fig. 1 Shear-layer geometry. 

Recent experimental studies of plane turbulent shear layers indicate that compressibility has a 

strong stabilizing effect on the flow, the growth rate at high compressibility being one-fifth of the 

incompressible one. These studies have advanced the concept of the convective Mach number as a 

compressibility-effect parameter. It is the Mach number in a coordinate system in which the large-scale 

structure is stationary. Its use for the turbulent case was first proposed by Bogdanoff 3. The shear-layer 



growth rate, normalized by its incompressible value, versus convective Mach numbcr collapses on a 

nearly-universal curve, as shown on Fig. 2. Similar universal trends are apparent in recent inviscid 

linear instability analyses 435, where normalized 1.0 I€! 'I 
amplification rates were correlated with the 

convective Mach number based on the phase speed 

of the disturbance. In fact, long before these . 0 . 6  1 
W 

analyses were performed, Mack had shown that \ 
W . 4  . 

the linear instability problem can be formulated in 

terms of a single parameter, the convective Mach / 
number based on the local mean values of velocity 

0 

and speed of sound and the complex phase speed. 

Although the above correlations are very useful 
Fig. 2 Normalized growth rate versus convective 

for engineering applications and for describing the Mach number. From Ref. 2. 

gross features of the flow, more light needs to be 

shed on the mechanism by which compressibility inhibits mixing. Knowledge of that mechanism will 

not only give us a much better perspective on the problem, it may also enable us to control mixing, via 

passive or active methods, and perhaps to enhance it in ways that do not introduce large losses in the 

system. The exploration of this subject, however, must be done simultaneously with the exploration of 

fundamental and intertwined issues that are largely unanswered: is the flow basically two- or three- 

dimensional? Does the presence of solid boundaries significantly alter the flow field from the 

unconfined case? Is the existing theoretical model for computing convective Mach numbers accurate 

for all ranges of compressibility? The last question stems from recent exeriments where the convective 

Mach number was measured experimentally 7. 

Open Questions 

The purpose of this report is to suggest some of the framework in which the above issues may be 

addressed. The effects of compressibility may be divided into two basic categories. First, 

compressibility is associated with density gradients in the mean flow. This is not an exclusive property 

of compressibility, as density gradients can be produced by incompressible mixing of gases with 

different densities andfor temperatures. In the laminar case, the problem of a shear flow with density 

gradients can be reduced to one with uniform density by coordinate stretching such as the Howarth 

transformation. In the turbulent case, the effect of density ratio on shear-layer growth rate has been 

measured by experiments, such as those of Brown & Roshko 9, and is relatively-well established. 

Second, compressibility may cause hindrance of communication among parts of the flow. This is a 

unique property that can drastically change the character of the flow. To illustrate this effect, consider a 

shear flow where, at a given streamwise location, fluid element A moves supersonically with respect to 

another fluid element B. Element B does not "know" what element A is doing, and vice-versa, in the 



same manner that an observer on the ground cannot hear a supersonic airplane approaching him. It is 

this impeded and sometimes absent interaction between parts of the flow that is largely responsible for 

the low mixing rate. This abstract notion, although intuitively useful, needs to be supplemented by a 

more detailed description of the flow interactions in order to have a well-defined picture of the physics 

of the problem. 

Finally, density and pressure gradients, stemming from the above two basic effects, produce a 

source of vorticity not commonly present in incompressible flows. It is represented by the VpX Vp term 

on the right-hand side of the compressible vorticity equation, often called the "baroclinic torque" term. 

Its effect is largest in flows with strong shock waves and large density ratios. 

These two basic effects of compressibility are reflected in the plot of growth rate versus convective 

Mach number shown on Fig. 2. The experimentally-determined growth rate, 6', is normalized by the 

incompressible growth rate, 6{, at the same density and velocity ratios. This normalization removes, at 

least to first order, the effects of density and velocity ratios and gives a quantity that is primarily a 

function of compressibility. Now, it is assumed that the mixing process is governed by a dominant 

instability wave, taken to be the large-scale structure with a constant velocity of propagation, U, (Fig. 

1). The Mach numbers in the frame of reference of this wave are 

for the high-speed side, and 

for the low-speed side, where U1, a l and U2, a2 are the freestream velocities and speeds of sound for 

the high-speed and low- speed sides, respectively. 

In the works of Papamoschou & Roshko I s 2 ,  M,, 

and M,, were calculated using a conjecture that the 

total pressures of the two streams in the convective 

frame be equal. It was assumed that, in that frame, 

a stagnation point exists between any two 

structures, at which fluid from the two freestreams 

comes to rest isentropically (Fig. 3). The suitability 

of this assumption for flows with high convective Fig. 3 Model of large-scale structure. 

Mach numbers will be examined later in this paper. 

This model gives that M,, and M,, are equal for streams with same specific-heat ratio and only slightly 

different otherwise. The fact that M,, and M,, are, in theory, very close or equal, suggested to the above 



authors that either of them could be used for expressing compressibility associated with the large-scale 

structure. In their work, M,, was chosen for correlating the growth rate. In the discussion that follows, 

however, it is not necessary to assume any relation between M,, and M,, except that arising from their 

definitions, (1) and (2). The symbol M, will be used to denote the convective Mach number for 

unspecified side of the shear layer. 

It is important to underline the differences between flow fields with M,<1 and those with M c > l .  

For M,<l, a disturbance that originates in the main flow decays exponentially with distance away from 

the layer. Such disturbance is classified as "subsonic". For M,>l, a disturbance propagates largely 

unattenuated along Mach lines originating at the structure, therefore it penetrates a long distance into 

the surrounding flow field. Such disturbance is classified as "supersonic". When a disturbance is 

supersonic, energy is radiated away from the main flow that could otherwise have been used for 

amplification of that disturbance. This can be stated more precisely by writing the conservation 

equation for the disturbance kinetic energy 

For highly-turbulent flows with large Reynolds numbers, such as those usually dealt with, the viscous 

terms in the equation for k are very small. Thus, its inviscid version should be a good approximation: 

Depending on whether the right-hand side of (3) is negative, zero, or positive, a disturbance is 

decaying, neutral, or amplifying. The first term of the right-hand side is commonly referred to as 

"turbulent production" and represents the transfer of energy from the mean flow to the disturbance via 

the Reynolds stress . r ~  = -pu'v'. Since TR is generally positive, so is this term, thus energy is supplied 

from the mean flow to the disturbance. Note that, since d u l d j  vanishes at the edges of the shear layer, 

this term is confined to the mean flow. The second term of the right-hand side, although negligible for 

incompressible flow, becomes important for compressible flow. For M, > l ,  the quantities involved in 

the correlations propagate unattenuated away from the layer. In that case, this term is not confined to 

the mean flow and represents the radiation of disturbance energy from the shear layer. The growth-rate 

versus M, correlation of Fig. 2 suggests that the magnitude of this term (without the minus sign) 

increases with M,, thus decreasing the magnitude of the entire right-hand side of (3). It also suggests 

that, at high M,, the right-hand side reaches some limit value, small but positive, corresponding to the 

plateau of the curve in Fig. 2. It is worth noting that the Reynolds-stress distribution may also be very 

different from that in subsonic flows. For M, > l ,  i t  will also exhibit radiative behavior and will be finite 

at large distances away from the layer. Lees & Lin ' O  and Gropengiesser " discuss (3) in more detail. 



Obviously, it would be very beneficial to know the distribution of the terms of (3) and how it 

changes with increasing compressibility. Experimentally, the velocity-pressure gradient correlations 

would be extremely-difficult to obtain. However, analytical and computational methods should be in a 

position to provide valuable information on these correlations. 

In most of the experimental and theoretical works in the literature, it is assumed that the disturbance 

is spanwise coherent. Departures from two-dimensionality may significantly alter the effect of 

compressibility on the flow. The instability of a disturbance propagating at an angle 9 to the mean flow 

is governed by M, cose, rather than by M,. For large 8, a disturbance that would have been supersonic 

if it were two-dimensional, may now be effectively subsonic. Morkovin l 2  suggests that, at high 

compressibility, the flow would prefer such oblique disturbances rather than two-dimensional ones. It is 

therefore imperative to ascertain experimentally whether and to what extent the compressible shear 

layer is three-dimensional. 

Given the unique nature of a supersonic disturbance, i.e. that it radiates away from the layer, the 

presence of walls within which the flow is confined could be of non-trivial consequences. Waves 

emanating from such a disturbance would reflect from the solid boundary and impinge back on the 

shear layer. How that would affect mixing is not currently known. Recent theoretical studies by Tarn 

& Hu l 3  suggest that the confined compressible shear layer exhibits several additional instability modes 

to those of the unconfined case. It is very difficult to conceive of an experiment where a supersonic 

shear layer is formed without any surrounding walls. If such apparatus were devised, however, it would 

be very valuable for researching the differences between confined and unconfined flows. 

The convective velocity of the large-scale structure (U,) has recently been investigated 

experimentally using a double-exposure schlieren system 7. Results indicate that when M, exceeds a 

value of about 0.7, U, tends to be very 
L ,  t' 2 

close to one of the freestream velocities. ~ 1 7 ~ 2 8  -=o .ii -=L, 2 I I ,C, , I ,  1 = - - [ l  111 \ 

[ ' l  f ' 
Fig. 4 shows a double-exposure photo of a 15 
shear layer formed by helium at M=1.7 "" (' "1=17c( 

and nitrogen at M=2.8. The time interval ,, ,, ,,=2,x 

between the two exposures is 25.4 p. =-+ 
.1t=25.1 psec 

Arrows indicate features of the large-scale 

structure and their displaced position in l , = l  240 rn!\ 

that time interval. Notice the difference L , 2 = o l o  

between the theoretical value of U, (770 

m/s) and the experimental one (640 m/s). 

This trend of U ,  to be close to either U, 

or U 2 ,  depending on the test case, makes 

the convective Mach numbers M,, and M,, Fig. 4: Double-exposure photo of turbulent 
very different from each other. This is in turbulent shear layer. From Ref. 7. 



contrast to the theoretical model, outlined above, that predicts them to be very close or equal. 

It must be emphasized that the theoretical model does not take into account the existence of shock 

waves formed on the structure when M, becomes supersonic. This omission could be responsible for 

the difference between theoretical and experimental M,, because the shock waves generate total- 

pressure losses not accounted for in the existing model. The presence of solid boundaries in the flow 

could also affect the determination of U ,  : unless completely canceled by surrounding expansion waves, 

shock waves originating from the structure will reflect back on the shear layer, possibly altering the 

"boundary condition" by which M, and U ,  were computed. Resolution of this issue is very important 

because U, determines the entrainment ratio, which in turn controls the mixing and combustion 

processes. 

Note that the deviation of experiment from theory starts where the plot of growth rate versus M, 

reaches the plateau of about 0.2. Thus, the growth rate still collapses on a universal curve when 

correlated with the highest of the two experimentally-determined M,  'S 7. 

Conclusion 

Several issues related to compressible mixing are identified whose resolution is crucial for making 

worthwhile progress in this field. There is a need for a great amount of experimental work directed 

toward answering fundamental questions that remain open, such as three-dimensionality of the flow 

field, effect of the walls, and dynamics of the large-scale structure. Not all questions can, however, be 

addressed by experiment only. There is also a need for theoretical and computational studies, which 

should focus in providing physical explanations of the processes involved in compressible mixing. The 

turbulent correlations that govern instability and mixing would be great candidates for such studies. 
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EFFECT OF PARTICULATE ADDITIVES ON HEAT TRANSFER FROM A SHOCK-INDUCED 

TURBULENT BOUNDARY LAYER 

G.T. Roberts, R.A. East, N.H. Pratt 
Department o f  Aeronautics and Astronautics 

University o f  Southampton 

Introduction 

Evidence exists that significant reductions in gun barrel wall heat flux (and hence extension 

of  the barrrel life) can be effected by adding particulate matter t o  the non-steady, 

turbulent boundary layer which develops behind the moving projectile. The mechanisms 

causing the heat transfer reduction are uncertain but may be related t o  the phenomenon, 

noted in incompressible turbulent boundary layer flows, where additives (either in the 

form of long chain molecules o f  length comparable t o  the Kolmogorov scale of  turbulence 

in the case of  water flows, or solid particulates in the case of  gaseous flows) reduce the wall 

skin friction. 

In order t o  investigate further the heat flux reduction phenomenon, the present work was 

undertaken t o  measure the wall heat flux from a non-steady, turbulent boundary layer in a 

shock tube, where the freestream Mach number was supersonic and the wall was initially 

coated with a thin layer of  talc particles of  mean diameter D = 4.5pm. 

Experimental Conditions 

The shock tube experiments were performed at Southampton University (AASU) and at the 

Australian National University (ANU) under conditions of  similar freestream speeds and 

temperatures, but the experiments at ANU were made at higher pressures and densities. 

The data shown here were obtained using an inert gas (argon) and the particle Reynolds 

numbers,based on the estimated mean wall shear velocity, were in the range 60 t o  600. 

Apart from varying pressure (and hence density), the main variable in the experiments was 

the initial loading (mass per unit area) o f  the particles deposited on the wall prior to  the 

run. A summary of  the main experimental conditions for the t w o  sets of experiments are 

given in Table 1. 

Results 

In Figure 1, which was obtained from experiments performed at AASU, the rate of  heat 

transfer (qw) is shown as a function o f  time for the clean flow and for two cases of  dusty 

f low in which the initial particle loading (mp) was 2.2 and 8.3 gm-2 respectively. 

In the case of  the clean flow, the rise in heat transfer at  about 2Oys following the passage 

o f  the shock indicates transition f rom laminar t o  turbulent  boundary layer flow, 



corresponding to  a transition Reynolds number of about 106. The rate of  heat transfer 

then fell with time in accordance with the expected turbulent boundary layer growth. 

In the case of the dusty flows, large reductions in heat transfer are shown to  occur with the 

experimental records showing large intermittency. The greatest reductions in heat transfer 

occurred with the larger particle loading. However, beyond about 160ps following shock 

transit the dusty results tend t o  approach the clean f low data. The heat flux signals have 

been frequency analysed (not shown here) and indicate marked changes in spectrum with 

changes in the initial loading of  the particles. However because of  the limited dynamic 

response o f  t h e  t h i n  f i l m  hea t  t rans fe r  gauges and  associated c i rcu i t r y  

(102 H z  < f < 106Hz), it is not possible t o  arrive at any firm conclusions regarding the 

significance o f  the observed change in spectrum. 

Figure 2 shows the variation in total heat flux (Q),  found by integrating q, over the run 

time of 200 ps, with changes in initial particle loading. For the experiments performed at  

AASU, the heat flux reduces as the init ial loading increases and appears also t o  be 

dependent on the freestream (and hence wall) gas density: for a given loading o f  

particulate the reduction in heat flux decreases as the gas density increases [Ref l ] .  

Also shown in Figure 2 are data obtained from experiments at ANU which, although 

exhibiting much greater scatter, confirm that the heat flux reduces with increasing loading 

of  particulate. However, unlike the AASU data, the ANU data do not indicate any strong 

dependence on gas density. In fact the heat flux reductions observed in  the ANU 

experiments were much greater than anticipated from extrapolation of  the trends shown 

by the AASU data, leading t o  the tentative hypothesis that the mechanisms of  heat transfer 

reduction may be stronger at the higher gas densities [Ref 21. 

Discussion and Conclusions 

These results indicate that the large changes in the rate o f  wall heat transfer, which occur 

when the boundary layer wall is  coated wi th a uniform distribution of  particulate, can only 

satisfactorily be explained in terms of  a strong interaction between the particulate and the 

turbulence structure in the boundary layer, with consequent changes in the mean velcotity 

profile. The information gained from the changes in the frequency spectrum o f  the 

fluctuations in wall heat transfer rate in the AASU experiments are not  regarded as 

sufficiently reliable t o  confirm that a shift in turbulence spectrum t o  lower frequencies 

occurred between the 'clean' f low and the 'dusty' f low experiments, which would have 

been interpreted as indicative of  a change in the dissipation process. 

Laser beam attenuation measurements confirmed that particulate was rapidly lifted from 

the walls and some particles even jumped outside the boundary layer. The greatest 

concentration of particulate was, however, seen closer t o  the wall. I t  may be conjectured 

that the particles performed certain random trajectories, in which they were initially lofted 



from the surface by the action of shear, but subsequently impacted and rebounded from 

the surface, displacing further particulate material from the surface layer as they did so. 

The process described here is  similar to  that of  saltation [Ref 31 and although the details of 

the interaction of  these lift ing particles from the 'wall' with the turbulence structure in the 

boundary layer are still not clearly understood, nevertheless the resulting changes in the 

wall shear stress, the effective roughness height, and the mean velocity profile have close 

analogies wi th  what we estimate are the overall physical processes present in  our 

experiments, even though the combination o f  shear velocities and gas densities were far in 

excess of  the range normally considered necessary for saltation of  particles, of  the given 

size and density, t o  occur. 

Although many attempts have been made to  model the results obtained in  these 

experiments both analytically, following the work on dusty gas flows by Saffman [Ref 41 

and Lumley [Ref 51, and numerically [Refs 6 and 71, we believe that further work is needed 

t o  model correctly this f low field interaction where the particulate size, D, is typically many 

times larger than the scale o f  the near wall turbulent structures present in the 'clean' wall 

case and is, in particular, much greater than the microscales of the turbulence. 

Acknowledqements 

The experimental work was carried out  with the support o f  the Procurement Executive, 

Ministry of  Defence. The authors are indebted t o  Professor G.M. Lilley for his many helpful 

discussions in preparing this paper and for presenting the work at  the Workshop on the 

Physics of  Compressible Turbulent Mixing, Princeton, October 1988. 

References 

[ l ]  Roberts, G.T., East, R.A. and Pratt, N.H. "Surface heat transfer measurements from a 

turbulent dusty boundary layer" in Proc. 14th Int. Symposium on Shock Tubes and 

Waves, Sydney, 1983. 

[2] Roberts, G.T. et al "Shock tube measurements of  convective heat transfer from a 

high Reynolds number, particle-laden turbulent non-steady boundary layer " in 

Proc. 15th Int. Symposium on Shock Tubes and Waves, Berkeley, 1985. 

[3] Owen, P.R. "Pneumatic transport". J Fluid Mechanics,%, part 2, pp407-432, 1969. 

[4] Saffman, P.C. "On the stability o f  a laminar f low o f  a dusty gas". J. Fluid 

Mechanics, B, Part 1, pp 120-128,1962. 

[5] Lumley, J.L. "Two-phase, and non-Newtonian flows" in 'Topics in Applied Physics, 

Volume 12 : Turbulence, 2nd edition. Bradshaw, P (ed). Springer-Verlag, pp 289- 

324,1978. 



[6] Buckingham, A.C. "Turbulent boundary layer thermochemical attack on coated 

walls" in Proc. 1984Jannaf Propulsion Meeting, New Orleans. 

[7] Ludwig, J.C., Rhodes, N. and Tatchell, D.G. "Numerical modelling of the flow of  a 

hot, particle-laden gas" in Proc. 7th Int. Symposium on Ballistics, The Hague, 1983. 

Table 1 : Experimental Conditions. 

Freestream pressure (bar) 

Freestream temperature (K) 

Freestream density (kgm-3) 

Freestream velocity (ms-1) 
(shock fixed) 

Freestream velocity (ms-1) 
(Laboratory coordinates) 

Wall shear velocity (ms-1) 

Particle Reynolds number 
Re = u,D/v, 

Heat flux (Wm-2) 
(clean flow) 

AASU 

3-1 5 

2700-3000 

0.6-2.4 

450 

1350 

50 

60 

O( 107) 

40-1 20 

2600-3000 

8-20 

450 

1350 

40 

600 

O(108) 
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Figure 1; Typical dusty/  non-dusty hea t  f l u x  p r o f i l e s  - AASU experiments 
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Figure 2 ;  Heat f l u x  reduct ion  vs p a r t i c l e  mass loading  





PERIODIC SLOT BLOWING OF A 
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1. INTRODUCTION 

The present investigation was initiated to help improve our understanding of 

unsteady shock-wavefioundary layer interactions, with the specific aim of 

determining the effect of the unsteady shock movement on the boundary layer 

turbulence. An unsteady shock-wavefioundary-layer interaction was produced on a 

flat plate by introducing periodic blowing through a spanwise slot in the wall at 

frequencies up to 5kHz. The incoming flow conditions were M, - 2.84, Re,/l - 6.5 X 
107, and 6, - 26 mm. Measurements of the fluctuating mass flux and wall pressure 

were made, and the unsteady flowfield was visualized through stroboscopic schlieren 

videography. Since the blowing was periodic, phase-averaging could be used to 

identify the downstream effect of the shock oscillation. The results suggest that 

the main effect of the unsteady shock motion is to displace the incoming boundary 

layer flow without affecting the turbulence levels significantly. More 

interestingly, the speed of the upstream and downstream shock movement was found to 

be only a small fraction of the freestream velocity, and it was not strongly 

affected by the amount of blowing, or by the frequency of blowing. 

2. EXPERIMENTAL FACILITY. APPARATUS. AND TEST CONDITIONS 

The experiments were performed in the Princeton University 203 X 203 mm (8 X 8 

in.), Mach 3, blowdown wind tunnel. For all tests, the nozzle-wall boundary layer 

was used. At the position of the injection slot, 1.95 m downstream of the throat, 

the layer was typical of a zero-pressure gradient fully turbulent boundary layer, 

and it obeyed both the law of the wall and law of the wake (Taylor 1984; and Settles 

et al., 1976). Its characteristics are summarized in Table I. 

The freestream Mach number was fixed by the nozzle geometry at 2.84 e l%, and the 

stagnation pressure was held fixed at 0.69 X 106 Pa 2 1% (100 psia). The stagnation 

temperature remained fairly constant over the test period at 270 K 2 2%. The 

freestream turbulence level was about 1 to 1.5% (Spina & Smits 1987). 

The periodic blowing apparatus operates somewhat like a siren in that a stream of 

air is clipped periodically to produce a high-frequency, pulsed jet of air issuing 

through a spanwise slot in the floor of the test section (see figure 1). The slot 

is opened and closed by a hollow slotted drum, spinning within a pressurized plenum 

chamber. The frequency of the blowing was controlled by the speed of the drum and 



could be safely set as high as 5 kHz. The amount of air injected through the 

injection slot into the boundary layer was controlled by varying the supply pressure 

in the plenum chamber and by varying the width of the slot. Since the flow mostly 

responded to the net amount blowing rather than how it was achieved, the slot width 

was fixed at 3.2 mm (1/8 inch), and only the plenum chamber pressure was varied to 

control the blowing flow rate. 

The static pressure variations were measured using miniature differential pressure 

transducers manufactured by Kulite Semiconductor Inc., Model XCQ-062-25-D. In this 

study the transducers were used primarily to reveal the dynamic character of the 

low-frequency shock motion (500 Hz to 10 kHz) and the limited frequency response of 

the pressure transducers was of no great concern. The transducers were positioned 

along the centerline of the tunnel floor, with a minimum spacing of 4.2 mm. No 

wall-pressure measurements were made downstream of the slot. 

The fluctuations in the boundary layer mass flux were measured using a DISA 55M10 

constant-temperature hot-wire anemometer, according to the technique described by 

Smits et al. (1983). To reduce the temperature sensitivity of the anemometer, so 

that the output was sensitive only to variations in mass flux, the probe was 

operated at an overheat ratio of 0.8, yielding an uncertainty in the measured 

<(pu)'>/(pU) of -5% to 9% (Smits & Dussauge 1988). The frequency response was 

always in excess of 100 kHz. 

In digitizing, the anemometer output signal was split into two components, a 

fluctuating and a mean. The mean was obtained by low-passing the signal at 10 Hz 

and sampling at a relatively low rate. The fluctuating part of the signal was 

obtained by high-passing the signal at 10 Hz. This fluctuating signal was amplified 

to fill the range of the A/D converter, filtered at a cut-off point of 250 kHz, then 

sampled at 500 kHz or 1 MHz. The signal from the drum encoder was also recorded so 

that the data could be phase-averaged using the blowing cycle phase. 

Every run was visualized using a schlieren videography system. The spark source 

of the schlieren system was strobed slightly out of phase with the periodic blowing 

frequency to reveal the flow response in stroboscopic "slow motion." In this way, 

the conventional video camera was converted into a psuedo-high-speed camera to 

provide 'movies' of the flow (see Selig 1988 for further details). 

3. RESULTS 

With the amount of blowing fixed at 9% of the freestream mass flux, that is, 

(PV)~~~~/(~U), - 0.09, the flow was examined for blowing frequencies of 1,2,3, and 4 
kHz. Wall-pressure data were taken upstream of the slot for each case, and mass- 

flux data were taken downstream for the 2 kHz case only. Flow visualization using 

the schlieren videography system demonstrated that the flow structure depends on the 

frequency of blowing. At low frequencies an oblique shock forms as the incoming 



flow is deflected by the blowing. As the blowing continues, this shock travels 

upstream at a speed of the order of 50 m/s to reach a maximum position upstream of 

the slot. When the blowing stops, the shock dissipates as it is convected 

downstream at a speed of the order of 120 m/s. The sequence is repeated with the 

start of the next blowing cycle. As the blowing frequency increases, a critical 

frequency is reached (between 2 and 3 kHz) at which the downstream-moving shock just 

reaches the slot as a new blowing cycle begins. At still higher frequencies the 

shock does not reach the slot before the new blowing cycle starts. As a result, the 

blowing triggers the formation of a second shock which itself travels upstream and 

intersects the first shock. The two shocks merge into one, move upstream to a 

maximum position, and on returning downstream encounter another shock produced by 

the next blowing cycle, and so on. At the higher frequencies, disturbances 

travelling along the shock are observed. These disturbances deform the shock into a 

wave-like shape (see figure 2). 

Wall-pressure time histories for the 1 kHz and 4 kHz cases are shown in figure 3. 

At the lower frequency, a relatively steep rise in the mean wall pressure is seen 

with the passage of the shock upstream, followed by a more gradual reduction of the 

wall pressure as the shock passes back downstream. Behind the shock at X = -12.7 mm 

(X is measured positive downstream from the back edge of the slot), the normalized 

pressure rise for this 1 kHz case is roughly 1.75, which at this Mach number cor- 

responds to an 8' turning of the flow with a shock angle of 27'. This estimated 

shock angle is in good agreement with that measured from the flow visualization. At 

the higher frequency, the pressure at X - -12.7 mm never returns to its upstream 
value, indicating that a shock wave is always located upstream of that point. 

The mean wall-pressure data, given in figure 4, shows that the mean pressure 

distribution is virtually independent of the blowing frequency. The rms wall- 

pressure levels (figure 5) begin to rise further downstream as the blowing frequency 

increases; at lower frequencies there is more time for the shock to penetrate 

upstream before the blowing stops. As the blowing frequency increases, the blowing 

period approaches the time constant of the shock motion, and as a result the maximum 

fluctuation level decreases at higher frequencies. 

The mass-flux turbulence intensity profiles for the 2 kHz case are given in figure 

6, and the spectra for two locations are given in figure 7. The peak in the 

turbulence intensity profile at X - 12.7 mm is in the region of the shock 

oscillation and should not be considered as 'true' turbulence. Discounting this 

shock-induced peak, the turbulence intensities in the outer part of the boundary 

layer downstream of the slot are very similar to the upstream levels, except for an 

outward displacement of about 5 mm, probably due to the intermitent presence of the 

thin separated zone near the wall. 

The mass-flux spectra show a spike at the blowing frequency throughout the 



boundary layer, indicating that the periodic motion of the shock makes a small 

contribution to the turbulence. The phase-averaged results indicated that for 

stations downstream of X - 12.7 mm the periodic component contributes less than 25% 
to the mean square intensity (see figure 8). 

4. CONCLUSIONS 

Periodic blowing was found to have relatively little effect on the flat plate 

boundary layer except for a small displacement away from the wall. The speed of the 

shock motion in both the upstream and downstream directions was only a small 

fraction of the freestream velocity, and it was not strongly affected by the level 

of blowing. Andreopoulos & Muck (1987) in their study of compression ramp flows 

found that the mean frequency of the shock oscillation was constant for corner 

angles from 16" to 24". However, since the zone of shock oscillation increases with 

corner angle, and the results from periodic blowing showed there were limits on the 

shock speed, the frequency should not be constant but vary inversely with an 

amplitude or the range of shock oscillation, that is, the frequency should be higher 

for smaller turning angles. Indeed Dolling (1987), using a sophisticated 

conditional-sampling method developed by Narlo (1986), found that the mean frequency 

of the oscillation increased with decreasing ramp angle. 
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I Test Conditions I 

I 
- - - . - . .. -. . . - . . - 

p, = 0.69 X 106 Pa (100 psi) 
T- = 270 K 

Table I .  Boundary layer 
characteristics and incoming flow 
conditions. 
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Fig. 1 Periodic blowing apparatus. 



Fig. 2 Videograph of 5khz case showing disturbances travelling along shock. 

2 
8 1.75 

la 150 \ 
a 125 

1 

2 

"7 

8 L75 
I Q  1.50 \ 8 l a 
a 

1 

\ 
la 

2 
8 L75 \a 150 
a 125 

1 

* l 

"? 

W 0 

O 

x (mm) 

t (msec) Fig. 4 M e a n  w a l l - p r e s s u r e  

distributions. Blowing frequency: 0, 
2 1kHz; A ,  2kHz; +, 3kHz;X, 4khz. 

8 1.75 

\a 150 "? 

a 125 
l 

2 

2 0 a 8 1.75 
\a 150 
a 1.25 

1 "? 

2 la 
8 1.75 2 

\a l50 " 9 
a 1.25 

1 

0 

45 l 
"? 

W 0 0 

0 L6 3 2  4.8 6.4 8 0 

t (rnsec) 0 

Fig. 3 Wall-pressure time histories 
Blowing frequency: (a) 1 kHz, 
(b) 4 kHz. 

Fig. 5 R m s  w a l l - p r e s s u r e  
distributions. Blowing frequency: 0, 
1kHz; A ,  2kHz; +, 3kHz; X ,  4kHz. 



Fig. 6 Mass-flux turbulence intensity Fig. 8(a) Phase-averaged mass-flu 
profiles, 9% blowing at 2 H z :  0 ,  X = turbulence intensity profile, 9% 
12.7 mm; A, X - 25.4 mm; +,  X - 38.1 blowing at 2kHz: 0, X = 12.7 m m ;  A, X = 

mm; X ,  X - 50.8 mm. 25.4 mm; + ,  X - 38.1 mm; X , X - 50.8 
mm. 

e 5 0  

4.0 0 
3 0 

Q: 

$; 3 0  

2 
$ l." - 2 

C( 

10 

0.0 

M S  ' 2 
3 Q 

( 0 1  r = 12 7 m m  X , , 
m 

0.0 1.0 2.0 3 0 4.0 5.0 

t (seconds) *10-~ 

0 0 720.0 1440.0 2160.0 2860.0 3600.0 

;p (degrees) 

Fig. 8(b) Time traces of instantaneous 
mass-flux showing broad-band (pu)' and 
phase-averaged component (pu)'at X - 51 
mm, y = 23 mm ( 9 %  blowing at 2kHz). 

Fig. 7 Energy spectra of the mass 
flux. Blowing at 2 kHz: (a) X - 12.7 
mm; (b) X - 50.8 mm. 
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A b s t r a c t  
A fully de-aliased, two-dimensional Fourier spectral method 
simulation is described. This numerical method is used to study the 
spectral distribution of relative compressible and magnetic energy 
versus initial rms Mach number for decaying turbulence. Results 
from fluid (Navier-Stokes) simulations are compared with magneto- 
fluid (MHD) simulations. Future applications of the numerical 
procedure are also discussed. 

I n t r o d u c t i o n  
As is well known, compressible turbulence and mixing plays an 
important role in many different phenomena: atmospheric reentry, 
scram-jet engines, aerosol dispersal, explosion dynamics and in the 
enhancement of chemical kinetics, to name a few. In all these highly 
compressible processes, several generic features occur and interact 
with one another: shocks, turbulence, boundary influences, multiple 
reaction species, ionization, magnetism and complex thermodynamic 
effects. These highly non-linear processes are directly susceptible to 
few analytic approaches, but instead must be understood through 
observation in either physical or numerical experiments. 

Here, we would like to describe a fairly general two-dimensional 
numerical experimental apparatus which can handle both fluid and 
magneto-fluid problems. Initially, we consider only density, velocity 
and magnetic field dynamics, the pressure being determined by a 
polytropic equation of state; the capability to handle other generic 
processes will be added incrementally, as will an extension of the 
codes to three-dimensionality. Following a brief description of the 
fluid and magneto-fluid codes, we will examine, in a magneto-fluid 
context, a phenomenon uncovered by Passot and Pouquet [ l]  in 
Navier-Stokes fluids: the qualitative difference between flows at low 
and high Mach numbers, with respect to the relative amount of 



compressible energy and its spectral distribution. Then, we will 
examine the spectral distribution of magnetic energy and its relation 
to compressibility. Finally, we will conclude with possible future 
extensions and uses of the codes. 

C o m p u t a t i o n a l  P r o c e d u r e  
As we have mentioned, a polytropic equation of state is used, 
obviating the need for an energy (temperature) equation; in its place 
we have added a magnetic field evolution equation to the basic 
Navier-Stokes equations. The basic, non-dimensional equations are: 

= -PVp + jx(B,+b) + V .[p(vv + 1 lV. v)] 
3 ( lb)  

where motion takes place in the X - y  plane, and all variables are 
functions of X ,  y and the time t only. The velocity u and magnetic 
field B are measured in terms of reference values UO and B,, 
respectively, while the reference values for length and time are LO 
and TO, respectively. The magnetic field consists of two parts, 
B=Bo+b, i.e., an externally produced mean part BO and the internal, 
turbulent part b .  Furthermore, other quantities and their (units) are: 

p=ek : mass density (p,) 

p=pr : pressure (p,), Fconstant 

p=pv : viscosity, v=constant (~~$r,) 

q : electrical resistivity (L2$ro) 
PS- : a measure of compressibility 

pou: 
a=ae, : magnetic potential (B&,) 

I=eiei : unit 2nd rank tensor 

In those situations when the magnetic energy is comparatively small, 
U0 may be an rms fluid velocity ~ o = d m ,  while in the case where the 
magnetic energy is comparatively large, U o = V ~ - B d K  (cgs units); 



B0 is either the mean field strength, or the rms value of b and VA is 
the Alfven velocity. If the magnetic and kinetic energies are 
comparable, V n = m ,  and U0 can represent either one. 

The numerical procedure we use is a de-aliased spectral transform 
method of the Orszag-Patterson type [2,3]. Also, note that we use the 
natural logarithm of the density rather than the density iself as the 
computational variable; this insures that any numerical time- 
integration scheme will not produce negative values of density. 

In the numerical procedure, the dynamical fields are expanded in 
Fourier series: 

Here, the position vector is x = ( x , y ) ,  the wave vector is k=(kx,kv) and K 
is the maximum modulus of k .  This yields a set of many hundred or 
thousand ordinary, coupled differential equations. Time integration 
is performed by a second order Runge-Kutta method with the 
dissipative terms being evaluated implicitly. 

Aliasing is avoided in the formation of high-order products in 

p, pY, p - l  

through the use of the expansion 

The nth  term in the series is a fully de-aliased quadratic product 
formed from the the preceding term and ahln, and summation 
continues until machine accuracy is reached. The curly brackets ( a,b ) 
signify that a single, de-aliased quantity has been formed from a and 
b by the Patterson-Orszag transform method [3]. 

Finally, the arrays which contain dynamic variables, their derivatives 
and products are minimal arrays, rather than full FFT arrays (of 
which there are only two in the code). In a Patterson-Orszag de- 
aliasing method [3], the FFT arrays are somewhat sparse, a 2-D array 
containing 30% zeros and a 3-D array containing 56% zeros. The 



minimal array consists of only the non-zero FFT array elements; 
mapping to and from the FFT arrays is accomplished by a bit-vector 
or order array. Mapping into the minimal array also serves the 
purpose of isotropic truncation, as required by the Patterson-Orszag 
method [3]. 

It should also be noted that the viscosity P we use here, in equation 
(lb),  is linearly related to the density. This form is a great 
simplification of theory [4] and is chosen since the scalar viscosity of 
a fully ionized plasma (i.e., magneto-fluid) is believed to vary as T~~~ 

[4]; with a polytropic equation of state, T = P ~ ' ,  so that using Y=7/5 (as 
would be the case for a diatomic gas), we have P P v ,  where v is 
constant. If this form of the viscosity is heuristically adopted in the 
Navier-Stokes case also, it removes the constraint imposed by 
density fluctuations which limited the time-step of Passot and 
Pouquet [ l ] .  In the MHD case, however, the presence of the Lorentz 
force term requires that this constraint be retained. 

We have used this algorithm to study numerically [5] theoretical 
predictions made earlier by Montgomery, et al., [6] to explain the 
observed spectral structure of small amplitude turbulent density 
fluctuations in the interstellar medium [7]. The theoretical 
predictions made by Montgomery, et al., [6] followed from the 
assumption that interstellar density fluctuations were inherently 
related to the magnetohydrodynamics rather than just the 
hydrodynamics of the interstellar medium. The prediction was, in 
effect, that the total pressure (magnetic plus thermodynamic) was 
essentially constant at the smaller spatial scales. Assuming (among 
other things) that the statistical behavior of both kinetic and 
magnetic energy spectra was described by k-513 led to the conclusion 
that the omnidirectional density fluctuation spectrum behaved as 
k-513, which agreed quite well with experimental observations [7] 
(which spanned 12 spatial orders of magnitude); in contrast, a long- 
standing, purely hydrodynamic argument [8] lead to a predicted k-713 
behavior. The numerical work [5]  verified, in turn, that the theory 
also matched data generated by direct numerical simulation, even 
when the Reynolds numbers are not large enough to expect inertial 
range power laws. 

In the next section we use our algorithm to explore the evolution of 
the relative compressible energy spectra in homogeneous fluids and 
magneto-fluids with respect to initial rms Mach number. We also 



report on the effects of compressibility on the evolution of turbulent 
magnetic energy spectra. 

Numerical Results 
The numerical results we present here are broken into two sets: 
First, we allowed the Navier-Stokes (N-S) and MHD versions of our 
code to run for relatively long times on a 64x64 grid with and 
Y=1.4, for many values of 0; here, we show results for 0=12.5 and 8. 
In all runs, the time step size satisfied the usual CFL criteria (in the 
MHD code this value was divided at each iteration by the maximum 
grid value of P-', the previously mentioned constraint of Passot and 
Pouquet [l].) The initial condition of all the 64x64 N-S runs was to 
have the same purely solenoidal ( i . e . ,  V - v =  0 at t=O) velocity field; 
initially, El was normalized to an rms value of unity and l v(k)I2 
varied as e-(k-5)'12 with the v(k) having random phase. In the MHD 
runs, an initial magnetic field b(k)  of the same spectral 
characteristics as this initial v(k)  (but independently random phase) 
was also used. In these 64x64 runs, v=~=0.005 and the maximum 
computed dissipation wave number was around 50, while the 
microscale Reynolds #'S typically started around 40 but fell to about 
15.  

Since the initial rms velocity field was unity, the initial rms Mach #, 
-112 

Ma, was ~ a = ( k )  ; thus, the rms initial Mach #'S corresponding to 
0=12.5 and 8 are Ma=0.239 and 0.299, respectively. These values 
are representative of a larger range we used to bracket Ma=0.3, the 
threshold value that Passot and Pouquet [ l ]  had observed, above 
which the relative compressible energy in the smaller scales of N-S 
flow became markedly larger. In Figure 1, we give a graphical 
comparison between the N-S and MHD cases. Here, we add up 
various energies within three equi-areal, concentric and contiguous 
annuli in k-space in order to get a measure of their relative 
proportions in the large, medium and small scales of flow. We define 
the large, medium and small scales as those for which OSkSK13, 
K/3&<2K/3 and 2K/3<kIK, respectively. 

(The energies we are concerned with here are 



E , S ~  U ,121 : sole~idul  part of kinetic energy 

E , ~ ~ , ~ U , / ~ ]  : compressible part of kinetic energy 

E ~ < P ~ ( ~ Y - ~ -  l)I(y- l)] : internal energy ~ ~ q b - b / 2 ]  : magnetic energy 

EK = E, + E, : total kinetic energy E,, = EI + E, : total compressible energy 
E = EK + EI + EB = Ecom + E, + EB : total energy 

while two other important quantities are 

J= [ ( ~ x b ) ~ ]  : Mean square current 

The square brackets signify a volume average over the 
computational box: 

and the solenoidal and compressible parts of the momentum are, 
ps= { pus) and p,= { pu,) , respectively.) 

The second set of computations we wish to present were done on a 
256x256 grid and consisted of two N-S runs ( ~ 1 . 4 ,  B=25 and 0=1) and 
two MHD runs (~=1.4, D=25 and D=l). The initial conditions for all these 
runs were the same: at t=O, all the energy was in the solenoidal part 
of the velocity field, which had random phase and an energy 
spectrum which varied as e-(k-10)'/64; furthermore, [v2]=1 at t=O, so the 
initial Ma corresponding to D=25 and D=1 were 0.169 and 0.845, 
respectively. In the two MHD runs, there was no initial turbulent 
magnetic field energy, but there was a mean magnetic field B O = O . O ~ ~ X  
present. The interaction of the velocity with the mean field resulted 
in the generation of a turbulent magnetic field b ,  as seen in Figure 2, 
which shows the time behavior of the total energies, enstrophy and 
mean square current for these four runs. In these 256x256 runs, 
v=~=0.002 and the maximum computed dissipation wave number was 
around 75, while the microscale Reynolds #'S typically started 
around 44 and fell to about 32. 

In Figure 2, we also compare the energy spectra for these four runs 
at similar times in their evolution. There are two time scales 
inherent in these simulations; one is set by dissipation and the the 
other by compressibility. Variation of the 'solenoidal' energy 



ESO~ = ES +EB occurs on a 'dissipation time scale' while Ecom varies on a 
'compression time scale'. We choose to standardize in terms of the 
time it takes a sound wave to cross a unit distance; thus, To-C,', 
where CS=& is the sound speed. (If the EB and J curves were 
removed from the plots in Figure 2, what remains is essentially the 
N-S results.) Finally, in Figure 3, we show physical space contour 
plots for the 256x256, MHD, P=l run. 

Discuss ion  
Compressibility has some interesting effects on MHD turbulence. 
First, as shown in Figure 1, the effect observered by Passot and 
Poquet [ l ]  is mitigated in the case of MHD: there is both more 
compressible energy at small scales for low M a  and less at high M a 
than in the corresponding N-S flows. Second, as seen in Figure 2, 
magnetic energy appears predominant at small scales, although 
predominance decreases with increasing compressibility (Ma). This 
small scale magnetic predominance manifests itself in the many 
intense current filaments seen in Figure 3c. These observations 
reinforce earlier results [5,6], in that they underscore the 
importance of magnetic field fluctuations in the dynamics of a 
compressible, turbulent and conducting fluid. 

As a final point, we note that if BO * 0, magnetic dynamo processes 
appear possible, as indicated by the behavior of EB and J in Figure 
2(a,b), even in two dimensions. (No 'anti-dynamo' theorem can be 
proved in the presence of even a small dc mean field Bo.) This is a 
point we plan to explore numerically by introducing mechanical 
forcing into our MHD code. In addition, we plan to add a 
temperature equation, using 7 = ln(T) as our primary variable, rather 
than directly using the temperature T. 
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Figure 1. 64x64 runs: Ew, /@W, + Es) vs time for large (X), medium 
(U) and small (0) scales, for N-S with initial M u  : a) 0.239, b) 0.299; 
for MHD with initial Mu : c) 0.239, d) 0.299. 



Figure 2. Energies, enstrophy (R) and mean square current (J) for 
256x256 MHD runs with initial Ma : a) 0.169, b) 0.845; energy 
spectra shortly after J - R for these same runs: c) initial Ma =O. 169, 
d) initial Ma =0.845. 
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1. FORMULATION OF THE PROBLEM 

The problem which we intend to consider in this talk can be described 
as the study of relations between microscopical properties of matter and 
their macroscopical manifestation. One of the final goals, which is still 
unfortunately very far from us, is to understand whether turbulent 
motions may be thought as collective motions of some modes having a 
thermodynamic origin. We shall make several speculations about this at 
the end of this talk. 

The matter which we shall deal with here is classical. It means that 
we neglect quantum effects. This seems to be reasonable for normal 
thermodynamic conditions. Another restriction which we impose is more 
serious. We intend to consider only one-dimensional gases but we shall 
take into account their properties of compression and heat conductivity. 
The advantage or disadvantage of the one-dimensional systems is due to 

the fact that the local changes of form of the infinitesimal volumes are 
also one-dimensional, i.e., they are reduced only to the change of the scale 
but not to the change of form which does not even exist in the one- 
dimensional situation. 

We assume that the motion of the one-dimensional gas takes place on 
the circle S' .  It will be most convenient for us to take as an independent 
variable the Lagrangian variable 5 where 5 is the mass of the gas counted 

starting with some fixed point, 0, at the initial moment of time. Its 
connection with the usual coordinate X follows from the equality 



where p(y; t) is the density at the point y E S' at a time, t. The whole 

mass, ~ ~ ' d v : o ) d v = ~  , which is certainly nothing other than some 

normalizing condition. Introduce the hydrodynamical variables &(C,t), 
v(C,t), r(u,t), where ~ ( 5 , t )  dc is the total internal energy of particles which 
initially were in the interval (6, 5+d5). v(6,t) is the hydrodynamical 
velocity of the same particles, and r(6,t) is the mean distance between 
particles, i.e., r"(6,t) is the density. The system of Euler equations takes 

now a divergence-like form (see [ l ])  

Here T('), T(*), T ( ~ )  are the components of the energy-momentum tensor. In 

particular, T(*)(t,t) = -p(c,t) where p is the pressure, T ( ~ ) ( S , ~ )  = v(c,t), 

~ ( ' ) ( c , t )  has a more complicated form. 

We also shall need conjugate variables P(c,t), y(C,t), ~ ( 5 , t )  where 

Here h is the Gibbs free energy. In the one-dimensional case h is always a 
strictly convex function of its variables and therefore the usual 
difficulties related to the Legendre transformation do not appear. 
Certainly the system of Euler equations can be written in terms of 
variables 0, q, m but we do not need their exact form. We use only the 
Duham-Gibbs equality (see [ l ] )  



The system of Euler Eq. (1) determines the one-parameter group of 
transformations {E'} acting in the space of 3-tuples [ & ( E , ) ,  v(E,), r ( \ ) ] .  

Namely et{&(\),  v(E,), r(E,)} = {&(\,t), n(E,,t), r(\,t)}. We shall not concern 
ourselves here with various problems related to the existence and 
uniqueness of solutions of (1). Locally these properties are satisfied and, 
at this point, this is enough for us. To be more precise we shall assume 
that initial data and all E~{E(E,), v(E,), r(\)},  l t lsto are well-defined and 
belong to a bounded domain of the space c2(s1). 

The microscopical description of the non-uniform but locally- 
equilibrium distribution of parameters E, v, r is well-known (see [2], [3]). 
Consider the system of N particles of mass 1 on the line having the 
coordinates and velocities q ,  v ,  1 5 i N, q q .  The interaction is 

pairwise with the potential U(r). The usual assumption is that it has a 
hardcore, i.e., U(r) = m for r 5 r,, and a short range, i.e., U(r) = 0 for r 2 r,. 
Between r, and r1 U is twice-differentiable. Let P (E,), y(E,), p(!) be three 

c2-functions on S'. Take the Hamiltonian of the system in the form 

Here 

and the periodic boundary conditions are imposed, q,+i = qi + N. Introduce 
the locally-equilibrating Gibbs distribution having the density 

where Z p , y , ~  is the partition function 



It is not difficult to show that 

lim 1 - 
N+.. N 

Here h is the Gibbs free energy which was mentioned previously. The last 
formula also shows the usefulness of the Lagrangian variable 5. 

The equations of motion for the whole array of particles have the 
f o r m  

Denote by ci(T), vi(z), r i ( ~ )  the solution of these equations and {SZ) is the 

corresponding group of transformations of the phase space. The UT Pp,,,, 
is the probability distribution in the phase space having the density 

The partition function Z is not changed due to Liouville theorem, P~Y, ,  

The hydrodynamical time and the microscopical time are related to 
each other through the formula tN = T .  We can consider the probability 
distribution (4) as some distribution which can be prepared in advance in a 
laboratory. The main problem which we intend to discuss here concerns 
the question in what sense the probability distribution (5) is locally- 
equilibrating for hydrodynamical times z. Certainly it does not have the 



form of (4) with changed P , y, p. But local equilibrium can be defined in a 
more mild form. To do this take a test function @(x,~,z)Ec,(R~) and 
consider the average 

If (5) is, in a sense, locally equilibrating then ~ [ (q i , v l ) , t ]  should be close to 

~ ( t )  = .fO19(E(k7t) , V(k7t) , 4k7t)) dk where (dk7t) , dk,t) , 1(k7t)) = E'{E(s) , 45) , 45)) . 
We shall say that (5) is locally-equilibrating in a weak sense if for 6 > 0 

Now our main question can be formulated as follows: Given the 
probability distribution (4), what is the interval of hydrodynamical time 
during which we can guarantee (6). There are some partial results for 
several degenerate models which are discussed in particular in [3]. The 
importance of our problem increased recently in connection with the 
famous work of Frisch, Hasslacher and Pomeau [4] where the authors 
constructed the system of cellular automata modeling the Navier- Stokes 
equations. However, as far as I know at this time, there were no general 
results related to the whole problem. In the next section we develop a 
new approach which might lead to some progress in the case which we 
consider. 

2 .  THE MAIN INEQUALITY AND ITS COROLLARIES 

Take a microscopical time z, and for any P(k), y(k), p(5) put 

The form of F p,,, will be written below. 



Assume that ( p, y, p) is an arbitrary 3-tuple of functions on the circle 

belonging to a bounded domain of C2(S1). 
The main inequality. For z0 > 0 one can find B = B(zo) > 0 such that for 

all A > 0 

-2 
and B(zo) 2, -+ 0 as z0 -+ m. 

A weaker form of this inequality appeared in [5]. Now we can 
formulate our main result. 

Theorem. If the main inequality is valid then there exists a 
hydrodynamical time to = to(zo, B) such that for all t, It 15 to, the local 

equilibrium (6) holds. 
The proof of the theorem is given in the Appendix. Here we shall 

write down the exact expression for F: 



1 
(I) Vi+l (S) U (ri(sJ) - vi(s) 'J1(ri-Js)) (2) 1 

We denoted Ti (S) = 
(3) 

2 
, Ti (S) = U (ri(s)), Ti (S)= vi(s). 

It is worth mentioning that the main inequality takes into account 
only the dynamics during a fixed interval of the microscopic time. It 
means that we do not need any information concerning ergodic or mixing 
properties of the system with the fixed N. This seems to be quite natural 
because the local equilibrium is a quite common phenomenon which should 
not be connected with such refined properties. From another side, the 
estimation which enters the main inequality is of the type of large 
deviation estimations in probability theory. Sometimes the main 
contributions to the corresponding probabilities comes from or nontypical 
configurations or nontypical dynamics involving some collective motions. 
The form of these collective motions is unclear. It cannot be excluded 
that they are somehow connected with turbulence. In our opinion, an 
analysis of the main inequality deserves a very thorough study. 
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APPENDIX. PROOF OF THE MAIN THEOREM 

We reproduce here with minor modifications and corrections the proof 
given in 151. We start with the following lemma well-known from 
probability theory. 

Lemma. For any 6 > 0 there exists f(6) > 0 such that for all considered 

P, Y, P and t 

Its proof is omitted. But 

Then 



Further, put for any A > 0 

then 

+ exp (kA) exp ( X )  d G(x) L- 
where G is the probability distribution function of the random variable 

FEA"dN(p.l.p) found with the help of PE-(k+lbdN(p,,p). The integration by parts and 

the main inequality of 5 2 give 



i - 1 ~ h u s  a,,, a, + exp (k+l ) A  - \ B 
. Assuming that t is Nt r0 is an integer 

we get 

Take any 6 > 0 and find f(6) >O in view of the lemma. It is easy to see that 

f(6) -+ 0 as 6 -+ 0. Fhoose firstly large A so that B-' 2 f(6) and then 
- 1 

large to so that to  A r0 5 $). Then 

for sufficiently large N and 

+ ! expl - U" Hp,v.;l) n dqi dvi 5 exp 1 4 6 )  N 
I J \ U ) - l ( O )  , (3  l 



THE STRUCTURE OF SUPERSONIC 
TURBULENT BOUNDARY LAYERS: 

WHAT WE KNOW AND WHAT WE THINK WE KNOW 

A. J. Smits 
Dept. Mechanical & Aerospace Engineering 

Princeton University 

INTRODUCTION 

A considerable amount of turbulence data has been obtained in supersonic boundary 

layer flows. Virtually all data up to 1980 which could be considered "functionally 

complete" that is, well-documented, were compiled by Fernholz and Finley (1980), and 

this listing was recently brought up to date by Fernholz et al. (1988). Measurements 

of <U'>, <(pu)'> and a'> are widely available, but unfortunately measurements of 
<v'> and -u'vf are not. Even more unfortunately, few measurements of higher order 

moments have been made, and spectral data, probability density distributions , and 

correlations have only been obtained in very few cases. In this respect, the most 

complete data sets for zero pressure gradient flat plate boundary layers are those 

by Owen and Horstman (1972), Owen, Horstman and Kussoy (1975), Robinson (1986), 

Fernando (1988), Spina (1988) and Smits et al. (1988). In the present contribution, 

we present a review of this work to assess the significance of variable density on 

the structure of high speed turbulent boundary layers. For the purpose of 

comparison with the subsonic case we use the results from Alving (1988) because of 

the wide variety of data obtained in that flow. The flow conditions for all cases 

are summarized in Table I. Not all quantities were measured by every investigator, 

and therefore it is not always possible to make a clear distinction between Mach and 

Reynolds number effects. 

Before considering the results, it is useful to summarize the type of data measured 

by these investigators and how they were obtained. In all four cases, the data were 

obtained using hot-wire anemometry. In the study of Flow 3 by Owen and Horstman 

(1972), autocorrelations, spectra and space-time correlations in the streamwise and 

transverse directions were obtained using the fluctuating component of the hot wire 

voltage. Since they used a constant-temperature system, operated presumably at a 

high overheat ratio, the fluctuating voltage is proportional to (pu)' if the 

fluctuations are small (Smits et al. 1983). In their later work, Owen et al. (1975) 

used constant-current anemomety to obtain the integral scales and microscales, the 

probability density distributions, the skewness and flatness, and estimates for the 

turbulence lifetimes for both the fluctuating mass-flux and total temperature . In 

Flow 2, Robinson (1986) used a constant-temperature anemometer operated at high 

overheat ratio to obtain (pu)', and he measured the flatness profile, the 

correlations in the direction normal to the wall, and did some preliminary 



conditional sampling using the VITA technique. All the work done in Flow 1 was done 

using constant temperature anemomety, and the primary data were time histories of 

(pu)' and v'. The vertical velocity fluctuations v' can be measured directly in 

supersonic flow (Fernando et al. 1987) but fluctuations in mass-flux and total 

temperature cannot be decomposed into density, pressure, temperature and U' 

velocity fluctuations without additional measurements or assumptions (for a more 

extensive discussion of this problem see Owen et al. 1975, or Smits et al. 1988). In 

contrast, the data in subsonic flows are always in terms of U' and v'. 

Subsonic flow Supersonic flow 1 Supersonic flow 2 Supersonic flow 3 

Table 1. Experimental conditions for the supersonic boundary layers investigated by 

Spina (1988) and Fernando (1988) (Flow l), Robinson (1986) (Flow 2), and Owen et al. 

(1975) (Flow 3), and the subsonic boundary layer investigated by Alving (1988). 

In supersonic Flows 1 and 2, the freestream Mach number is in the range where 

Morkovin's hypothesis should apply over most of the boundary layer thickness. The 

Mach number gradient near the wall, however, is very high (for example, in Flow 1 

the sonic line is located at approximately y = 0.0056 - 0 . 1 3 ~  - 75 vW/u,), and it 

may be expected that the fluctuating Mach number can exceed unity in the region of 

maximum turbulence production, and Morkovin's hypothesis may break down in the 

near-wall region. 

2. Statistical Evidence 

The simplest comparison between the turbulence behavior in subsonic and supersonic 

boundary layers is to compare the distributions of <U'>. When normalized by U, (= 

J ,,/pw), the distributions appear to show a strong Mach number effect (see, for 

example, Schlichting 1968, p. 659). However, if the results for Mach numbers less 

than 5 are normalized by a velocity scale derived using the wall stress and the 

local density (- JrW/p), as suggested by Morkovin, the Mach number dependence is no 

longer evident. At a Mach nmber of 6.7, however, Owen et al. found that this 

transformation did not seem to collapse the data, indicating that hypersonic flow 

may display strong compressibility effects. It is also known that the flatness 

profile in supersonic flows is more constant than in the corresponding subsonic case 



(see figure 

Flatness = 

1). One definition of intermittency is I = (3/Flatness), where -- 
u'~/(u'~)*, and the results imply that the intermittency profile is 

fuller in supersonic flows. In contrast, the flow visualization of density cross 

sections by Smith at Princeton (private communication) reveals that the boundary 

layer has a very similar appearance to that seen in subsonic flows (see figure 2), 

and it may be possible that the flatness profiles of (pu)' do not give an accurate 

picture of the intermittency. Recent measurements of the intermittency function 

from the (pu)' signal by Selig (1988) seem to support this idea. 

What is even more interesting is that the shear correlation coefficient Ruv 

(= -u'v1/<u'Xv'>) is different (figure 3). The subsonic data reveal a higher 

correlation across the boundary layer with a nearly constant value of 0.45 for 0 < 

y/6 < 0.8, while the supersonic correlation decreases steadily as y/6 increases. 

Differences were also observed in the distribution of the structure parameter a1 =- 

F 

u ' v ' / ~ ~  (not shown). In these same studies, however, Fernando and Alving found 

similar anisotropy ratios, suggesting that the difference in character of the Ruv 

distribution is caused by a change in the shear stress, that is, the organized 

motions, not by a change in U' or v' alone. These changes are clearly evident in 

the joint probability density distributions of U' (or (pu)') and v', shown in figure 

4. The contributions to -u'vl are organized differently; as a basis for comparison, 

it may be seen that the major axes of these approximately elliptical distributions 

are aligned more closely with the horizontal axis when the flow is supersonic. 

A wide variety of two-point space-time correlation data is available, including 

mass-flux (pu) ' (or velocity U' ) correlations in the streamwise, normal, and 

spanwise directions (x,y, and z, respectively). To begin the discussion of the 

results, consider the time records of (pu)' obtained in the zero pressure gradient 

boundary layer from three hot wires (figure 5). The signals exhibit a very similar 

character, indicating the passage of organized motions of a scale larger than the 

separation distance between the top and bottom wires. The space-time correlations 

for one supersonic and one subsonic flow are shown in figure 6. For both cases, the 

peak values of the correlations are quite high, reaching a maximum of 0.65 near the 

middle of the boundary layer. The correlation frictions for the supersonic boundary 

layer are considerably narrower than for subsonic layer. Furthermore, the 

dimensionless delay time corresponding to the peak of the space-time correlation, 

rmaX, decreases from 0.4 ( - 20 5 0.5~s) at the floor to nearly zero at the edge 

of the boundary layer. 

The high peak level of the correlation and the non-zero value of the time delay 

imply that both wires are detecting the same "disturbance", and that one wire is 

detecting it before the other. Since the time shift was applied to the upper wire, 



the peak at negative time delay means that the upper wire detects the disturbance 

first, that is, the disturbance leans downstream. Accordingly, an angle B can be 

defined for this "front" by using the value of rmax along with the wire separation 

distance, < ,  and the local convection velocity. That is, 

The angle B may be called an "average structure angle," in that it is associated 

with an average large-scale motion. Figures 10 and 11 show that the structure angle 

depends on the distance between the two measurement points, and that the 

distribution for supersonic flow is different from that in subsonic flow. In the 

supersonic case for small values of < (</6 = 0.09 ,say), the structure angle is 

approximately constant at a value between 45O and 50° for 0.2 < y/6 < 0.8. For </6 

> 0.2, the structure angle becomes insensitive to variation in the separation - 
distance, and it varies from about 40° at y/6 = 0.2 to about 60' at y/6 = 0.8. In 

the subsonic case, however, small values of < give larger values of B ,  and large 

values of < gives smaller values of 0 than those observed in the supersonic case. 

For example, Alving found that for </6 - 0.1, the structure angle was approximately 
at a value of 60° for 0.2 < y/6 < 0.8, whereas for f/6 2 0.2, B varied from about 

20-30' to about 50' over the same interval in y. Note that the uncertainty in the 

convection velocity will not affect these results significantly: when B = 45O, 0% 

error in U, leads to an error in b' of only 2-3O. These results help to explain the 

differences seen in the correlation functions (figure 6). Since the average large- 

scale structure is more upright in a supersonic boundary layer, the space-time 

correlation is apt to fall off at shorter time delays since the extent of the 

structures in the mean flow direction will be smaller. 

Using the same upstream flow conditions used by Spina and Smits for the zero 

pressure gradient layer discussed above, Donovan and Smits (1987) investigated the 

mean structure angle distribution following a short region of concave surface curva- 

ture using two different flow models: one which turns the flow through 8' with a 

radius of curvature of 1270 mm (6/R = .022), and the other turns the flow 16O with 

6/R - .08. Fernando and Smits (1987) made similar measurements on a flat plate 

following a short region of adverse pressure gradient. In that case, the pressure 

gradient was generated by a contoured plate, designed so that the pressure 

distribution matched that of the 8O model using by Donovan and Smits. The general 

shape of the distribution remained the same as in the zero pressure gradient case. 

However, there appeared to be a small increase in the structure angle after each of 

the three perturbations. Furthermore, the structure angle after the stronger 

curvature was slightly higher than after the weaker curvature. Donovan and Smits 

suggested that the perturbation rate was too rapid in the stronger curvature model 



to allow readjustment of the large-scale motions, and thus the angle of inclination 

is affected. It appears that the same preliminary conclusion can be drawn for all 

three of the flow perturbations, since they all exhibit the same trend. 

While the present study traverses two "detection probes" through the boundary layer 

at a fixed separation distance (small compared to 6), most other measurements of 

this kind have used one detection probe fixed at the wall (a hot wire, a shear 

stress gauge, or some similar device) and another probe which was traversed through 

the boundary layer, thereby varying the separation distance. The fixed separation 

method used here results in a typical mean structure angle of 45' in supersonic flow 

and about 30' in subsonic flow. While the variable separation method seems to give 

a lower characteristic value; in supersonic flow Robinson (1986) found 30' and in 

incompressible flows Brown and Thomas (1977) found 18O, whereas Rajagopalan and 

Antonia (1979) found 12.5O, and Robinson (1985) found 16'. The advantage of the 

present method is that the slope of the structure is determined locally, instead of 

being inferred from a large-scale measurement. 

A superposition of peak time delays on the "mean structure shape" was used to 

produce iso-correlation contours for the supersonic case using - 0.096 and 0.306 
(figure 9). The "mean structure shape", the solid curve drawn through the center of 

the contours, was constructed from an extrapolation of the mean structure angle from 

one measurement location to the next (with the first location supplying the 

appropriate inclination from the origin). The peak of the cross-correlation at 

each mean wire position was then shifted so that it was coincident with the curve 

delineating the mean structure shape. The contours give a good indication of the 

extent of the field around the identified structure. The same mean structural 

characteristics are evident in all of the contours, as well as those determined by 

Robinson. Similar contour plots were derived for the subsonic boundary layer 

studied by Alving and they are given in figure 10. The differences in mean 

structure angle that exist between supersonic and subsonic flows (figures 7 and 8) 

are readily apparent in figures 9 and 10, as are the much greater streamwise extent 

of the large-scale structures in the subsonic boundary layer. 

In addition to the measurements made at two points separated in the direction 

normal to the wall, measurements were taken at a variety of spanwise spacings in 

both the supersonic and subsonic cases. The space-time correlation for a spanwise 

spacing of 0.096 is shown in figure 11 for several locations across the supersonic 

boundary layer. The corresponding results for the subsonic boundary layer are given 

in figure 12. The peak values are somewhat lower than in the supersonic case, 

although the correlations are much broader. In both cases, however, the character 

and strength of the correlations is similar to those found for the vertical separ- 



ations, except that the peak occurs at zero time delay in this case. Since the 

correlation between wires spaced 0.096 apart is similar for both the spanwise and 

vertical alignments, a similarity of the structures is suggested in the y- and z- 

directions for small distances in both cases. As determined from the peak values of 

the correlation functions, it appears that the spanwise scales are slightly smaller 

than the vertical scales. 

A comparison of the length scales based entirely upon the peak values of the 

correlations is not conclusive, however. Therefore, the transverse scales were 

further explored with the aid of iso-correlation contours which give the behavior of 

the entire correlation curve, not just the peak value. The space-time correlations 

were reflected about f - 0 for each y-position (this is valid since the spanwise 

correlations are symmetric), and iso-correlation contours were drawn from the 

resulting surfaces (figures 13 and 14). As with the vertical correlations, the time 

delay was normalized by outer-layer variables, and by Taylor's hypothesis can be 

interpreted as a streamwise distance. The plots then give (pseudo) X-z cross- 

sections of the boundary layer at three different y-locations. What is very 

striking is that the spanwise extent of the large-scale motions in subsonic and 

supersonic flows are almost identical (and in good agreement with the results of 

Kovasznay et al. 1970), whereas the streamwise scale differs by a factor of about 

two. In addition, the spanwise scale of the detected structures increases away from 

the wall. Since the overall size of the structures increases with y/6 this behavior 

is not surprising. The spanwise scale of the detected organized structures should 

therefore increase as we move farther from the wall. 

4. Surnmarv and Conclusions 

All the measurements presented here indicate that despite broad similarities, the 

turbulence structure of supersonic and subsonic boundary layers display significant 

differences. Some of these differences, such as the change in the flatness profile, 

have been observed in previous studies, and are now relatively well known. 

Structure parameters have not been widely studied in supersonic flows, however, and 

the new measurements presented here indicate that strong differences exist. For 

example, the length scales derived from space-time correlations indicate that the 

spanwise scales are almost identical but that the streamwise scales in the subsonic 

flow are about half the size of those in supersonic flow. The large-scale 

structures in the subsonic boundary layer also appear to move slightly slower, and 

lean more towards the wall, than those observed in supersonic flows, and their shear 

stress content is distributed differently among the four quadrants. All these 

observations suggest that there may be fundamental differences between the 

structure of subsonic and supersonic boundary layers. It is possible that the 

density gradients in a supersonic shear layer affect the large scale structure, and 



that there exists a damping effect of Mach number on the turbulent motions which may 

be important even for turbulence away from the wall. In some sense it would not be 

surprising to find differences between compressible and incompressible boundary 

layers since the vorticity transport equation describes the transport of vorticity 

per unit mass, rather than the absolute vorticity. Density gradients must therefore 

affect the vorticity dynamics to some extent, and the extent of this influence will 

vary with Mach number. 
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Fig. 1. Comparison of the flatness profiles 
for different Mach numbers (from Robinson 
1986). 

Fig. 2 Cross-section of density field in turbulent boundary layer with 
Rg = 15,000 and free stream Mach number of 3. Visualization is by M. 
W. Smith [private communication] using UV Rayleigh scattering from an 
Ar-F1 laser sheet (see Miles et al. 1988 in Proceedings of this 
Conference). Flow is from right to left. Exposure time is 10 nanosec. 



Fig. 3 Comparison of the shear correlation 
coefficient (RUv -~/<u'xv'>) in supersonic 
(Fernando 1988) and subsonic (Alving 1988) 
turbulent boundary layers. 
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Fig. 5. Three simultaneously measured, 
instantaneous mass-flux signals (Flow 1, 
Spina and Smits 1987). 
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Fig. 6(a) Cross-correlation measurements in the 
supersonic boundary layer, (/699 - 0.09. From 
Spina (1988). 

0.0 0.2 0.4 0.6 0.8 1.0 L 

Fig. 6(b) Cross-correlation at several 
positions in the subsonic boundary layer, 
(/699 - 0.10. From Alving (1988). 

Fig. 4. Probability density function for (a) 
(pu)'v' from Fernando (1988), and (b) u'v' from 
Alving (1988). 



Fig. 7 .  Large-scale structure angle in the 
supersonic boundary layer for different wire 
separation distances (from Spina 1988). 

Fig. 8. Large-scale structure angle in the 
subsonic boundary layer for different wire 
separation distances (from Alving 1988). 

Fig. 9 Equi-value space-time correlation 
contours from vertically separated mass-flux 
signals in a supersonic boundary layer: 
a) ( - 0.096, b) - 0.306 (from Spina 1988) 



Fig. 10 Equi-value space-time correlation 
contours from vertically separated velocity 
signals in the subsonic boundary layer studied by 
Alving (a) < - 0.10, (b) < - 0.21, (c) < - 0.29. 

Fig. 11. Space-time correlation between 
spanwise separated mass-flux signals for several 
locations in a supersonic boundary layer; 
.f - 0.096 (Spina 1988). 

Fig. 12. Space-time correlation between spanwise 
separated velocity signals for several locations 
in the subsonic boundary layer studied by Alving; - 0.096. 



Fig. 13 Equi-value space-time correlation 
contours from spanwise separated mass-flux 
signals in the supersonic boundary layer 
a) y/6 - 0.20, b )  y/6 - 0.51, c) y/6 - 0.82 
(Spina 1988). 

Fig. 14 Equi-value space-time correlation 
contours from spanwise separated velocity signals 
in the subsonic boundary layer studied by Alving: 
a) y/6 - 0.22, b) y/6 - 0.52, c) y/6 - 0.80. 
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ABSTRACT 

The behavior of supersonic free shear layers has been analyzed through 
numerical solution of the 2-D compressible Navier-Stokes equations. A modified 
McCormack scheme that i s  fourth order accurate in space and second order 
accurate in time was used. It  was found that small amplitude normal velocity 
disturbances introduced into the f low field grew as they were convected 
downstream and eventually led to organized vortical structures. The growth rate 
of these disturbances was found to depend on the convective Mach number. It 
was also found that streamwise and spanwise velocity disturbances introduced 
into the shear layer did not grow as rapidly as the normal velocity disturbances 
d id .  

INTRODUCTION 

During the past several years, within the aerospace community there has 
been an increased interest in a class of propulsion systems called SCRAMJET 
engines. In these systems, the high speed supersonic air stream captured by the 
inlet is slowed down through a series of shock waves to low supersonic speeds 
before entering the combustion chamber. For efficient and reliable performance, 
and to keep the overall length and weight of the system small, it is imperative 
that this high speed air stream mixes well with fuel and reacts rapidly. Because 
normal injection of the fuel stream into the air stream produces good mixing at 
the expense of significant total pressure loss, researchers have begun to consider 
configurations where the mixing of parallel or oblique streams of fuel and air 
will occur. 

Unfortunately, the shear layer which forms at the juncture of  the 
supersonic air and fuel streams tends to grow a t  a much slower rate than its 
subsonic counterpart. Spark Schlieren photographs taken by Papamoschou [Ref. 
1, 21 show the growth rate of supersonic shear layers to be less than 113 that of 
an incompressible shear layer, for a wide range of combinations of fuel-air ratio, 
specific heats, Mach numbers, temperatures and densities. Similar experimental 
results were also observed by Chinzei e t  al. [Ref. 31. Therefore there is some 
interest in the use of passive and active control techniques which will promote 
mixing. 



The passive and active control techniques are based upon the following 
principle. If vorticity is introduced into the shear layer, it will interact with the 
shear layer, grow as it is convected downstream, increase the turbulence level 
within the shear layer, and lead to an overall improvement in mixing. Guirguis 
[Ref. 41 and Drummond et al. [Ref. 51 considered the effect of a bluff body placed 
in the middle of the shear layer. Kumar et al. [Ref. 61 considered the effects of 
vorticity produced by a pulsating shock wave on the growth characteristics of 
shear layers. 

In the present work, we investigate active control techniques for the 
promotion of mixing between supersonic fuel and air streams. Sinusoidally 
varying velocity disturbances are introduced at the initial, laminar mixing region 
of the shear layer. These disturbances grow with time as they are convected 
downstream and eventually lead to well organized vortical structures. These 
vortical structures are responsible for increase in the mixing between the fuel 
and air streams, in a manner similar to that in subsonic shear layers. 

Streamwise, normal and spanwise disturbances are considered as suitable 
candidates for promoting mixing in this work. The 2-D and quasi 3-D 
compressible Navier-Stokes equations in a strong conservation form are 
numerically solved, using a modified MacCormack scheme that is second order 
accurate in time, and fourth order accurate in space. This scheme is suitable for 
studying phenomena such as propagation of acoustic waves, boundary layer 
instability, and shear layer instability and has been previously used by several 
authors [Ref. 7-91. It is our experience that higher order schemes such as these 
are more suitable for the present application than conventional second order 
schemes based on an AD1 formulation [Ref. 101. 

NUMERICAL FORMULATION 

The behavior of 2-D supersonic free shear layers, and that of 3-D 
supersonic free shear layers subject to the infinite sweep assumption, are both 
governed by a system of partial differential equations of the following form: 

Here F and G are the inviscid flux terms and account for the transport of 
mass moment and energy, and for the influence of pressure. The terms R and S 
are the viscous stress terms. The above set of equations are parabolic with 
respect to time, and may be solved using a variety of stable time marching 
schemes. For 2-D flows there are four equations. In the case of 3-D flows subject 
to infinite-sweep assumption, there are five equations, the additional equation 
corresponding to the conservation of spanwise momentum. 



In this work the above equation was solved using a splitting approach. 
That is, the solution was advanced from one time level 'n' to the next 'n+2' 
through the following sequence of operations: 

where, for example, the L x  operator involves solution of the following l -D 
equation: 

This l -D  equation was solved through the following predictor-corrector 
sequence, recommended by Bayliss et al. [Ref. 71: 

Predictor Step: 

Corrector Step: 

When the above equations are applied at nodes close to the left and right 
side boundary, a fourth order accurate extrapolation procedure was used to * 
extrapolate the flux vectors F and F needed at nodes outside the computational 
domain. 

The Ly operator requires solution of the equation 

using a similar approach. 

The operators L x v  and L y  v  correspond to numerical solution of l -D 
equations such as 

The above equation was solved through the following two-step sequence: 



n * - 
' i , j  - ' i , j  A X - ". l . ]  

I - - , J  2 

n + l  1 n * - ' i, j - ~ ( 9 i , ~  + , j * ) [  R i + % , j  1 " .  1 -  F,., l . ]  

The viscous terms are thus updated only to second order accuracy in space. 
It may be shown that the above scheme has very little artificial dissipation 
inherent in it, and is fourth order accurate in space, as far as the inviscid part is 
concerned. 

BOUNDARY CONDITIONS 

The computational domain is shown in Figure 1, along with some of the 
relevant flow properties. For the numerical simulations performed, the boundary 
conditions are as follows. At the upstream boundary, the flow is supersonic for 
both the air and fuel stream. Thus, all the flow properties may be prescribed at 
this boundary, and may include any velocity and pressure disturbances 
externally imposed on the shear layer. At the downstream boundary, for the 
small amplitude velocity disturbances encountered in this work, the flow 
remains supersonic, and may be extrapolated from the interior. Alternatively, 
the governing equations themselves may be applied if the streamwise diffusion 
terms R x  are suppressed at the downstream nodes. 

At the lateral boundaries, it was assumed that the flow is confined by 
smooth, flat walls. In order to avoid resolving the boundary layers that grow on 
these plates, and to avoid any influence of these boundary layers over the shear 
layer, slip boundary conditions are used at these side walls. These walls are 
considered adiabatic, and the normal derivatives of density and pressure are 
also set to zero. 

In the present work, all the calculations have been performed for cold 
flows. Furthermore, it was assumed that the species above and below the shear 
layer have the same ratio of specific heats, and moleculer weight. 

RESULTS AND DISCUSSION 

A 221x61 uniform grid, with grid spacing equal to 0.01 millimeter in both 
directions was used. The Reynolds number of the flow ( using the speed of sound 
of the upper stream as the reference velocity ) was 1000 per millimeter. The 
calculations were carried out, starting with step velocity, density and 
temperature profiles everywhere in the computational domain, and marching in 
time until an asymptotic steady state shear layer evolved. Next, streamwise, 
normal, or spanwise velocity disturbances varying sinusoidally with time were 



imposed at the upstream boundary. Calculations were carried out for several 
cycles of imposed oscillations to ensure that these disturbances introduced at the 
upstream boundary had enough t ime to travel through the  length of the 
computat ional  domain and leave through the downstream boundary. Four 
typical cases calculated with normal velocity disturbances are shown in Table I .  

Because the supersonic shear f low problem involves a t  least 1 0  flow 
parameters ( 5 flow properties on each side of the shear layer ), it is desirable 
that  these parameters be combined t o  give o n e  or  two nondimensional  
parameters of importance. Papamoschou [Ref. l ]  has used the convective Mach 
number as the single parameter that ties all his experimental observations 
together. This  parameter is  simply the  Mach number of dominant vortical 
structures within the shear layer with respect to, say, the upper stream. If the 
upper and lower stream both have the same ratio of specific heat then the 
velocity of convected disturbances will be given by: 

and the convective Mach number is 

Note that the subscript 1 and 2 correspond to conditions on either side of the 
shear layer. In Table 1, the convective Mach numbers are tabulated according to 
Papamoschou's formula, and also based on our own numerical simulations. T o  
compute  the convective Mach number from our  numerical simulation, the 
vorticity contours were plotted at adjacent time levels and the distance travelled 
by vortical disturbances during that interval were computed, in a manner shown 
in Figure 2. It was found that the convective Mach number from our simulation 
was always equal to or  lower than that from Papamoschou's formula. Thus, the 
present calculations show the convected vortices to travel at speeds closer to the 
faster stream. 

In Figures 3 through 6, the calculated vorticity contours are shown for the 
mean flow, as  well as for the cases with imposed normal velocity disturbances. 
T h e  inflow Mach number combinations are  shown in Tab le  1. And the 
amplitudes of disturbance velocity were 2% of the  corresponding streamwise 
component. T h e  following conclusions may be  drawn from an  examination of 
these contours: 

(a) Small amplitude normal disturbances introduced upstream grow rapidly, and 
eventually lead to  well organized vortical structures. 



(b) As the convective Mach number computed according to Papamoschou's 
formula increases, the growth rate of the shear layer decreases. It should be 
noted that this o'bservation is in agreement with Papamoschou's experimental 
observations, and with linear stability theory. 

(c) A comparison of vorticity contours of the steady shear layer ( without 
disturbances ) and excited shear layer indicates that the small amplitude normal 
velocity disturbances introduced lead to a pronounced increase in the shear 
layer growth rate. 

In Figure 7 and 8, the vorticity contours are shown for shear layers with 
imposed streamwise or spanwise velocity disturbance, both with the same 
amplitude as those in the normal direction. The inflow boundary conditions were 
the same as in case-l. It is seen that these disturbances are not as effective in 
increasing the growth rate of the shear layer as exciting the normal velocity 
component by the same amount. 

CONCLUDING REMARKS 

A technique for enhancing the growth rate, and hence the mixing 
characteristics of supersonic shear layers has been described. A numerical 
procedure was used to study the spatial and temporal growth of sinusoidal 
disturbances introduced into the shear layer. It was found that a near linear 
growth with respect to X in the amplitude of these disturbances results. Highly 
organized vortical structures could be found in the shear layer, which are 
expected to improve mixing between the air and fuel streams. 
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Figure 1. Boundary conditions for supersonic free shear layer 

Figure 2. Vorticity contours at different time levels for case-2. 
M I  = 4.0, M2 = 2.0, MC = 0.38. 



Figure 3. Vorticity contours for case-l, M1 = 4.0, M2 = 2.3, MC = 0.2. 
(a) without disturbance. (b) with disturbance in the normal direction. 

Figure 4. Vorticity contours for case-2, M1 = 4.0, M2 = 2.0, MC = 0.38. 
(a) without disturbance. (b) with disturbance in the normal direction. 



Figure 5. Vorticity contours for case-3, M1 = 4.0, M2 = 1.3, MC = 0.8. 
(a) without disturbance. (b) with disturbance in the normal direction. 

Figure 6. Vorticity contours for case-4, M1 = 5.0, M2 = 1.3, MC = 1.2. 
(a) without disturbance. (b) with disturbance in the normal direction. 



Figure 7. Vorticity contours for case-l, M1 = 4.0, M2 = 2.3, MC = 0.2, with 
disturbance in the streamwise direction. 

Figure 8. Vorticity contours for case-l, M1 = 4.0, M2 = 2.3, MC = 0.2, with 
disturbance in the spanwise direction. 
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Introduction 

The fundamental issues involved in compressible turbulence are of great technological impor- 
tance and present severe challenges for analytical, numerical, and empirical predictive methodolo- 
gies. One pressing application is to hypersonic flight, especially for the internal flow in combustors. 
A principal objective is to optimize the efficiency of the fuel-air mixing occurring in the engine. In 
the very high speed vehicle configurations currently being considered, achieving a high combustor 
efficiency is particularly difficult. This is a consequence of the fact that with increasing vehicle 
Mach number, the average Mach number in the combustor also increases. As the combustor Mach 
number increases the degree of fuel-air mixing that can be achieved through natural convective 
and diffusive processes is reduced, leading to an overall decrease in combustion efficiency and 
thrust. 

Numerical methods for supersonic (and reacting) flow have matured to the point at which 
they are playing a key role in exploring machanisms for enhancing mixing and turbulence in 
compressible flow. In this paper some representative illustrations of recent work directed towards 
mixing enhancement in supersonic combustors will be presented. 

Numerical. Methods 

This decade has witnessed rapid progress in numerical methods for supersonic and hypersonic 
flow. Upwind-biased schemes of increasing sophistication and accuracy have passed rapidly from 
academic circles to large production codes at  national laboratories and in industry. Most practi- 
tioners have their own pet suite of test problem. In this section we provide a brief discussion of 
the progress made on two of our favorites. 

The ideal shock-capturing numerical method would capture shock-waves and slip lines in 2 grid 
points with no smearing or spurious oscillations while at the same time retaining high accuracy 
on small-scale flow field features. A problem which is ideally suited for putting schemes to this 
particular test is the interaction of turbulence with a shock. A schematic is provided in Fig. 1. 
At time t = 0 an infinite, normal shock at  X = 0 separates a rapidly moving, uniform fluid on the 
left from the fluid on the right, which is in a quiescent state except for some specified fluctuation. 
The initial conditions are chosen so that, in the absence of any fluctuation, the shock moves 
uniformly in the positive X direction with a specified Mach number (relative to the fluid on the 



right). In the presence of the fluctuations, the shock front will develop ripples and waves will be 
established behind the shock. The particular case illustrated in the figure pertains to a Mach 8 
shock encountering a plane shear wave inclined at an angle of 30" to the undisturbed shock front. 

Linear theory predictions for the wave amplitudes behind the shock have been available since 
the 1950's ([1,2]). Zang, Hussaini, and Bushnell [3] have tested these in the nonlinear regime using 
shock-fitting methods. Figure 2 is a typical result of that work. The amplitude of a vorticity 
wave generated behind the shock by a downstream shear wave is plotted as a function of the 
angle of inclination of the wave. (Results for both finite-difference and spectral shock fitting 
calculations are shown.) For small angles the agreement with linear theory is very good, whereas 
near the critical angle (beyond which the waves behind the shock decay), the linear prediction 
is unreliable. At small angles of inclination, however, the linear result is a very good measure of 
the actual solution. Thus linear theory can be used to calibrate numerical methods for this test 
problem. 

Since in the shock-fitting method the shock front is a boundary of the computational domain, 
the difficulties associated with differencing across the shock are not present. Although shock- 
fitting methods have produced impressive results on simple flows they are not a practical tool for 
the complicated flows that must be analyzed in many engineering problems. 

A wide variety of upwind-biased difference schemes are currently available. Shu and Osher 
[4] have applied a particular upwind scheme, known as the ENO method, to this problem. The 
simplest relevant example of theirs involves a pure density fluctuation a t  zero angle of inclination. 
This reduces to a one-dimensional problem. Figure 3 displays the result of sixth-order ENO 
with 300 grid points for an incoming wave with a 20% fluctuation in the density. The solution 
to this problem involves both an acoustic wave and an entropy wave behind the shock. Both 
contribute density f luc tuat io~~,  with the acoustic contributions having longer wavelength and 
faster propagation speed. The solid line comes from a highly-resolved ENO calculation. The high- 
order scheme does a very impressive job of capturing the shock and resolving both the acoustic 
and entropy waves. The result of a shock-fitted calculation are shown in Fig. 4. A second-order 
MacCormack method was employed. There are two features in the shock-fitted results which are 
not reflected in the ENO results. One is the oscillations near the upstream peaks of the acoustic 
wave and the other is the small-scale fluctuations near the the two upstream peaks due to the 
entropy wave. Results from a spectral domain decomposition shock-fitted code (Kopriva, 1988, 
private communication) suggest that these are real elements of the solution; the former arises 
from transients generated when the shock suddenly encounters the incoming wave and the latter 
occurs because of the superposition of the acoustic and entropy responses. Evidently, the ENO 
scheme does eliminate these real features from the flow. Nevertheless, this particular upwind 
scheme does an impressive job of replicating the large- and medium-scale flow features of this 
simple one-dimensional test problem. 

A second simple test problem involves the interaction of a shock with a vortex. This problem, 
too, has been computed by shock-fitting ([5]). The problem is most challenging when the vortex 
is sufficiently strong to create a secondary shock along with a triple point. Figure 5, taken from 
[6], shows a typical experimental result. Here, the shock is moving from right to left and has just 
passed over the vortex. Note the two triple points in the figure. 

Figure 6 shows the numerical results [7] obtained from a second-order upwind method. The 
calculation used a 132 X 122 grid. The close agreement between the primary shock, the secondary 
shock and the triple points is encouraging. 



Mixine: Enhancement  F r o m  Oscillatine: Shocks 

One technique for mixing enhancement that has been explored recently is based on utilizing 
either natural or forced shock oscillations to enhance turbulence. Kumar, Bushnell, and Hussaini 
(81 devised a simple two-dimensional model problem for this study. It consists of Mach 3 inviscid 
flow past a 10" compression ramp. The shock oscillations are forced by utilizing an oscillatory 
inflow boundary condition on the Mach number M of the form 

where 

The Mach number oscilIations are concentrated near the lower wall, with a maximum amplitude 
of 5% of the free stream Mach number at y = 0.05 . The frequency c was the free parameter in 
this study. Kumar, et a1 examined frequencies between 1 and 10. This covers the relevant range 
of turbulence frequencies. 

The numerical simulations of this problem were performed with a second-order upwind method. 
Results over one period for c = 5 are shown in Figure 7. The disturbance introduced at the foot 
of the shock propagates along the shock into the free stream flow. The induced free stream oscil- 
lations should enhance mixing. The Reynolds stress created by the shock oscillation are displayed 
in Figure 8. Note that the amplitude of the Reynolds stresses decreases as the frequency of the 
shock oscillation increases. Hence, low frequency shock oscillations should be the most effective 
ones. 

In a real combustor shock oscillations can arise from unstable flow fields. Potential sources 
are from fuel injection, unsteady boundary-layer separation regions, boundary-layer turbulence, 
and from in-stream bodies. 

Mixing Enhancement  From Tempera tu re  Contro l  

A useful idealization of the fuel-air mixing problem is sketched in Fig. 9. A splitter plate on 
the left separates the initial fuel (top) and air (bottom) streams. The air stream is presumed 
at rest, whereas the fuel stream has a specified Mach number M,. The ratio of the air to fuel 
temperatures is denoted by PT. A free shear layer develops downstream of the splitter plate. This, 
of course, is unstable and linear stability theory can describe the initial stages of the instability. 

Macaraeg & Street [g ]  have performed a parametric study of the temporal stability of the 
self-similar, non-reacting mixing layer. The compressible linear stability equations were solved 
with a spectral method using on the order of 100 points. Figure 10 displays typical dependicies 
of the growth rates, denoted by wi ,  upon Mach number, temperature ratio, and Reynolds number 
Re. The decrease in growth rate with increasing Mach number is familiar and underlies the 
necessity of increasing the mixing at higher speeds. The modest dependence of the growth rate 
upon Reynolds number reflects the essentially inviscid character of the instability. The strong 
dependence of the growth rate upon the temperature ratio suggests that mixing can be enhanced 
by proper tuning of the fuel temperature. Fortunately, the greater instability of the shear layer 
with decreasing fuel temperature is favorable to hypersonic combustors: the air entering the 
combustor will be very hot and the fuel can be relatively cold. 



Mixing Enhancement  From Obstacles 

Of course, most of the flow in combustors is in the strongly nonlinear regime. Numerical 
investigations of all but the initial stages require full simulations. Drummond and co-workers 
have developed a comprehensive capability for simulating spatially-developing, reacting, viscous 
shear layers. A recent description of this capability is provided in [10]. Second- and fourth-order 
central difference methods are used for the numerical solution of the Navier-Stokes, energy, and 
species continuity equations. Finite-rate chemical reactions are included. 

A number of numerical simulations of such shear layers have been conducted. Drummond 
and Mukunda [l01 have studied the effect of curved shocks upon the mixing efficiency. Figure 11 
illustrates the conditions of a simple comparison. The left part of the figure shows the benchmark 
case, which is the shear layer which develops from a fuel and air stream initially separated by 
an infinitely thin splitter plate. The physical domain was 0.1 m long and 0.1 m high. The 
computational grid was 201 X 51, with a strong concentration of grid-points within the shear 
layer. The simulation of this case was begun with static conditions in the flow domain and it was 
conducted for 0.1 ms. This time represented 14 computational sweeps of the flow field and was 
sufficient for a temporally periodic solution to develop. The right part of Figure 11 shows the 
conditions for the companion simulation which included a square cylinder (0.0012 m high and 
0.002 m long) a distance 0.02 m behind the trailing edge of the splitter plate. This body induces 
a bow shock, which has strong curvature in the immediate neighborhood of the body. 

The numerical results for both cases are shown in Figure 12. The water mass fraction is 
displayed because it is a useful tracer of the mixing. The benchmark case exhibits slow mixing, 
with the flow remaining laminar for the first 0.08 m downstream of the splitter plate. The familiar 
Kelvin-Helmholtz instability develops, but there is an insufficient length in the region of interest 
for the instability to evolve significantly. The effect of the obstacle is quite dramatic. When 
the high velocity gradient region of the mixing layer is processed by the curved shock in front 
of the square cylinder, vorticity is produced. The vorticity is then convected downstream where 
it produces enhanced macromixing of fuel and air. The velocity field becomes unstable near the 
trailing edge of the interference body and the thickness of the shear layer grows rapidly with 
increasing streamwise coordinate. The shear layer thickness defined by water mass fraction is 
significantly greater downstream of the obstacle than it is in the benchmark case. 

Figure 13 provides a quantitative measure of the mixing efficiency in the two cases. The 
mixing efficiency (a number between 0 and l) denotes the amount of fuel that could react at any 
X station if chemical reaction was taking place. The efficiency values for the two cases should 
be viewed in a relative sense because there are significant regions of fuel and air that can never 
mix since they are located at large transverse distances from the mixing layer. After the 0.02 
m station (where the obstacle is located), there is a significant growth in mixing efficiency due 
to the obstacle. Near the outflow station, the mixing efficiency is roughly four times that of 
the benchmark case. This figure also contains results for a shear layer interacting with a pair 
of straight, oblique, intersecting shocks. They produce relatively little mixing enhancement for 
a shear layer which is still laminar. Thus, it is the curvature of the shock that is crucial for 
increasing the mixing. 

This comparison demonstrates that the introduction of curved shocks into a mixing layer is 
beneficial. In a real engine the use an obstacle introduced solely for the purpose of producing 
a curved shock is not practical. The total pressure loss caused by the extra bow shock is a 
disadvantage. Moreover, aerodynamic heating would also pose a problem. Ideally, one should 
take advantage of a shock that is already present. 



Drumrnond and Mukunda [l01 next examined a configuration closer to an actual combustor. 
The top part of Figure 14 shows a conventional strut in a scramjet engine. Fuel can be injected 
both parallel to and transverse to the air stream. Transverse injection predominates over parallel 
injection when the engine is operating in the high Mach number regime to hasten fuel-air mix- 
ing. At lower Mach numbers, more parallel injection is used in order to produce slower mixing. 
Transverse injection takes place following a rearward-facing step that provides improved flame- 
holding, and parallel injection occurs at the strut base. The transverse jet induces a bow shock. 
In the conventional design the flow from the parallel jet does not interact with this bow shock. 
The results of the comparison above suggested that a relocation of the transverse injection might 
improve the mixing. The bottom part of Figure 14 shows a strut which has been modified to take 
advantage of this mixing enhancement mechanism. Here the parallel injector is re-located so that 
it interacts with the the transverse jet (and its resulting bow shock). The same amount of fuel is 
introduced by each injector. 

Figure 15 shows the numerical results for both the old strut and the modified strut. The old 
strut was operated with only parallel injection, whereas the modified strut produced both parallel 
and transverse injection. The effect of the interaction of the parallel jet with the bow shock is 
apparent in the water mass fraction contours. The unenhanced parallel jet behaves much like 
the unenhanced mixing layer described earlier. The growth of the jet was quite modest. For the 
modified strut, however, the interaction of the parallel jet with the curved bow shock ahead of 
the transverse jet indeed produced significant vorticity and results in increased mixing. Figure 16 
shows the mixing efficiencies of the two cases. Efficiencies of over 90% are achieved after 0.04 m 
for the modified strut, whereas 0.075 m are required to achieve this level for the old strut. 

Conclusions 

Modern numerical methods have produced a significant improvement in the capability to 
simulate mixing in compressible flows. Upwind schemes provide sharp shocks and high-order 
schemes permit many small-scale flow features to be computed reliably. 

Several examples of two-dimensional computations of mixing enhancement have been pre- 
sented. They suggest that combustor designs can take advantage of oscillating and curved shocks 
as well as of enhanced instability due to temperature gradients across a shear layer. The natural 
extension of these investigations is to three-dimensional flows. 
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Figure 1. Typical shock-fitted time-dependent both spectral (SP) and finite-difference (FD) 
flow model for shock/turbulence interaction. shock-fitting codes. 
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Figure 7. Pressure contours showing shock motion over one period for c = 5. 



injected 

v 
quiescent 

Figure 8. Time-averaged Reynolds S tresses. Figure 9. Schematic of the mixing layer. 

PT= 5 - COLD INTO HOT GAS 
$T= 1 c OLD CAS 
P - p . 2 .  HOT INTO COLD GAS 

Figure 10. Parametric dependencies of the mixing layer. 
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Figure 11. Schematic of the benchmark supersonic reacting mixing layer (left) and the mixing 
layer containing a square obstacle (right). 



Figure 12. Water mass fraction contours for the benchmark mixing layer (top) and the mixing 
layer containing a square obstacle (bottom). 
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Figure 13. Mixing efficiencies for the benchmark 
mixing layer (case l), the mixing layer contain- Figure 14. Schematic of conventional and 
ing two oblique shocks (Case 2), and the mixing modified fuel injector strut configurations. 
layer containing a square obstacle (Case 3). 



Figure 15. Water mass fraction contours for the conventional strut (top) and the modified strut 
(bottom). 
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MEASUREMENTS OF TURBULENT, ANISOTROPIC DENSITY FLUCTUATIONS IN A ROCKET 
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Introduction 

Theoretical predictions of chemically reacting flows are sensitive to  the assumptions made 

concerning the level of  fluctuations o f  scalar variables such as density and temperature. 

There is need for experimental data to  test modelling assumptions. The measurement of  

fluctuating density and temperature in the high temperature exhaust plume of  a rocket 

motor poses several daunting technical problems. 

The use of  optical non-intrusive techniques is one means of  obtaining such data and this 

paper describes the use of  the Crossed Beam Correlation method (CBC) to  obtain localised 

measurements o f  the mean square density fluctuations within a rocket exhaust plume. The 

method uses robust, low cost optical components and is relatively insensitive t o  vibration 

and chemical contamination and requires no f low seeding. 

Theory and Development o f  CBC 

A narrow beam o f  light traversing a f low is refracted at each refractive index gradient i t  

encounters and the emerging ray therefore diverges from its original path. The deflection 

o f  the beam is a measure o f  the refractive index gradients, within the flowfield, integrated 

along the beam path. Wilson and Damkevala (1970) made use of  a pair of orthogonal 

intersecting beams in order t o  obtain localised information. They demonstrated that  the 

covariance o f  the time varying deflections of  the two  beams can be used to  obtain the 

mean square density fluctuations at  the intersection point, under the assumption o f  

isotropy of the turbulent density field. Kalghatgi (1980) showed that, in the presence o f  an 

anisotropic density field, additional informatton is required concerning the ratio o f  the 

anisotropic length scales of  the turbulence, and that t h ~ s  information can be derived wi th  

the aid of  a third orthogonal beam. The three-beam CBC therefore provides a diagnostic 

tool  for the measurement of  density fluctuations in anisotropic turbulent flows, and i t  is 

thissystem that was used in obtaining the present measurements. 

Instrumentation 

Measurements reported here were made using a crossed beam correlator (see Wilson and 

Damkevala 1970) as modified by Kalghatgi (1980). The three beams are provided by three 

4mW HeNe lasers which intersect a t  the measurement po in t  (see f igure 1).  Each 

transmitted beam is directed onto a position sensitive photodiode which measures the 



angular deflection induced by density gradients In the flow (bandwidth 0-2OkHz). The 
deflections are cross-correlated in order to obtain localised information from the beam 

intersection. The mean square density fluctuation is obtained, together with the ratios of 

three orthogonal length scales of the density field. 

U photodiode 

FIGURE 1 : Optical configuration for CBC measurements in the rocket plume. 

Rocket Plume measurements 

Measurements were made of the density fluctuations in the near-field exhaust plume of a 

stationary liquid fuelled rocket motor. The plume gases were exhausted from a 72.65 mm 

nozzle, having a throat of 40 mm, at approximately 2200 m/s at an exit temperature of 2000 

K. The chamber pressure was 60 atmosphere. The plume was under expanded with an exit 

plane pressure of 4 atmospheres. This resulted in the formation of barrel shock cells as 

shown in Figure 2. Noise levels close to  the plume exceeded 140 dB. The oxidant employed 

was red fuming nitric acid, quantities of which were expelled as a fine mist at the end of 

each firing. These factors served to create in the plume vicinity a hostile environment for 

the measuring optics. Nevertheless the apparatus survived approximately 200 firings each 

of 10 seconds duration without serious failures. 



Figure 2. The rocket plume. 

Results 

A large number of measurements of the density fluctuations at various 
stations along the length of the plume were made. (For reference to all 
the measurements see Ball (1984)). 



Radial Posi t ion (cm) 

FIGURE 3: Predicted time mean profiles of temperature and density 1.0 metres from the 
nozzle exit. 

Computer predictions of the mean density and temperature at  1.0 m from the nozzle exit 

are shown in Figure 3, while Figure 4 shows measured values of the root mean square 

density fluctuations at this same station. 
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FIGURE 4: Predicted and measured profiles of density fluctuation 1.0 metresfrom the 
nozzle exit. 



Discussions and Conclusions 

The estimated errors for each deflection covariance are of the order of 2 10% 

Although the 3 beam CBC technique proposed by Kalghatgi has been shown t o  yield 

plausible results in a field of gross anisotropic turbulence, the density variance obtained 

relies heavily on the assumed model of the spatial correlation function for density 

fluctuations used by Kalghatgi. Ball (1984) showed that only one orientation o f  the 3 

beams can give complete correction for the effects of anisotropy, when the beams are not 

so aligned some loss in accuracy is expected. Ball (1984) and Ball and Bray (1985) include 

proposals for modifications to the 3-beam CBC to overcome this problem. In i t s  present 

form the CBC technique is shown to be a relatively simple and inexpensive method for the 

determination of the density fluctuations in hostile flow fields. 
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Abstract 

We observe the Richtmyer-Meshkov (RM) instability of a perturbed, 
shock-accelerated interface between different gases. Instability growth 
of a singly shocked interface is observed to be consistent with previous 
experimental data. Late-time growth visually appears nonlinear but the 
growth rate remains the same as during linear growth. Re-shocking 
the interface produces additional RM growth and substantial profile 
broadening, which does not show the effect of local vorticity 
generation. 

Introduction 

Shock acceleration of an interface between fluids of different density produces 
a hydrodynamic instability similar to the well-known Rayleigh- Taylor instability of 
an accelerated interface. Perturbations at the shocked interface grow and eventually 
produce mixing of the fluids. Re-shocking the interface enhances the rate of 
mixing, and may be viewed as promoting a transition from instability to 
turbulence. We examine the physics of this transition experimentally by taking 
shadowgraphs of the flow pattern during the re-shocking of the perturbed interface. 
We also report measurements of the amplitude growth of a singly-shocked, 
perturbed interface. 

Growth of the shock-induced instability in gases when the initial amplitude of 
the perturbation is small was first studied theoretically by Richtmyerl and 
experimentally by Meshkov.2 Hence, the shock-induced instability is often called 
the "Richtmyer-Meshkov" (RM) instability. The RM unstable interface is a 
perturbed contact discontinuity subjected to normal shock acceleration. Using a 
shock tube and optical diagnostics to study the shocked interface between different 
gases, Meshkov measured the growth rate for the amplitude of a single-wavelength 
perturbation to be considerably smaller than predicted by Richtmyer's analytical 
approximation. Our measurements for amplitude growth rates are slightly higher 
than Meshkov's results, but significantly less than those given by Richtmyer's 



formula. Measurements of instability growth in gases at much higher Mach number 
were recently reported.3 

By contrast with these experiments with gases in which the measured values 
are lower than analytic estimates, experimental results with liquids4 are higher 
than the analytic expression derived from Taylor's and Richtmyer's analyses. 

Several investigatorss-9 have studied the growth of a planar interface 
evolving into a mixing zone as a consequence of multiple shocks and rarefactions. 
Although these interfaces are nominally planar, they have uncharacterized 
perturbations that lead to instability and mixing. Recent results9 suggest that 
earlier measurements may have been dominated by boundary layer effects that 
obscured the interfacial region of bulk mixing. All of these experiments measured 
the mixing (or perhaps boundary layer effects) induced by shocking a nominally 
flat interface between the fluids, but they did not carefully examine the details of 
the first re-shock to the interface, which is when the growth rate changes most 
abruptly. Our goal is to investigate this transition experimentally and to develop a 
database that describes this transition and related phenomena. 

Instability growth from a single shock 

Richtmyer considered the case of a shock wave moving from a lower- density 
fluid, having density pL, into a higher-density fluid, pH.  He derived the 
following analytic expression for the growth rate of a small- amplitude,. single- 
mode (i.e., single wavelength) perturbation: 

where: q = amplitude of the perturbation (qO is the initial amplitude.) 
qSo = the initial, shock-compressed amplitude 
k = wavevector of the perturbation = 2 .n / h 
UI = interface velocity 
(pH - pL) / ( pH + pL ) = Atwood number 

Richtmyer also performed a numerical calculation for this light-to-heavy case and 
found that Eq. (1) is a good approximation to the numerical computation provided 
one uses shock-compressed values for the Atwood number and initial amplitude. 
However, Sturtevants pointed out that there is ambiguity about the value of the 
amplitude compression of the perturbation. Meshkov estimates the compression 
with an expression involving velocities, whereas Sturtevant suggests alternative 



expressions using density compressions. For purposes of comparing Meshkov's 
results and the present work, we use Meshkov's expression. 

Experimental details 

Both the single-shock and re-shock experiments were performed in a 
horizontal shock tube having inside square cross section with dimensions 75 X 75 
mm. The sinusoidal perturbation of the interface between the test gases was 
produced by a 0.5-pm-thick cellulose nitrate membrane clamped in a sinusoidal 
shape characterized by wavelength h=37.5 mm and initial amplitude q o  = 2.4 mm. 
These dimensions give an initial (uncompressed) value of kqo = 0.40. 

We diagnose the interfacial instability by side-viewing the interfacial region 
with either of two shadowgraph systems. One system is used to take a flash 
shadowgraph that gives one high-resolution frame per event. The frame duration, 
determined by the light source, is about 2 ps. This shadowgraph gives a detailed 
view of the flow patterns. The other system uses a multi-frame cameral0 to 
measure growth rates. The camera produces 12 frames equally spaced in time, 
but having less spatial resolution. The interframe time set by the camera is 18.5 ps, 
and a long-pulse (i.e., several ms) light source is used. 

Observations for a singlv-shocked interface 

Our measurements of the singly shocked, corrugated interface are 
qualitatively in agreement with Meshkov's results, but slightly different 
quantitatively. We examined two systems in which the shock wave moved from: 

air into SF6 (light-to-heavy); 
air into helium (heavy-to-light). 

In the light-to-heavy experiment, the shock wave moves from the lower-density 
gas into the higher-density gas, and vice versa for the heavy-to-light. The 
qualitative agreement with Meshkov's results is seen in Fig. 1. The perturbed 
interface is observed to be unstable in both the light-to-heavy and the heayy-to-light 
cases, since large growth of the amplitude occurs when the interface is subjected to 
a single shock in either direction. The amplitude grows immediately in the light-to- 
heavy case, whereas in the heavy-to-light case, one observes a phase inversion at 
early time and growth at later time. During the phase inversion the amplitude 
appears to be stabilizing, but its later growth shows that the velocity field in the 
flow is characteristic of the instability. These qualitative features were observed by 
Meshkov2 and are confirmed by our present results. 



Figure l .  Thcsc three flash shadowgraphs show thc cffccts of diffcscnt 
density gradients across the interface. In all three cases the interfacc is 
accelerated by a shock wave moving fro111 air on the left into the 
downstream gas on the right side of the sinusoidal membrane. A: The 
downstream gas is air, so the perturbed interface is stable, although 
the amplitude is shock-compressed. The transmitted shock front 
(moving left to right) is scen to the right of the perturbed interface. B ,  
light-to-heavy case: The downstream gas is S h ,  which is about five 
times more dense than air. The perturbation's amplitude is observed to 
grow without inverting phase. C ,  Izcavy-to-light cnsc: The 
downstream gas is helium, and the amplitude is observed to invert 
phase and grow. Note that the transmitted shock wave is out of the 
viewing area in B and C .  

Our multi-frame shadowgraphs provide time-resolved data from which we 
measure the growth rate dqldt. We find that the amplitude q grows linearly in 
time, even at later times when the visual appearance of the interface takes on the 
spike-and-bubble configuration associated with nonlinear growth. 

We make quantitative measurements of dq/dt by time-resolving the 
shadowgraphs with an electronic framing camera that takes a series of twelve 
frames per event, having an interframe time = 18.5 ps. For an incident shock 
wave of Mach 1.24 in air, the measured growth rates of the amplitude are: 

Air --> SF6 (light-to-heavy) dqldt = 7.9 m/s (Ul = 81 m/s) 
Air --> I-Ie (heavy-to-light) dq/dt = 19 m/s ( UI = 185 m/s) 

Using Meshkov's method to estimate the compression of the initial amplitude, we 
compare the air/SF6 growth rate with Eq. 1: 



By contrast, Meshkov's interpolated result for the Atwood Number corresponding 
to air/SF6 (pH/pL = 5.1) gives a growth rate: 

Thus, the present results are somewhat higher than Meshkov's experiments, but 
substantially lower than the growth rate given by Eq. 1 using Meshkov's estimate 
for the initial compression. 

Observations for a re-shocked interface 

When an air/SF6 interface is re-shocked after its amplitude has grown into the 
nonlinear regime, the profile of the interface appears to broaden substantially and 
the mean profile of the interface undergoes RM growth. The broadened interfacial 
region, denoted "mixing zone," contains a mixture of air, SF6 and membrane 
debris. These features are seen in Fig. 2. The shock wave reflected from the 
endwall is moving from the higher- density SF6 into the lower-density air, which is 
the "heavy-to-light" case of RM, so the interface's amplitude inverts phase before 
growing. Thus, the re-shocked interface momentarily appears to be stabilizing as 
i t  passes through the inversion phase, but later growth of its profile is clearly 
observed. 

We observe in Figs. 2B and 2C that there appears to be no enhancement of the 
width of the mixing zone in the two regions where the vorticity production is 
greatest. These regions are where the pressure gradient of the shock, Vp, and the 
density gradient of the interface, Vp, have the greatest included angle; i.e., 
where Vp X Vp is greatest. These regions occur where the interface profile is 
nearly perpendicular to the shock front. The growth of the mixing zone appears to 
be independent of the local angle between the shock front and the interface. 

The wave reflected back into the SF6 appears to be a rarefaction fan, and the 
wave transmitted into the air appears to be a sharp discontinuity characteristic of a 
shock wave. The rarefaction has a mottled appearance. 

The visual appearance of the interface profile shows many well-resolved 
features, as seen in Fig. 2, but we observe blurring of a substantial amount of this 
region. The blurring is distinct from the broadening of the mixing zone; i.e., part 
of the broadening is well-resolved and part is blurred. The blurring suggests that 
the refractive index gradients are so steep that ray-crossing occurs before the 
shadowgraphic system's probe beam reaches the film, which is only a few mm 
from the window. 



Figure 2. These four flash shadowgraphs, recorded on different 
events, show the evolution of a re-shocked interface. The interface was 
initially accelerated by a shock wave moving from air on the left 
toward SF6 on the right side of the corrugated interface. A :  The 
shock wave reflected from the endwall is beginning to compress the 
interfacial region, which had grown into nonlinear (i.e., spike-and- 
bubble) appearance. The reflected shock is moving right to left. The 
reflected rarefaction wave (moving back into the SI;6 ) has begun at the 
two regions of contact between the shock front and the interface. B: 
Later, part of the reflected shock wave is transmitted into the air where 
it accelerates, but the portion of the shock (at the center) that is still in 
the SF6 is undergoing a complex interaction with the shock wave 
refracted into the SF6 and the rarefaction. C :  Later, the interface 
appears to have stabilized, but it is really inverting. At this moment 
the amplitude is quite small. D: Still later, the mean profile of the 
interface inverts phase and grows in amplitude, as expected by the 
Richtmyer-Meshkov instability. The profile appears much broader 
because of mixing of gases and wall effects (i.e., the interaction between 
the boundary layer and the reflected shock). The shock wave 
transmitted into the air is out of view on the left. 

Interpretations 

The results of the singly shocked interface are consistent with Meshkov's 
previous experiment. The measured growth rates stated above are within 
experimental uncertainties of each other. However, both sets of data are 
significantly less than the growth rate predicted from Eq. l .  The source of this 
difference between experiment and theory is unknown, although strength effects of 
the membrane are suspected. 

We interpret the qualitative features of the re-shock experiments in terms of 
two superposed velocity fields, the mean-flow field and the fluctuations. If we 
assume that the mean position of the interface is determined by the mean-flow field, 



then this field appears to undergo the "heavy-to-light" RM instability, as expected. 
The fluctuating field is manifest as broadening the interfacial region. The 
broadening is observed to increase following the re-shock, as seen clearly in Figs. 
2C and 2D. However, in those regions where we expect the vorticity generation to 
be greatest, i.e., where the angle between density gradient and pressure gradient is 
greatest, we fail to observe substantially greater broadening. Since the broadening 
appears to be independent of the local angle between shock front and interface, the 
vorticity generated by the re-shock does not seem to be manifest locally as 
increased broadening. It appears that such vorticity is either associated primarily 
with the mean-flow field or it diffuses rapidly in the broadened profile. 

The observed mixing zone consists of: (1) the bulk mixing of gases, (2) the 
boundary layer (i.e., "wall effect"), and (3) membrane fragments. Related 
experiments9 suggest that the boundary layer's signature may dominate, so 
interpretation of mixing-zone growth cannot be made until further experiments 
distinguish between bulk and wall effects. If further experiments determine that we 
are indeed observing the mixing zone, then the re-shock data, such as growth of 
the mixing width, can be interpreted as a measure of the effects of shock-wave 
interaction with pre-existing turbulence andfor with membrane fragments. 

The presence of the rarefaction wave reflected back into the SF6 demonstrates 
that the shock impedance of the membrane is not influencing the mean-flow field. 
However, membrane fragments may be influencing the mixing. The mottling of 
the rarefaction may be a signature of the length scales present in the mix region. 

Conclusions 

Our observations of singly shocked interfaces between different gases are 
consistent with the previous work of Meshkov, but the difference between 
experimental data and Eq. 1 persists. Also, the persistence of the linear growth 
rate into the regime of visual nonlinearity is unexplained. The phenomena of a re- 
shocked interface show simultaneous RM growth and broadening. Strength effects 
of the membrane on the mean-flow velocity field are negligible, although inertial 
effects on the broadening may persist. Structure in the mixing region and on the 
reflected rarefaction may be useful in characterizing the onset of turbulent mixing 
if further experiments determine that the observed broadening is not a wall effect. 
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ABSTRACT : 

We present three methods of analyzing shock-interface and shock- 

turbulence interaction: direct simulation, turbulence transport with a 

full Reynolds tensor, variable density transport model, and a newly 
developed "k-&-pt2" model. Using direct simulations performed with the 

2D FCT code EAD, we discuss here the structure of the flow produced by a 

shock-interface interaction as well as shock-mixed region interaction, 

as obtained in shock-tube experiments. Boundary layer effects, a 

prominent feature of such experiments, are examined using the 2D ALE 

CAVEAT code, in which the simplified model mentioned above was 

implemented. 

I-INTRODUCTION 

Turbulence modeling has long been an indispensible tool for 

examining complex flows. More recently their applications have been 

extended to circumstances involving several compressible materials. As a 

result, Reynolds-stress transport closure models have evolved /1,2/. 

Quantitative assessment of these models in general flows is still quite 

limited, primarily due to their complexity and the questionable 

improvement in performance over that of standard "k-E" models and their 

derivatives. This paper is an attempt to look at shock-interface and 

shock-turbulence interaction by combining the two approaches of 

turbulence modeling and highly resolved direct simulations. 



O r i g i n a l l y ,  t h i s  e f f o r t  was d i r e c t e d  a t  c o m p a r i s o n s  be tween  ou r  

t u r b u l e n c e  model,  c a l l e d  BHR, and  some d i r e c t  s i m u l a t i o n s  u s i n g  EAD, a 

2D E u l e r i a n  code  / 3 , 4 /  o f  s h o c k s  i n t e r a c t i n g  w i t h  a  random, mult imode 

i n t e r f a c e  be tween  a i r  and  h e l i u m .  BHR i s  d e r i v e d ,  a s  most t u r b u l e n c e  

t r a n s p o r t  models ,  from t h e  mean a n d  f l u c t u a t i n g  E u l e r  e q u a t i o n s  f o r  a 

v a r i a b l e  d e n s i t y  f l o w .  C l o s u r e s  o f  h i g h e r - o r d e r  c o r r e l a t i o n s  a r e  

accomplished i n  e i t h e r  t h e  s t a n d a r d ,  " d i f f u s i v e "  model ing p o p u l a r i z e d  i n  

t h e  1 9 7 0 1 s ,  o r  by  means o f  " t w o - f i e l d - l i k e "  c l o s u r e s  t h a t  r e t a i n  t h e  

d e s c r i p t i o n  o f  d i r e c t e d  i n t e r p e n e t r a t i o n  / 4 / .  T h i s  l a t t e r  f e a t u r e  i s  

c r u c i a l  t o  t h e  p r o p e r  t r e a t m e n t  o f  t h e  c u r r e n t  p r o b l e m  o f  s h o c k  

i n t e r f a c e  i n t e r a c t i o n s  s i n c e  t u r b u l e n c e  i s  i n i t i a l l y  a b s e n t  f rom t h e  

p rob lem.  BHR i n i t i a l i z e s  t h e  t u r b u l e n c e  i n  t h e  f l o w  by d e s c r i b i n g  

i n t e r a c t i o n s  o f  t h e  d e n s i t y  i n h o m o g e n e i t i e s ,  c h a r a c t e r i z e d  by l e v e l s  of  
p f 2  , and  t h e  mean f l o w  p r e s u r e  g r a d i e n t .  T h i s  t e r m ,  which i s  n o t  

modeled b u t  emerges d i r e c t l y  f rom t h e  d e r i v a t i o n ,  d r i v e s  t h e  t u r b u l e n t  

i n t e r p e n e t r a t i o n  f rom a  q u i e s c e n t  s t a r t .  W e  p r o p o s e  h e r e  a  new 
d e r i v a t i o n ,  s t a r t i n g  from BHR, o f  a h y b r i d  "k-&-pf2" model t h a t  c o n t a i n s  

some o f  i t s  e s s e n t i a l  f e a t u r e s .  T h i s  model i s  more t r a c t a b l e  t h a n  BHR 

f o r  m u l t i d i m e n s i o n a l  e n g i n e e r i n g  f l o w s .  T h i s  model h a s  been  implemented 

i n  CAVEAT / 5 / ,  a  2D ALE code ,  a n d  h a s  computed s h o c k - i n t e r f a c e  and 

s h o c k - t u r b u l e n c e  i n t e r a c t i o n s  g e n e r a t e d  i n  a  p r o t o t y p e  s h o c k - t u b e  

exper iment  s i m i l a r  t o  some e x p e r i m e n t s  per formed a t  M a r s e i l l e  / 6 / .  They 

show t h e  c r u c i a l  impor t ance  o f  t h e  boundary  l a y e r s  d e v e l o p i n g  i n  t h e  

shock- tube .  F u t u r e  c a l c u l a t i o n s  w i l l  b e  d i r e c t e d  a t  p r e c i s e ' c o m p a r i s o n s  

between c a l c u l a t i o n s  and  e x p e r i m e n t a l  d a t a .  

Some g e n e r a l  c o n c e p t s  c o n c e r n i n g  compar i son  o f  d i r e c t  s i m u l a t i o n  

r e s u l t s ,  s u c h  a s  t h o s e  from EAD, a n d  p r e d i c t i o n s  f rom t u r b u l e n c e  

t r a n s p o r t  model ing  a r e  d i s c u s s e d .  These  a r e  e x e m p l i f i e d  i n  t h e  a n a l y s i s  

of  a  s i m u l a t i o n  of  a  g e n e r i c  shock - tube  expe r imen t  / 7 / .  We a l s o  e x t e n d  

o u r  view o f  t h e  EAD r e s u l t s  p r e s e n t e d  e a r l i e r  / 4 /  by d i s c u s s i n g  

spanwise  s p e c t r a  o f  t h e  v e l o c i t y  f i e l d ,  and t h e i r  r e l a t i o n s h i p  t o  t h e  

i n i t i a l  d e f i n i t i o n  o f  t h e  i n t e r f a c e .  

II-DERIVATION OF A nk-E-p'21f MODEL 

BHR f u r n i s h e s  a  r a t h e r  comple t e  framework f o r  s t u d y i n g  u n s t e a d y ,  

a n i s o t r o p i c  t u r b u l e n c e .  I t  a l s o  a l l o w s  f o r  c i r c u m s t a n c e s  s u c h  a s  

i n s t a b i l i t y - i n d u c e d  t u r b u l e n c e  ( R a y l e i g h - T a y l o r ,  Richtmyer-Meshkov, 

Ke lv in -He lmho l t z ,  r e f e r r e d  l a t e r  r e s p e c t i v e l y  a s  RT, RM, a n d  K H ) .  
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However, i t s  r a t h e r  complex f o r m u l a t i o n  makes i t  h a r d  t o  u s e  t o  

s i m u l a t e  r e a l  f l o w s  f o r  which t h e  mean f low i s  m u l t i d i m e n s i o n a l .  For  

such  e n g i n e e r i n g  f lows ,  we u s e  a  s i m p l i f i e d  model,  t h a t  can  be  d e r i v e d  

from BHR, and  r e t a i n s  some of i t s  most i m p o r t a n t  f e a t u r e s .  I n  t h e  c a s e  

o f  c o n s t a n t  d e n s i t y ,  t h i s  model r e d u c e s  t o  t h e  well-known "k-&" model. 

The d e r i v a t i o n  a l s o  shows t h a t  t h e  "k-E" model i s ,  i n  p r i n c i p l e ,  o n l y  

v a l i d  f o r  " sma l l "  mean g r a d i e n t s ,  i n  a  s ense  t h a t  w i l l  be d e t a i l e d  below 

( s e e  a l s o  Besnard e t  B o n n e f i l l e  / 8 /  f o r  d e t a i l s ) .  The f u l l  BHR model 

e q u a t i o n s  have been r e p o r t e d  e l sewhere ,  and we s t a r t  h e r e  o n l y  w i t h  t h e  

n e c e s s a r y  ones ,  which a r e  t h e  e q u a t i o n s  f o r  t h e  Reynolds s t r e s s  t e n s o r  

~ i j  and  i t s  d i s s i p a t i o n  D ~ I ,  t h e  t u r b u l e n t  mass f l u x  a i l  a n d  i t s  

d i s s i p a t i o n  Dal. 

We t h e n  c o n s i d e r  i d e a l i z e d  c i r cums tances  f o r  which a  s t e a d y - s t a t e  

t u r b u l e n t  f low has  been achieved ,  f o r  which t h e  t u r b u l e n c e  i s  i s o t r o p i c .  

The re  i s  t h e r e f o r e  a  b a l a n c e  between p r o d u c t i o n  and  d i s s i p a t i o n  of 

t u r b u l e n c e .  I n  t h e  e q u a t i o n s ,  we lump t o g e t h e r  a l l  t h e  t e r m s  b a l a n c i n g  

t h e  d i s s i p a t i o n  t e rm i n t o  a  " sou rce"  t e rm ~ ~ j  t h a t  e v o l v e s  on t h e  t ime 

s c a l e  o f  t h e  t u r b u l e n c e  S/&, i n  which S i s  t h e  t u r b u l e n c e  l e n g t h  

s c a l e .  We now i n t r o d u c e  sma l l  p e r t u r b a t i o n s  i n  t h e  f low,  due t o  a  mean 

v e l o c i t y  g r a d i e n t ,  and an a c c e l e r a t i o n .  The l e n g t h  s c a l e s  a s s o c i a t e d  

w i t h  t h e s e  p e r t u r b a t i o n s  a r e  assumed t o  be much l a r g e r  t h a n  S and  t h e  

i n i t i a l  f l o w  l e n g t h  s c a l e .  F o r  s a k e  of  s i m p l i c i t y ,  we t a k e  t h e  

p e r t u r b a t i o n s  l e n g t h  s c a l e s  t o  b e  b o t h  of o r d e r  L ,  w i t h  L much l a r g e r  

t h a n  S .  We c o n s i d e r  t h e s e  e q u a t i o n s  i n  a  non-d imens ional  form, which 

invo lve  t h e  v a r i a b l e s  

t = t o  t*, 

X k  = L xk*, 
K i k  = K Kik* 

D i k  = ~ / ~ 2  ~ i k *  

a i  = a& a i * ,  

VP = p0 g V * P * ,  

P = PO P*, 

B = a* pO B*,  

U i  = V u i *  , 
D, = B D / K  

~~j and Kij c o n t r a c t i n g  r e s p e c t i v e l y  i n t o  D and K .  

I n  E q .  ( l ) ,  V i s  a  measure of t h e  i n t e n s i t y  of t h e  v e l o c i t y  jump 

which p e r t u b a t e s  t h e  i n i t i a l  f low,  L i s  i t s  g r a d i e n t  l e n g t h ,  and g i s  a  

measure o f  t h e  a c c e l e r a t i o n  superimposed on t h e  f low on t h e  l e n g t h  s c a l e  



L; a m e a s u r e s  t h e  d e n s i t y  f l u c t u a t i o n s  i n t e n s i t y .  The  t i m e  s c a l e  to i s  

c h o s e n  t o  b e  L / V ,  w h i c h  i s  a s sumed  t o  b e  much l a r g e r  t h a n  t h e  t u r b u l e n c e  

t i m e  s c a l e .  The r e s u l t i n g  e q u a t i o n s  a re  

VS aai  -- 1 Vs vtai + S ~ i k  - + -  S 
Vkp - a V k a i a k  a~ P 

S vs s 2  1. - a - akVkai  + akVkui  = - V, (a, p vkai) 
L P 

+ a 1 
B - v k p i k  - C 47 air 

K p2 
a 

V s  JDai -- vs + -  S ~ i k  
1 

~k VkDai + CDal 
aL - v k ~  

P  

- s 2  L - - K V s  

P  'k k D a  p  
vkDai) - a  V t u  
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where we have dropped t h e  * ' S  f o r  convenience. 

I n  t he se  equa t ions ,  t h r e e  main non-dimensional parameters appear :  

t h e  f i r s t  one i s  t h e  r a t i o  of t h e  t u rbu l ence  l eng th  s c a l e  S t o  t h e  

hydrodynamic l eng th  s c a l e  L a s s o c i a t e d  with t h e  mean v e l o c i t y  g rad ien t  

pe r tu rb ing  t h e  flow; it can be c l e a r l y  i d e n t i f i e d  a s  t h e  Knudsen number 

of t he  tu rbu lence  Kn,, S de sc r i b ing  a  mean-free-path f o r  t h e  c o l l i d i n g  

edd ies .  The second one i s  Vs/L&, t h a t  desc r ibes  t h e  r e l a t i v e  s t r e n g t h  

of t he  p e r t u r b a t i v e  shear  and t h e  i n t e r n a l  shear  due t o  eddies  rubbing 
aga in s t  each o t h e r  ( it  could be r e w r i t t e n  a s  t h e  product  of ~ n , ~  by a  

Reynolds number based on t h e  p e r t u r b a t i o n  s c a l e s  L and V, and t h e  

t u r b u l e n t  v i s c o s i t y  S The t h i r d  one i s  sg/K, which can be 

i n t e r p r e t e d  a s  t h e  Richardson number R i ,  of  t h e  t u rbu l ence ,  t h a t  

compares t h e  r e l a t i v e  i n t e n s i t i e s  of t h e  v e l o c i t y  c r e a t e d  by t h e  

a c c e l e r a t i o n  g  and t h e  s h e a r  v e l o c i t y  i n  t h e  d i r e c t i o n  of t h i s  

a cce l e r a t i on  (here ,  it i s  t he  shear  c rea ted  a t  s c a l e  S ) .  

We want t o  o b t a i n  an approximation f o r  Eqs. (2a-d) t h a t  accounts  

f o r  both shea r  and a c c e l e r a t i o n  e f f e c t .  To do so ,  we assume t h a t  Kn, i s  

smal l .  The r e l a t i v e  i n t e n s i t y  of t h e  p e r t u r b a t i v e  a c c e l e r a t i o n ,  R i ,  i s  

assumed t o  be comparable t o  Kn,, i n  o rder  t o  s imp l i fy  t h e  expansion i n  

terms of t h e  smal l  parameter  Kn,; we a l s o  assume t h a t  V S / L I / K  i s  

comparable t o  Kn,, which impl ies  t h a t  V/& i s  not  g r e a t e r  than 1, and 

t h a t  t he  parameter a i s  of o rder  0 with respec t  t o  Kn,. 

We now expand ~ ~ j ,  Dij, ai l  and Dai i n  terms of Kn,, and denote, f o r  each 

of t he  fou r  va r i ab l e s ,  t h e  two f i r s t  terms i n  t h e  expansion by us ing t h e  

subscr ip t  S 0 and 1. 

To t h e  lowest  o rde r ,  both  ~~j~  and D i j O  a r e  no t  a f f e c t e d  by t h e  

pe r t u rba t i ons ,  a s  expected.  The same r e s u l t  i s  t r u e  f o r  aiO and DaiO, 

which s t a y  a t  t h e i r  zero i n i t i a l  va lue .  

To t h e  next  h ighest  o rder ,  we can solve  d i r e c t l y  f o r  ail ,  Dail, and 

~ ~ j ~ ,  and ob t a in  



I n s e r t i n g  t h e  express ion  on ta ined  f o r  ~~j~ i n  t h e  f i r s t  o r d e r  equa t ion  

f o r  ~ ~ j ~ ,  we o b t a i n  t h a t  

Keeping now t h e  lowest  o r d e r  te rms f o r  r e s p e c t i v e l y  t h e  i s o t r o p i c  

and a n i s o t r o p i c  p a r t s  of  t h e  Reynolds t e n s o r  Kij ,  we o b t a i n  t h e  wel l -  

known Bouss inesq  approx imat ion ,  when t h e  r e s u l t  i s  r e s t r i c t e d  t o  

divergence f r e e  f lows.  

Next ,  u s i n g  t h e  a p p r o x i m a t i o n s  (3a-d) , t o g e t h e r  w i t h  t h e  

d e f i n i t i o n s  

we o b t a i n  a  "k-E" model. However, t h e  above approximat ions  were d e r i v e d  

under t h e  assumption t h a t  t h e  mean g r a d i e n t s  p e r t u r b i n g  t h e  f low were 

smal l .  When app ly ing  t h e  model t o  more demanding c i rcumstances ,  w e  must 

i n t r o d u c e  some a d d i t i o n a l  s a f e g u a r d s .  To do so ,  we recogn ize  t h a t  any 

d i a g o n a l  component o f  t h e  Reynolds  s t r e s s ,  and t h e  c o r r e s p o n d i n g  

d i s s i p a t i o n  s t r e s s  must remain p o s i t i v e  and s m a l l e r  t h a n  t h e  t r a c e  of 

t h e  t e n s o r  i t s e l f .  Th i s  r e s u l t s  i n  a  c o n s t r a i n t  on t h e  r a t i o  k/&, which 

reads  

k / ~  < Min (hl ,h2,h3,h4,h5,h6) 

with . . 
hi = Max (h20 , 012/3+(h-l/3)s~~~/s~jjll) , i = 1 , 2 , 3  , 
hi+3 = Max (A20 , 012/3+ (h-1/3) sE i i / s , j j l l )  , i = 1 , 2 , 3  , 
s k i j  = Kn, K i j l ( - )  , 

. . 
SD13 = Kn, Dij l(-)  , ( 5 )  

where ( - 1  i n d i c a t e s  t h a t  t h e  te rms a r e  now e x p r e s s e d  i n  terms o f  t h e  
dimensional  v a r i a b l e s  (we use now k and E i n s t e a d  of K and D ) .  



C o n s i d e r i n g  now t h e  c a s e  o f  R a y l e i g h - T a y l o r  i n s t a b i l i t y  i n d u c e d  

t u r b u l e n c e ,  we must e n f o r c e  t h e  f a c t  t h a t  no t u r b u l e n c e  i s  e v e r  c r e a t e d  

i n  t h e  s t a b l e  c a s e ,  w h e n e v e r  t h e  i n i t i a l  i n t e r f a c e  i s  n e a r l y  i n  t h e  

l i n e a r  r e g i m e  ( i . e .  s m a l l  a m p l i t u d e  t o  w a v e l e n g t h  r a t i o ) .  To show t h i s ,  

w e  c o n s i d e r  c i r c u m s t a n c e s  when t h e  t u r b u l e n c e  i s  RTI d r i v e n ,  a n d  k e e p  

o n l y  t h e  d r i v i n g  t e r m s  i n  K ~ J  and  a i  e q u a t i o n s .  D i f f e r e n t i a t i n g  E q . ( Z a )  

w i t h  r e s p e c t  t o  t i m e  , a n d  u s i n g  Eq .  ( 2 b ) ,  we o b t a i n  t h a t  Km shows no  

g r o w t h  i n  t h e  s t a b l e  c a s e .  We t h e r e f o r e  t r u n c a t e  t h e  d e n s i t y  g r a d i e n t  

t e r m s  t o  z e r o  i n  E q s .  ( 3 a )  a n d  ( 3 b )  , whenever  s t a b i l i t y  i s  a c h i e v e d .  I n  

t h e  u n s t a b l e  c a s e  we r e t a i n  o n l y  p a r t  o f  t h e  e x a c t  s o l u t i o n ,  n e g l e c t i n g  

i t s  e x p o n e n t i a l l y  v a n i s h i n g  p a r t .  T h i s  s h o u l d  n o t  b e  t o  w o r r i s o m e ,  a s  

l o n g  a s  w e  c o n s i d e r  c i r c u m s t a n c e s  t h a t  do n o t  d e p e n d  s t r o n g l y  on i n i t i a l  

c o n d i t i o n s ,  s u c h  a s  s e l f - s i m i l a r ,  f u l l y  d e v e l o p e d  t u r b u l e n c e  r e g i m e s .  

The r e s u l t i n g  e q u a t i o n s  r e a d  

w i t  h  

where  < i n d i c a t e s  t h a t  t h e  b r a c k e t e d  e x p r e s s i o n  i s  t r u n c a t e d  t o  z e r o  i f  

VlpVkplk i s  p o s i t i v e  . 

111-2D DIRECT SIMULATIONS OF SHOCK-INTERFACE I N T E R A C T I O N  

l - D e s c r i p t i o n  o f  t h e  n u m e r i c a l  e x p e r i m e n t s  

By p e r f o r m i n g  h i g h  r e s o l u t i o n  c a l c u l a t i o n s ,  we a r e  a b l e  t o  e x t r a c t  

v e r y  u s e f u l  i n f o r m a t i o n  u s u a l l y  n o t  a t t a i n a b l e  b y  e x p e r i m e n t s ,  s u c h  a s  



s t a t i s t i c a l  c o r r e l a t i o n s  p red ic ted  by turbulence t r a n s p o r t  models. To do 

so  i n  t he  RMIM and RTIM cases ,  a s  an example, t h e  i n t e r f a c e  between two 

m a t e r i a l s  i s  de f i ned  by a  sum of cos ines  waves which ampl i tudes  a r e  

sampled from a  gauss ian p r o b a b i l i t y  d i s t r i b u t i o n  func t i on .  The mesh i s  

chosen such t h a t  t h e  s m a l l e s t  wavelength and t h e  i n t e r f a c e  r m s  a r e  

de sc r i bed  by a  l a r g e  enough number of c e l l s  ( t y p i c a l l y  2 5  and 1 0 ,  

r e s p e c t i v e l y ) ,  and t h e  l a r g e s t  mode i s  contained i n  t h e  ca l cu l a t i on  box. 

The a n a l y s i s  of  t h e  r e s u l t s  r e l i e s  heav i ly  on a  number of d i agnos t i c s  

generated by a  post-processor code t o  EAD. I t  inc ludes  maps of p ressure ,  

dens i ty ,  v e l o c i t y  i n  t h e  i n t e r f a c e  reference frame, a s  well  a s  v o r t i c i t y  

and compression. In add i t i on ,  Sch l ie ren  and shadowgraphs a r e  generated,  

t h a t  can be compared d i r e c t l y  with experiments.  A d e t a i l e d  study of the  

flow s t r u c t u r e  i s  provided by t h e  pseudo-spectra l  decomposition of t he  

f low, a l l owing  f o r  t h e  d e s c r i p t i o n  of mode coup l i ng  i n  t h e  mixing 

reg ion .  The o t h e r  d i agnos t i c s  inc lude  a l l  t h e  s t a t i s t i c a l  c o r r e l a t i o n s  

involved i n  t h e  t r a n s p o r t  model BHR. From the se  1 D  p r o f i l e s ,  we ob t a in  a  

t ime e v o l u t i o n  of i n t e g r a l  q u a n t i t i e s  such a s  t h e  i n t e r p e n e t r a t i o n  

l eng th  ( M Z T ) ,  and t h e  t o t a l  f l u c t u a t i n g  energy conta ined i n  t h e  mixing 

zone (ZFKE) and a c r o s s  t h e  computation g r i d  (TFKE) . A l l  t h e  r e s u l t s  

presented here  a r e  f o r  t h e  same two ma te r i a l s ,  r e spec t i ve ly  a i r  (shocked 

f i r s t ) ,  and helium (shocked second) ;  t h e  shock Mach number i n  a i r  i s  

1 .3 ,  with one except ion a t  1 . 2 .  

2-Averaging procedure 

A number of  comments must be  made concerning t h e  r e l a t i o n s h i p  of 

t h e  ID d i a g n o s t i c s  t o  t h e  c o r r e l a t i o n s  ob ta ined  through t h e  BHR model. 

F i r s t ,  t h e  i n t e r f a c e s  t h a t  a r e  chosen here  a r e  not  f u l l y  random. Because 

we want t o  r e s o l v e  each i n i t i a l  mode i n  t h e  i n t e r f a c e ,  we cons ide r  

wavelengths t h a t  a r e  harmonics of  2h, where h  i s  t h e  v e r t i c a l  s i z e  of 

t h e  box. We impose mi r ro r  cond i t i ons  a t  t h e  t o p  and t h e  bottom of t he  

computation box. The l a r g e s t  wave l eng th  desc r ibed  he r e  i s  .4h,  about 

20 percent  of t h e  t o t a l  box h e i g h t .  This means t h a t ,  a t  l a t e  t imes  i n  

t h e  c a l c u l a t i o n ,  one shou ld  n o t i c e  t h e  e f f e c t  o f  t h i s  p a r t i c u l a r  

wavelength t h a t  grows more slowly than  t h e  o t h e r  ones (convergence of 

mushrooms a t  t h a t  s c a l e )  . Eventual ly  through non l i nea r  coupling,  even 

l a r g e r  ones appear .  

Second, t h e r e  a r e  s e v e r a l  p o s s i b l e  averag ing  t echn iques .  For our 

problem, t h e  s imp le s t  p o s s i b l e  i s  t o  t a k e  a  spanwise s t r i p  average 

a c r o s s  t h e  mesh. This  cor responds  t o  an ensemble average ove r  a l l  



poss ib le  phase s h i f t s  f o r  a  given s e t  of cos ine  func t ions  def in ing  one 

i n t e r f a c e ,  i f  t h e  i n t e r f a c e  were t o  be i n f i n i t e l y  long.  I t s  l eng th  i s  

f i n i t e ,  but t h e  hope i s  t h a t  i t s  main s t a t i s t i c a l  f e a t u r e s  a r e  p resen t  

i n  t h i s  p a r t i c u l a r  segment. A l l  t h e  t r an sve r se  f l u c t u a t i o n s  a r e  removed 

by t h i s  procedure.  If  we now want t o  ob ta in  r e s u l t s  t h a t  do not  depend 

upon t h e  d e t a i l e d  s t r u c t u r e  of t h e  i n t e r f a c e  bu t  r a t h e r  upon a  

s t a t i s t i c a l  q u a n t i t y  such a s  t h e  i n t e r f a c e  va r i ance ,  we would, i n  

p r i n c i p l e ,  average our r e s u l t s  on a l l  p o s s i b l e  i n t e r f a c e s  of a  given 

var iance .  Trans la ted  i n  terms of s p a t i a l  average,  t h i s  means we would 

average streamwise on a  th ickness  near ly  equal  t h e  i n t e r f a c e  var iance .  

Therefore,  any d i agnos t i c  ob ta ined  from h o r i z o n t a l  i n t e g r a t i o n  ac ro s s  

t he  mixing zone, such a s  t he  jump of t he  f l u c t u a t i n g  k i n e t i c  energy due 

t o  a  shock- in te r face  i n t e r a c t i o n ,  o r  t he  mixing zone t h i cknes s  ( M Z T ) ,  

(both i n  R T  and RM cases )  gives information t h a t  i s  somewhat independent 

of t he  d e t a i l e d  shape of the  i n t e r f a c e .  However, such an average (which 

would be here  on about 10 c e l l s  streamwise) smooths out  a l l  d e t a i l s  on 

any s ca l e  smal ler  t h a t  t h e  i n t e r f a c e  var iance .  No s t r u c t u r e  smal ler  than 

t he  i n t e r f a c e  rms can be s tud ied  i n  terms of s t a t i s t i c s  r e l a t e d  t o  t h e  

rms. A s  an example, ou t s i de  t h e  i n t e r f a c e  reg ion ,  t h e  shock i s  only  a  

few c e l l s  wide ( 3  o r  4 f o r  t h i s  FCT c o d e ) .  However, we can r e s t r i c t  

o u r s e l v e s  t o  t h e  sub-ensemble c o n s i s t i n g  o f ,  f o r  a  g iven  s e t  of 

wavelengths and ampli tudes,  t h e  r e a l i z a t i o n s  produced by v e r t i c a l  phase 

s h i f t s .  Th i s  i s  c o n s i s t e n t  wi th  a  l - c e l l  v e r t i c a l  s t r i p  averag ing  

procedure.  The 1D s t a t i s t i c a l  model we use here  i s  based on averages  

over an ensemble of r e a l i z a t i o n s  having t h e  same i n i t i a l  1D p r o f i l e s  

ob ta ined  by s t r i p  averag ing .  This  ensemble i s  much r i c h e r  t han  t h e  

phase-sh i f t  i n v a r i a n t  ensemble used i n  t h e  2D code.  We s t i l l  compare 

here  our model i n  i t s  1 D  vers ion with t h e  averaged 2 D  r e s u l t s  obta ined 

with EAD, but  we make su r e  t h a t  i t s  i n i t i a l i z a t i o n  uses  t h e  a c t u a l  2D 

i n t e r f a c e  t o  g e t  t he  1 D  i n i t i a l  p r o f i l e s  through t h e  same average than 

f o r  e x t r a c t i n g  d i a g n o s t i c s  from t h e  2 D  r e s u l t s .  The a d d i t i o n a l  

c o n s t r a i n t  i s  t h a t  both t h e  2 D  code and t he  1 D  model must use t h e  same 

hor izon ta l  mesh. 

3-Convergence of t h e  ca l cu l a t i ons  and numerical d i agnos t i c s  

To have any confidence i n t o  our numerical r e s u l t s ,  we must check 

t h a t  a l l  t h e  l a r g e  s c a l e  f e a t u r e s  of t h e  flow a r e  wel l  r eso lved .  To do 

so,  we ran t h r e e  d i f f e r e n t  c a l cu l a t i ons ,  with t h e  same i n i t i a l  i n t e r f a c e  

( r e f e r r e d  t o  a s  case  K ) ,  but w i t h  r e s p e c t i v e l y  a  mesh s i z e  of 0 .01,  



0.0125,  and  0 .02  cm. N o t i c e  t h a t ,  i f  t h e  i n i t i a l  i n t e r f a c e  i s  r a t h e r  

w e l l  r e s o l v e d  f o r  a l l  t h r e e  c a s e s ,  t h i s  i s  n o t  t h e  c a s e  f o r  i t s  r m s ,  

p h y s i c a l l y  1 / 4  o f  t h e  i n i t i a l  t h i c k n e s s .  I n  t h e  RM c a s e ,  because  t h e  

shock i s  g o i n g  h e r e  from heavy t o  l i g h t ,  a l l  t h e  modes on t h e  i n t e r f a c e  

undergo a  phase  r e v e r s a l  l e a d i n g  a t  peak  c o n t r a c t i o n  t o  a  t h i c k n e s s  (o f  

a b o u t  f i v e  c e l l s  i n  t h e  c o a r s e s t  c a s e )  t h a t  may n o t  b e  w e l l  r e s o l v e d .  

T h e r e f o r e ,  w e  c a n n o t  e x p e c t  a  good r e s u l t  i n  t h e  t h i r d  c a s e  f o r  l a r g e  

t i m e s .  

F i g u r e  1 shows t h e  i n t e r f a c e  r e g i o n  i n  e a c h  o f  t h e s e  c a s e s ,  a t  

60ps and  180ps, w e l l  beyond t h e  shock p a s s a g e  ( t h e  c u r v e d  l i n e  j u s t  t o  

t h e  l e f t  of t h e  i n t e r f a c e  i s  a n  a r t i f a c t ) .  

F i g u r e  1: I n t e r f a c e  a t  60ps and 180ps, f o r  t h r e e  c e l l  s i z e s .  

A t  60ps, t h e  l a r g e  s c a l e  s t r u c t u r e s  a r e  s i m i l a r  on t h e  two f i n e r  

g r i d s .  They a r e  s t i l l  r a t h e r  w e l l  i n d i c a t e d  on t h e  c o a r s e  mesh, b u t  one 

can n o t i c e  s i g n i f i c a n t  d i f f e r e n c e s  w i t h  t h e  two o t h e r  i n t e r f a c e s  a t  t h i s  

e a r l y  t i m e .  The mixing zone t h i c k n e s s e s  a r e  r e s p e c t i v e l y  .66,  .64,  and 

. 5 7  cm a s  measured  from t h e  i n t e r f a c e  p l o t s .  These measures  have  an 



e r r o r  b a r  o f  a b o u t  o n e  c e l l .  I f  w e  now c a l c u l a t e  t h e  t h i c k n e s s  

a s s o c i a t e d  t o  a  d e p a r t u r e  o f  0 . 5 %  o f  t h e  mass c o n c e n t r a t i o n  f rom 0 o r  1 

(MZT), w e  g e t  t h e  v a l u e s  .66,  . 6 2 ,  a n d  .54 cm r e s p e c t i v e l y .  N o t i c e  h e r e  

t h a t  , d u e  t o  a  r a t i o  o f  1 t o  7 . 3  be tween  t h e  s h o c k e d  d e n s i t i e s  o f  t h e  

two g a s e s ,  M Z T s t a r t s  when 9 ( r e s p e c t i v e l y  7 a n d  4 )  h e l i u m  f i l l e d  c e l l s  

(on  t h e  a v e r a g e )  a r e  e n c o u n t e r e d  i n  t h e  s t r i p  a v e r a g e  on t h e  a i r  s i d e .  

I n  c o n t r a s t ,  w e l l  b e f o r e  a n  amount c o r r e s p o n d i n g  t o  a s i n g l e  c e l l  o f  a i r  

i s  d e t e c t e d  on t h e  h e l i u m  s i d e ,  t h e  c o n c e n t r a t i o n  t h r e s h o l d  i s  r e a c h e d .  

Tak ing  now i n t o  a c c o u n t  t h e  h i g h l y  d i f f e r e n t  m o r p h o l o g i e s  o f  t h e  b u b b l e s  

a n d  s p i k e s ,  t h e s e  numbers i n d i c a t e  t h a t  t h e  u n c e r t a i n t y  on t h e  l o c a t i o n  

o f  t h e  m i x i n g  zone i s  a b o u t  1-2 c e l l s  on  t h e  a i r  ( b u b b l e )  s i d e  a n d  l 

c e l l  on t h e  h e l i u m  ( s p i k e )  s i d e .  A s  w e  c u r r e n t l y  u s e  M Z T  f o r  

e s t i m a t i n g  i n t e g r a t e d  q u a n t i t i e s  a c r o s s  t h e  m i x i n g  l a y e r ,  t h i s  shows 

t h e r e  c a n  b e  a n  u n c e r t a i n t y  on  t h e  r e s u l t s  s u c h  a s  t h e  f l u c t u a t i n g  

k i n e t i c  e n e r g y  a t  minimum M Z T .  

T h e r e  a re  a l s o  i n h e r e n t  u n c e r t a i n t i e s  d u e  t h e  n u m e r i c a l  scheme 

i t s e l f .  F i r s t ,  t h e  s m o o t h i n g  o f  t h e  s h o c k  on  3-4 c e l l s  i n d u c e s  

u n c e r t a i n t y  i n  i t s  p o s i t i o n  a n d  t h e  t i m i n g  o f  i t s  i n t e r a c t i o n  w i t h  t h e  

d i f f e r e n t  modes i n  t h e  i n t e r f a c e ,  which d o  n o t  h a v e  t h e  same a m p l i t u d e .  

Secondly ,  t h e  i n t e r f a c e  t r e a t m e n t  i n t r o d u c e s  a n o t h e r  u n c e r t a i n t y  o f  t h e  

o r d e r  o f  1-2 c e l l s  ( S L I C  p r e v e n t s  e x c e s s i v e  d i f f u s i o n  b y  r e t a i n i n g  a  

g i v e n  m a t e r i a l  u n t i l  it h a s  f i l l e d  t h e  e n t i r e  c e l l ) .  I f  w e  estimate t h e  

a b s o l u t e  e r r o r  t o  b e  4 ce l ls ,  w e  c a n  t h e n  p u t  e r r o r  b a r s  on  t h e  M Z T  ( a s  

a n  e x a m p l e ) ,  t o  g e t  r e s p e c t i v e l y  .66+ .04 ,  .62+.05,  a n d  .54+ .08  c m  . I f  

w e  t e s t  now t h e  minimum v a l u e  o f  MZT ( i n  t i m e ,  c o r e s p o n d i n g  t o  p e a k  

c o n t r a c t  i o n  o f  t h e  l a y e r )  , w e  o b t a i n  r e s p e c t i v e l y  . 1 4 f .  04,  . 1 3 f .  05,  and  

. l f  . 0 8  c m ,  which  shows t h a t  t h e  r e s u l t s  o b t a i n e d  f r o m  t h a t  l a s t  c a s e  

must  b e  c o n s i d e r e d  w i t h  t h e  g r e a t e s t  c a u t i o n .  T h e s e  n u m e r i c a l  e r r o r s  

a f f e c t  s u c h  s e n s i t i v e  r e s u l t s  a s  t h e  q u a n t i t y  o f  f l u c t u a t i n g  k i n e t i c  

e n e r g y  c r e a t e d  b y  t h e  s h o c k - i n t e r f a c e  i n t e r a c t i o n .  A l i n e a r  a r g u m e n t  

p r o b a b l y  d o e s  n o t  h o l d  h e r e  b e c a u s e  o f  t h e  n o n l i n e a r  i n t e r a c t i o n s  

between t h e  d i f f e r e n t  modes i n  t h e  i n t e r f a c e  a n d  t h e  s h o c k .  When w e  p l o t  

t h e  v a l u e s  o f  TFKE,,, ( t h i s  peak  v a l u e  i s  a t t a i n e d  a t  a b o u t  t h e  t i m e  t h e  

shock  l e a v e s  t h e  i n t e r f a c e )  a n d  TFKE,,p, a s  a  f u n c t i o n  o f  t h e  mesh s i z e ,  

a n d  t a k e  a l i n e a r  e x t r a p o l a t i o n  f r o m  t h e  t h r e e  p o i n t s  g i v e n  b y  t h e  

c a l c u l a t i o n ,  w e  o b t a i n  a n  e x t r a p o l a t e d  v a l u e  r o u g h l y  20% l a r g e r  t h a n  t h e  

o n e  o b t a i n e d  w i t h  t h e  f i n e s t  mesh w e  u s e d .  T h i s  i s  c o n n e c t e d  t o  t h e  

u n c e r t a i n t y  o f  t h e  minimum v a l u e  o f  MZT;  t h i s  i s  e x p e c t e d ,  b e c a u s e  t h i s  

s m a l l e s t  v a l u e  i s  a t t a i n e d  d u r i n g  t h e  a c t u a l  s h o c k - i n t e r f a c e  

i n t e r a c t i o n ,  when t h e  s h o c k  d e f o r m a t i o n  i s  t h e  most c l o s e l y  r e l a t e d  t o  



t h e  i n t e r f a c e  s h a p e .  

A t  180ps  ( F i g u r e  l ) ,  t h e  t h r e e  r e s u l t s  a r e  q u i t e  d i f f e r e n t : t h e  

amount of  ene rgy  c r e a t e d  by t h e  shock  i n  t h e  i n t e r f a c e  r e g i o n  d e c r a s e s  

w i t h  t h e  number of  c e l l s ,  i n d u c i n g  l e s s  a d d i t i o n a l  mix ing  t h r o u g h  

n o n l i n e a r  t u r b u l e n t  d i f f u s i o n  and  s t r o n g e r  n u m e r i c a l  d i s s i p a t i o n  o f  

v o r t i c i t y .  Th i s  may l e a d  t o  s i g n i f i c a n t  e r r o r s :  t h e  t h r e e  bottom s p i k e s ,  

do n o t  seem t o  converge  f o r  t h e  c o a r s e s t  mesh, which t h e y  do i n  t h e  two 

o t h e r  r u n s .  

4-Est imate  o f  shock- induced  f l u c t u a t i n g  k i n e t i c  energy  c r e a t i o n  

Our s i m u l a t i o n s  f u r n i s h  t h e  amount o f  FKE c r e a t e d  d u r i n g  t h e  

s h o c k - i n t e r f a c e  i n t e r a c t i o n ,  b o t h  i n  t h e  mix ing  zone and i n  t h e  e n t i r e  

computa t ion  box .  These r e s u l t s  c a n  b e  u s e d  t o  no rma l i ze  a  t h e o r e t i c a l  

e s t i m a t e  / g / ,  t h a t  i s  b a s e d  on a  s t a t i s t i c a l  a v e r a g e ,  o v e r  a l l  modes 

c o n t a i n e d  i n  t h e  i n t e r f a c e ,  o f  t h e  s ing l e -mode ,  l i n e a r  r e s u l t  o f  

Rich tmyer .  The compar i son  between t h e o r y  and  s i m u l a t i o n  was per formed 

p r e v i o u s l y  / 4 / ,  and we g i v e  h e r e  o n l y  a n  u p d a t e  t h a t  t a k e s  i n t o  account  

ou r  above comments. 

The t h e o r e t i c a l  estimate r e a d s  

where <q2>l12 i s  t h e  i n t e r f a c e  v a r i a n c e ,  P t h e  f a c t o r  i n t r o d u c e d  by t h e  

c u t - o f f  f o r  h i g h  wavenumbers, U t h e  jump i n  v e l o c i t y ,  A t  t h e  Atwood 

number, and PO+, PO- t h e  d e n s i t i e s  o f  t h e  two m a t e r i a l s  a f t e r  t h e  shock 

pas  s a g e .  

F i g u r e  2 :  F l u c t u a t i n g  k i n e t i c  e n e r g y  a t  peak v a l u e  v s  <q2>ll2 



The c h o i c e  o f  t h e  c u t - o f f  ( i . e .  P )  i s  d i f f i c u l t  f r o m  t h e o r e t i c a l  

a r g u m e n t s ,  a n d  we u s e  h e r e  t h e  e x t r a p o l a t e d  EAD r e s u l t s  ( f o r  a  mesh s i z e  

g o i n g  t o  z e r o )  f o r  g u i d a n c e .  F i g u r e  2 i n d i c a t e s  ( f o l l o w i n g  / g / )  t h a t  t h e  

c u t - o f f  w a v e l e n g t h  a p p e a r s  t o  b e  a r o u n d  1. 25<q2>ll2 o r  . 5 q 2 > l / *  ( P  b e i n g  

r e s p e c t i v e l y  . 4  a n d  .18), d e p e n d i n g  o f  t h e  c h o i c e  o f  TFKE o r  ZFKE a s  t h e  

p r o p e r  v a l u e  t o  b e  compared w i t h  t h e  e s t i m a t e  / g / .  

5-Time e v o l u t i o n  o f  TFKE, ZFKE, a n d  MZT 

W e  a n a l y z e  h e r e  t w o  d i f f e r e n t  r u n s .  The f i r s t  o n e  ( c a s e  K )  was 

a l r e a d y  c o n s i d e r e d  a b o v e ;  t h e  s e c o n d  o n e  (case L )  i s  a s i m u l a t i o n  o f  a  

R a y l e i g h - T a y l o r  i n s t a b i l i t y  i n d u c e d  m i x i n g  s h o c k  t u b e  e x p e r i m e n t ,  t h a t  

c a n  b e  s a i d  t o  d e s c r i b e  a g e n e r i c  n u m e r i c a l  e x p e r i m e n t  r e p r e s e n t a t i v e  o f  

c u r r e n t  e x p e r i m e n t s  / 7 / .  

F i g u r e  3: MZT v s  t i m e  ( l o g  s c a l e ) .  F i g u r e  4 :  TFKE v s  t i m e  ( l o g  s c a l e )  

I n  r u n  K, w e  p l o t t e d ,  f o r  t h e  t h r e e  d i f f e r e n t  meshes ,  MZT, TFKE, ZFKE, 

a n d  t h e  r a t i o  o f  ZFKE t o  t h e  d i r e c t e d  e n e r g y  c o n t a i n e d  i n  t h e  m i x i n g  

z o n e .  They a r e  d i s p l a y e d  r e s p e c t i v e l y  on F i g u r e s  3, 4,  5 a n d  6 .  T h r e e  

main p h a s e s  show o n  t h e s e  f i g u r e s .  The f i r s t  o n e ,  l a s t i n g  u n t i l  t h e  

s h o c k  l e a v e s  t h e  i n t e r f a c e ,  c o r r e s p o n d s  t o  t h e  i n v e r s i o n  o f  t h e  

i n t e r f a c e ,  a s  shown b y  a d e c r e a s e  o f  M Z T  on F i g u r e  3 ,  a n d  t h e  a p p e a r a n c e  

o f  jets,  e v o l v i n g  i n t o  v o r t i c e s ,  c o r r e s p o n d i n g  t o  t h e  r a p i d  i n c r e a s e  o f  



TFKE shown on F i g u r e  4 .  

F i g u r e  5 :  ZFKE v s  t i m e  ( l o g  s c a l e ) .  F i g u r e  6 :  ZFKE/DKE v s  t i m e  ( l o g ) .  

A r a p i d  d e c r e a s e  o f  ZFKE f o l l o w s ,  as shown on F i g u r e  5, t h a t  l a s t s  u n t i l  

t h e  r a r e f a c t i o n  wave l e a v e s  t h e  i n t e r f a c e  / 4 / .  The l a s t  phase  shows a  

more g e n t l e  d e c r e a s e  of  t h e  f l u c t u a t i n g  k i n e t i c  e n e r g y ,  a s  shown on 

F i g u r e s  4 a n d  6 .  The two f i r s t  p h a s e s  have  been  somewhat examined 

p r e v i o u s l y  /4/, and i n  t h e  above s e c t i o n .  Regard ing  t h e  t h i r d  phase ,  one 

i s  most i n t e r e s t e d  t o  know i f  t h e  b e h a v i o r  d i s p l a y e d  on F i g u r e s  3-6 i s  

u n i v e r s a l ,  i n  t e r m s  o f  r a t e  of  d e c a y  of f l u c t u a t i n g  ene rgy ,  and r a t e  of  

t h i c k e n i n g  o f  t h e  mix ing  zone .  T h i s  q u e s t i o n  i s  r e l a t e d  t o  t h e  p o s s i b l e  

e x i s t e n c e  o f  a s e l f - s i m i l a r  regime f o r  t h e  spanwise  ave raged  v a r i a b l e s .  

U n f o r t u n a t e l y ,  a t  t h i s  s t a g e  o f  o u r  s t u d y ,  no  d e f i n i t e  answer can  be 

g i v e n .  There  i s  f i r s t  a  l i n e a r  c o n t r a c t i o n  and  e x p a n s i o n  up t o  40ps ,  

t y p i c a l  o f  t h e  RM p r o c e s s  i n  t h e  e a r l y  p h a s e .  From F i g u r e  3,  a  t ime  

power-law f i t  o f  t h e  m i x i n g  zone  t h i c k n e s s  ( a f t e r  5 0 p s )  g i v e s  an 

exponent  t h a t  v a r i e s  l i n e a r l y  w i t h  t h e  c e l l  s i z e :  .43 ,  . 6 ,  and . 7  f o r  

t h e  c o a r s e ,  medium and  f i n e  mesh r e s p e c t i v e l y  ( l i n e a r l y  e x t r a p o l a t e d  f o r  

z e r o  c e l l  s i z e ,  one  g e t s  a  g r o w t h  r a t e  o f  a b o u t  1). The M Z T  t i m e  

e v o l u t i o n  may depend upon t h e  t w o  l e n g t h  s c a l e s  t h a t  can  be  a s s o c i a t e d  

t o  t h e  problem.  The f i r s t  one,  U t ,  i s  b u i l t  o u t  o f  t h e  shock v e l o c i t y  

jump U , and t h e  second  one,  ~ ~ / ~ t ~ / ~  /g / ,  o u t  o f  t h e  t o t a l  f l u c t u a t i n g  

k i n e t i c  e n e r g y  FKEmax(=E) c r e a t e d  by t h e  shock  i n t e r f a c e  i n t e r a c t i o n ,  

n e g l e c t i n g  d i s s i p a t i o n .  A t  t h i s  p o i n t ,  it i s  n o t  p o s s i b l e  t o  d e c i d e  

which t r e n d  MZT f o l l o w s .  



In  o u r  c a l c u l a t i o n s ,  we a r e  c e r t a i n l y  r e l a t i v e l y  f a r  from a  regime 

independent  of t h e  i n i t i a l  c o n d i t i o n s .  In  t h i s  low Mach number regime 

( b e h i n d  t h e  s h o c k ) ,  i n c o m p r e s s i b l e  t h e o r y  can  be s a f e l y  a p p l i e d  and 

shows t h a t  t h e  l i n e a r  development of any mode l e a d s  t o  a  f l o w f i e l d  whose 

s p a t i a l  e x t e n s i o n  i s  of t h e  o r d e r  of t h e  wavelength of t h e  p e r t u r b a t i o n .  

A t  t h e  end of  t h e  c a l c u l a t i o n ,  t h e  mixing zone t h i c k n e s s  i s  o f  t h e  o r d e r  

of  2cm ( e x t r a p o l a t e d ) ,  which i s  o n l y  t w i c e  t h e  l a r g e s t  wave leng th  

i n i t i a l l y  p r e s e n t  i n  t h e  i n t e r f a c e .  Th i s  l a r g e s t  mode i s  t h e r e f o r e  s t i l l  

m a r g i n a l l y  i n  t h e  n o n l i n e a r  reg ime.  We can t h e n  s a f e l y  conclude  t h a t  we 

a r e  s t i l l  f a r  from a  regime independant  of i n i t i a l  c o n d i t i o n s .  

The t i m e  r a t e s  of  e v o l u t i o n  ( a f t e r  50ps )  of  TFKE f o r  t h e  t h r e e  

c a s e s  K ( F i g u r e  4 ) ,  and  L a r e  - 1 . 0 7  ( c o a r s e ) ,  - . 8 6  (medium),  - . 7 1  

( f i n e ) ,  a n d  - . 7 6  r e s p e c t i v e l y .  S i m u l a t i o n s  K (medium) a n d  L were 

pe r fo rmed  w i t h  t h e  same c e l l  s i z e ,  t h e  same modes b e i n g  i n i t i a l l y  

p r e s e n t  i n  t h e  i n t e r f a c e ,  bu t  having  d i f f e r e n t  a m p l i t u d e s  ( t h e  i n i t i a l  

t h i c k n e s s  i s  .37 cm f o r  c a s e  K ,  and .2 cm f o r  c a s e  L ) .  

F i g u r e  5 g i v e s  t h e  r a t e  of decay  of  t h e  f l u c t u a t i n g  energy  i n  t h e  

mixing zone, ZFKE. The r a t e s  a r e  -1 .03 ,  - .  88, - .  7 ,  and - .  61 ( c a s e  L )  . A t  

l a t e  t i m e s ,  t h e  f l u c t u a t i n g  Reynolds t e n s o r  i s  n o t  t o o  f a r  from i s o t r o p y  

i n  t h e  mid-part  of t h e  mixing r e g i o n ,  a s  shown on F i g u r e  7 .  
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F i g u r e  7 :  Diagonal  components of  t h e  Reynolds s t r e s s  t e n s o r  a t  180ps vs 

space ;  s t reamwise ,  l e f t ;  spanwise,  c e n t e r .  Of f -d i agona l ,  r i g h t .  



Assuming homogeneity, which is a rough approximation, one can try to 

compare the obtained results with theoretical ones on homogeneous 

isotropic turbulence. 

Dimensional arguments in modeling show that the rate of growth m 

of MZT, and the rate of decay n of ZFKE, are related by m=1-n/2. This is 

not satisfied here; this due in part to the fact that the simulations 

are not in a fully self-similar regime, as noticed above, and that the 

fluctuating energy is not really homogeneous across the mixing zone. 

A full quasi-spectral decomposition is currently planned, but, at 

this stage of this study, we only have performed spanwise spectral 

decomposition of the flow (i.e. streamwise and spanwise velocities, as 

well as density). Much improvement is needed in term of smoothing of the 

results through averaging on a few subsequent time steps, or 

neighbouring cells. However, a flavor of the results obtained from case 

K, fine mesh, is given on Figures 8 to 10. We chose two characteristic 

times in the calculation. The first one is during the shock-interface 
interaction (at about 50p), and the other one is at late times, close 

to the end of the calculation (at about 180ps). Figure 8 shows 

streamwise and spanwise velocity signals, the associated spectra, at 
50ps. It indicates that the modes initially present in the interface are 

all excited, as expected. 



Figure  8 :  Streamwise ( a ) ,  and spanwise (b)  v e l o c i t y  s i g n a l s  vs  v e r t i c a l  

d i s tance ;  corresponding s p e c t r a  ( c , d ) ;  t=50ps; cen te r  of t h e  zone. 

Figure 9 :  same a s  Figure 8; t=180ps. 



F o l l o w i n g  t h e  s p e c t r a  w i t h  t i m e  ( s e e  f o r  e x a m p l e  F i g u r e  9 ,  showing  

v e l o c i t y  s i g n a l s  a n d  s p e c t r a  a t  1 8 0 p s ,  a b o u t  i n  t h e  m i d d l e  o f  t h e  mix ing  

r e g i o n ) ,  o n e  n o t i c e s  a  t r a n s f e r  o f  e n e r g y  t o w a r d  s m a l l e r  wavenumbers, 

d e m o n s t r a t i n g  what c o u l d  b e  v i s u a l l y  s e e n  on p r e s s u r e  a n d  d e n s i t y  maps 

/ 4 / ,  namely t h e  o c c u r r e n c e  o f  b u b b l e  c o a l e s c e n c e .  F u r t h e r  work i s  needed  

t o  e v a l u a t e  n u m e r i c a l l y  t h e  t i m e  r a t e  o f  change  o f  e a c h  mode. 

Near t h e  e d g e  o f  t h e  m i x i n g  r e g i o n ,  t h e  f l o w f i e l d  i s  smoother ,  a s  

shown by F i g u r e  1 0 .  A l t h o u g h  c l e a r e r  t h a n  t h e  o t h e r  s p e c t r a ,  no a n a l y s i s  

h a s  been  done y e t .  

F i g u r e  1 0 :  S t r e a m w i s e  v e l o c i t y  s p e c t r u m  a n d  s i g n a l ;  t = 1 8 0 p s ;  edge  o f  t h e  

m i x i n g  zone .  

7 - M u l t i p l e  shock-mix ing  zone  i n t e r a c t i o n s  s i m u l a t i o n s  

A s  m e n t i o n e d  a b o v e ,  r u n  L s i m u l a t e s  a  g e n e r i c  s h o c k - t u b e  

e x p e r i m e n t  of  m i x i n g  z o n e  f o r m a t i o n  be tween  a i r  a n d  h e l i u m ,  due  t o  t h e  

m u l t i p l e  r e f l e c t i o n s  o f  a shock  on  t h e  e n d w a l l  o f  t h e  t u b e  / 2 , 7 / .  P l a t e s  

1 a n d  2  d i s p l a y  d e n s i t y  a n d  p r e s s u r e  maps f r o m  t h e  s i m u l a t i o n .  The 

c o m p u t a t i o n  box i s  2 . 5  c m  (200 ce l l s )  h i g h  a n d  1 5  cm (1250  c e l l s )  l o n g  

w i t h  a l e n g t h  o f  h e l i u m  o f  8 . 3  cm t o  t h e  r i g h t  o f  t h e  i n t e r f a c e .  

P h o t o g r a p h  l a  shows t h e  i n i t i a l  s h o c k  p o s i t i o n  a b o u t  1 c m  t o  t h e  l e f t  o f  

t h e  i n t e r f a c e .  P h o t o g r a p h  l b  e x h i b i t s  t h e  r e s u l t  o f  R M I  s h a p e  r e v e r s a l  

w i t h  e m e r g i n g  s p i k e s  a n d  b u b b l e s  a t  52 ps  i . e .  2 5  p s  a f t e r  t h e  

i n t e r a c t i o n .  Note  t h e  d e n s i t y  v a r i a t i o n s  be tween  t h e  i n t e r f a c e  a n d  t h e  



r a r e f a c t i o n  t o  t h e  l e f t .  The s p i k e s  and bubb les  a r e  w e l l  developed on 
photograph l c  a t  134 ps  (110 ps a f t e r  i n t e r a c t i o n )  . The i r  shapes appear 

d i s t o r t e d  a t  200 ps ,  i . e .  40 ps a f t e r  t h e  f i r s t  r e f l e c t e d  shock (moving 

t o  t h e  l e f t  on photograph I d )  d e c e l e r a t e s  t h e  i n t e r f a c e  t r a n s l a t i o n .  

This shock, and a l l  subsequent  ones,  propagate  now from l i g h t  t o  heavy 

and s h o u l d  i n c r e a s e  i n t e r f a c e  p e r t u r b a t i o n s .  T h i s  a p p e a r s  a s  a  

s t r e t c h i n g  of  t h e  p r e - e x i s t i n g  a i r  s p i k e s  t o  t h e  r i g h t ,  i n t o  pure  helium 

and t h e  development of new s p i k e s  t o  t h e  l e f t  i n  t h e  bubb les .  The f i r s t  

ones e v e n t u a l l y  p inch  o f f ,  whi le  t h e  second ones c o l l i d e  on t h e  l e f t  

boundary of t h e  bubbles .   his process  i s  i l l u s t r a t e d  on photographs l e , f  

and g  recorded  a t  300, 400 and 500 p s ,  r e s p e c t i v e l y  30 ps  a f t e r  t h e  

second r e f l e c t e d  shock and d u r i n g  t h e  passage of  t h e  t h i r d  and f o u r t h  

r e f l e c t e d  waves, which by now must be weak compression waves. Photograph 

2a ( 2 5  p s  a f t e r  i n t e r a c t i o n )  d i s p l a y s  t h e  r e g u l a r  p a t t e r n  o f  t h e  

p r e s s u r e  f i e l d  between t h e  t r a n s m i t t e d  shock ( r i g h t ) ,  and t h e  r e f l e c t e d  

r a r e f a c t i o n  ( l e f t )  which s t i l l  r e f l e c t s  t h e  i n i t i a l  shape  o f  t h e  

i n t e r f a c e  ( i n d i c a t e d  h e r e  by t h e  c o r r u g a t e d  whi te  l i n e ) .  A t  200 p s  

(photograph 2 b ) ,  we observe  t h e  more random p r e s s u r e  f i e l d  between t h e  

f i r s t  r e f l e c t e d  shock i n  a i r  ( l e f t )  and a  wide compression wave i n  

helium ( r i g h t )  . F i n a l l y  one d i s t i n g u i s h e s  on photograph 2c t h e  p a t t e r n  

of r e f l e c t e d  wavele ts  d u r i n g  t h e  passage  of t h e  t h i r d  r e f l e c t e d  shock 

through t h e  mixing reg ion  a t  400 ps .  

Figure 11: FKE vs  t ime (EAD and B H R ) .  Figure 12:  MZT vs t i m e .  
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We w i l l  now examine t h e  t i m e  e v o l u t i o n  o f  FKE a n d  M Z T ,  a n d  t h e i r  

compar i son  w i t h  t h e  r e s u l t s  o b t a i n e d  from t r a n s p o r t  models  ( F i g u r e s  11 

and  1 2 ) .  I n  F i g u r e  11, t h e  FKE v a l u e  p r e s e n t e d  f o r  BHR must  b e  d i v i d e d  

by two f o r  c o n s i s t e n c y .  ZFKE a n d  TFKE a p p r o a c h  e a c h  o t h e r  a t  l a t e  t i m e s  

b e c a u s e  a l l  t h e  f l u c t u a t i o n s  r e s i d e  i n  t h e  m i x i n g  z o n e .  F i g u r e  12 shows 

t h a t  t h e  g r o w t h  o b t a i n e d  w i t h  BHR i s  s m a l l e r  t h a n  w i t h  EAD. T h e r e  a r e  

two p o s s i b l e  e x p l a n a t i o n s  f o r  t h i s :  f i r s t ,  t h e r e  i s  some u n c e r t a i n t y  i n  

t h e  way t h e  i n i t i a l  l e n g t h  scale i s  i n i t i a l i z e d  i n  BHR. Some o f  EAD 

c a l c u l a t i o n s  o f  s i n g l e  s h o c k - i n t e r f a c e  w e r e  u s e d  t o  d e f i n e  a  p r o c e d u r e  

f o r  t h i s  i n i t i a l i z a t i o n ,  b u t  t h e r e  i s  s t i l l  some c o n c e r n  a b o u t  t h e  

u n i v e r s a l i t y  o f  t h e  r u l e  t h a t  w a s  o b t a i n e d ,  e s p e c i a l l y  f o r  l a t e  t i m e  

s i m u l a t i o n s .  Second,  BHR, i s  i n t e n d e d  t o  model 3D s i t u a t i o n s ,  a n d  EAD i s  

o n l y  a  2D c o d e .  T h i s  may n o t  b e  c r u c i a l  f o r  e a r l y  t i m e s  4 b u t  

c e r t a i n l y  f o r  l a t e  t i m e s ,  f o r  which  w e  e x p e c t  t h e  i n v e r s e  c a s c a d e  t o  

domina te  i n  t h e  2D c a l c u l a t i o n ,  a n d  t h e r e f o r e  t h e  g r o w t h  o f  t h e  m i x i n g  

zone t h i c k n e s s  t o  b e  l a r g e r  f o r  EAD t h a n  f o r  BHR. I n v e r s e l y ,  TURGAU 

o v e r e s t i m a t e s  t h e  g r o w t h  o f  t h e  m i x i n g  z o n e .  B e c a u s e  t h i s  l - e q u a t i o n  

mode l  i n t e n d s  t o  d e s c r i b e  f u l l y  d e v e l o p e d  t u r b u l e n t  f l o w s ,  i t s  

f o r m u l a t i o n  d o e s  n o t  a l l o w  f o r  t h e  s i m u l a t i o n  o f  t h e  i n t e r f a c e  

i n v e r s i o n ,  a n d  it h a s  t o  b e  i n i t i a l i z e d  a f t e r  t h e  s h o c k  h a s  c r o s s e d  t h e  

i n t e r f a c e .  T h i s  p r o c e d u r e  i s  d e s c r i b e d  e l s e w h e r e  /10/. The e x p l a n a t i o n  

f o r  i t s  b e h a v i o r  i s  n o t  clear a t  t h i s  t i m e ,  b u t  may be d u e  t o  a t o o  

s t r o n g  c o e f f i c i e n t  i n  t h e  RT s o u r c e  t e r m  a p p e a r i n g  i n  t h e  e v o l u t i o n  

e q u a t i o n  f o r  t h e  f l u c t u a t i n g  e n e r g y ,  a n d  t o  t h e  u n d e r d e v e l o p e d  n a t u r e  o f  

t h e  f l o w f i e l d .  D e s p i t e  t h e s e  d i f f e r e n c e s ,  it i s  r e a s s u r i n g  t o  n o t i c e  

t h a t ,  b e t w e e n  t h e  s h o c k s ,  t h e  b e h a v i o r s  o b t a i n e d  f r o m  the  c a l c u l a t i o n  

a n d  t h e  t w o  m o d e l s  a re  q u i t e  s i m i l a r .  The same r a t e  o f  c h a n g e  c a n  

c e r t a i n l y  b e  o b t a i n e d  t h r o u g h  a n  o p t i m i z a t i o n  o f  t h e  c o e f f i c i e n t s  i n  t h e  

models ,  b u t  o n e  must k e e p  i n  mind t h a t  t h e  m o d e l s  h a v e  b e e n  f i t t e d  on 

e x p e r i m e n t a l  d a t a ,  a n d  t h a t  t h e  EAD s i m u l a t i o n s  a re  o n l y  g e n e r i c  

e x p e r i m e n t  S ,  b e c a u s e  t h e  i n i t i a l i z a t i o n  u s e d  h e r e  d o e s  n o t  r e f l e c t  t h e  

p h y s i c s  o f  t h e  membrane b r e a k - u p  ( w h i c h  h a s  n o t  b e e n  d o c u m e n t e d  

e x p e r i m e n t a l l y )  . 

IV-CAVEAT SIMULATIONS OF SHOCK-TUBE EXPERIMENTS 

The k-E- p f 2  model  d e s c r i b e d  e a r l i e r  h a s  b e e n  i m p l e m e n t e d  i n  

CAVEAT, a 2 - D  Godunov-based ALE c o d e  u s e d  e x t e n s i v e l y  a t  Los Alamos 

N a t i o n a l  L a b o r a t o r y .  CAVEAT a l s o  c o n t a i n s  a s e c o n d - o r d e r  a d v e c t i o n  



a l g o r i t h m  a n d  a  mixed c e l l  scheme.  F o r  t h e s e  c a l c u l a t i o n s ,  however ,  t h e  

m i x e d n e s s  o f  a  c e l l  was t r a c k e d  by a  c o n c e n t r a t i o n  v a r i a b l e .  T h i s  

compar i son  was m o t i v a t e d  by t h e  r e c e n t  e x p e r i m e n t s  c o n d u c t e d  by Houas e t  

a l .  / 6 /  a t  M a r s e i l l e ,  e x a m i n i n g  t h e  e f f e c t  o f  p a s s i n g  a  s t r o n g  shock  

( M  = 3 . 7  - 4 . 2 )  i n  CO2 o v e r  a n  i n t e r f a c e  i n t o  h e l i u m  o r  a r g o n  (which  

f i l l s  i n i t i a l l y  a  1 . 2 7  m e t e r s  l o n g  s e c t i o n  o f  t h e  t u b e )  . I n t e r f a c i a l  

m i x i n g  a n d  d e v e l o p m e n t  o f  b o u n d a r y  l a y e r s  e n s u e s  a l o n g  t h e  s h o c k  t u b e  

w a l l s ,  which r e m a i n  a t  a p p r o x i m a t e l y  c o n s t a n t  t e m p e r a t u r e .  However, t h e  

i n i t i a l l y  low p r e s s u r e s  i n  t h e  s h o c k  t u b e  p e r m i t  s i g n i f i c a n t  b o u n d a r y  

l a y e r  g r o w t h  t o  o c c u r  by  t h e  t i m e  o f  shock  r e f l e c t i o n  f r o m  t h e  end  w a l l .  

T h i s  e x p e r i m e n t  s e r v e s  a s  a  r e a s o n a b l e  t e s t  o f  t h e  t u r b u l e n c e  

m o d e l  b e c a u s e  i t  a d d r e s s e s  i n h o m o g e n e i t y - i n d u c e d  m i x i n g  a l o n g  a n  

i n i t i a l l y  q u i e s c e n t  i n t e r f a c e ,  d e v e l o p m e n t  o f  n o n e q u i l i b r i u m  b o u n d a r y  

l a y e r s  i n  s h o c k e d  m a t e r i a l ,  a n d  m u l t i m a t e r i a l  a n d  c o m p r e s s i b i l i t y  

e f f e c t s .  F u r t h e r m o r e ,  e x t e n s i v e  d e v e l o p m e n t  o f  t e m p e r a t u r e  a n d  

c o n c e n t r a t i o n  d i a g n o s t i c s  u s i n g  CO2 t e m p e r a t u r e - d e p e n d e n t  i n f r a r e d  

e m i s s i o n  a n d  a b s o r p t i o n  f o r  t h e s e  e x p e r i m e n t s  h a v e  p r o d u c e d  t i m e -  and  

s p a c e - r e s o l v e d  d a t a  f o r  compar i son  p u r p o s e s .  As a  b a s i s  f o r  a s s e s s i n g  

t h e  a c c u r a c y  o f  t h e  c a l c u l a t i o n s ,  w e  e x p e c t  t o  f i n d  q u a l i t a t i v e  

agreement  w i t h  t h e  b o u n d a r y  l a y e r  g r o w t h  r a t e s  q u o t e d  b y  Houas e t  a l .  

R a t h e r  t h a n  u s e  t h e  c o m p l e t e  model o u t l i n e d  a b o v e ,  w e  h a v e  c h o s e n  

t o  a p p r o x i m a t e  p V 2  b y  i t s  t w o - f i e l d  v a l u e  / 4 /  t h r o u g h o u t  t h e  mesh: 

B e c a u s e  t u r b u l e n c e  i s  g e n e r a t e d  b y  t h e  n o n h o m o g e n e i t y  s o u r c e  t e r m  i n  

E q . ( 6 ) ,  t h e  v a l u e s  o f  k  a n d  E a r e  i n i t i a l l y  z e r o  i n  t h e s e  c a l c u l a t i o n s .  

Now, t h e  l e v e l s  o f  t u r b u l e n c e  p r o d u c e d  d e p e n d  on t h e  d e n s i t i e s  o f  t h e  

two m a t e r i a l s  b u t  a l so  t o  some e x t e n t  on mesh r e s o l u t i o n .  

A s  a p r e l i m i n a r y  t e s t  o f  t h e  model ,  a Mach 3 . 6 8  s h o c k  i n  a r g o n  was 

e s t a b l i s h e d  i n  a  f r a m e  o f  r e f e r e n c e  where  t h e  s h o c k  i s  a t  r e s t .  S i n c e  

t h e  w a l l s  o f  t h e  s h o c k  t u b e  are moving w i t h  t h e  i n i t i a l  s h o c k  v e l o c i t y  

( U s  = 1180 m / s ,  i n i t i a l  p r e s s u r e  = 2000 P a ) ,  a t u r b u l e n t  b o u n d a r y  l a y e r  

d e v e l o p s  a b o v e  t h e  s h o c k  ( F i g u r e  1 3 ,  h o r i z o n t a l  v e l o c i t y  c o n t o u r s ) ,  

i n d u c e d  b y  i n i t i a l i z i n g  p V 2  a l o n g  t h e  t u b e  w a l l  t o  s i m u l a t e  e f f e c t s  o f  

w a l l  r o u g h n e s s .  



d i s t a n c e  from o r i g i n a l  
shock p o s i t i o n  (cm) 

F i g .  1 3 .  H o r i z o n t a l  v e l o c i t y  c o n t o u r s  f o r  a p p r o x i m a t e l y  s t e a d y - s t a t e  
shock i n  a rgon  ( M  = 3 . 6 8 ) .  X ' S  d e n o t e  boundary l a y e r  t h i c k n e s s  a c c o r d i n g  
t o  t h e o r y  of  M i r e l s  /11/. Note t h a t  w a l l  i s  moving w i t h  o r i g i n a l  shock 
speed  (U,  = 1180 m / s )  . 

The growth  o f  t h e  boundary l a y e r  f o r  known f r e e s t r e a m  c o n d i t i o n s  

h a s  been  r e p o r t e d  by M i r e l s  /11/, assuming  t h a t  t h e  bounda ry  l a y e r  

t h i c k n e s s  i s  much less t h a n  t h e  t u b e  h a l f - w i d t h .  I n  t h e  r e g i o n  above 

t h e  shock,  t h e  boundary l a y e r  growth compares w e l l  w i t h  t h e  X ' S  marking 

t h e  t h e o r e t i c a l  e s t i m a t e  ( F i g u r e  1 3 ) .  A s  a  consequence  o f  t h e  boundary 

l a y e r  growth,  t h e  shock moves upward from i t s  i n i t i a l  p o s i t i o n  a t  y  = 

10 c m .  Thus, t h e  shock speed  i n  t h e  l a b o r a t o r y  f rame would be  s l o w e r  

t h a n  e x p e c t e d  from one-d imens iona l  a rguments ,  i n  q u a l i t a t i v e  agreement  

w i t h  p r e v i o u s  e x p e r i m e n t a l  o b s e r v a t i o n s .  However, a  q u a n t i t a t i v e  

e x p r e s s i o n  f o r  shock d e c e l e r a t i o n  i s  n o t  p r o v i d e d  by M i r e l s  /11/. 

Turbulence  c a l c u l a t i o n s  f o r  a  M = 3 . 7  shock i n  CO2 i n t e r a c t i n g  wi th  

an a rgon  i n t e r f a c e  i n  a  shock t u b e  w i t h  c o n s t a n t  t e m p e r a t u r e  w a l l s  a r e  

p r e s e n t e d  n e x t .  The c o m p u t a t i o n a l  d i a g n o s t i c s  shown a r e  c o n t o u r s  o f  

mass c o n c e n t r a t i o n  o f  CO2, v e l o c i t y  v e c t o r  p l o t s  and  t r a j e c t o r i e s  o f  t h e  

shocks  and c o n t a c t  s u r f a c e  on an  X-t diagram.  The X-t d iag ram g i v e n  by 

Ramdani /12 /  from t h e  M a r s e i l l e  expe r imen t s  t h i s  c a l c u l a t i o n  i s  modeled 

a f t e r  i s  r e p e a t e d  i n  F i g u r e  14a  and  shows two f a i r l y  s t r a i g h t  l i n e  

t r a j e c t o r i e s  f o r  t h e  shock and t h e  CO2-Ar c o n t a c t  s u r f a c e .  

The X-t d iag ram i n  a r g o n  f rom o u r  r u n  e x h i b i t s  some d i s t i n c t  

d i f f e r e n c e s  w i t h  t h e  e x p e r i m e n t a l  r e s u l t s  ( F i g u r e  14b )  and  f rom t h e  

behav io r  e x p e c t e d  i n  t h e  shock t u b e  c o n f i g u r a t i o n  a n a l y z e d  by Mirels.  I n  

t h e  l a t t e r ,  it was t h e  p r imary  c o n t a c t  s u r f a c e  between t h e  d r i v e r  g a s  

( h e r e  He o r  H*) and t h e  t e s t  g a s  t h a t  was c o n s i d e r e d .  



F i g .  1 4 .  X-t d iagrams  from M a r s e i l l e  shock t u b e  e x p e r i m e n t s  and 
s imula t ion .  Experimental  c o n t a c t  s u r f a c e  (dashed l i n e )  and shock ( s o l i d  
l i n e  t r a j e c t o r i e s  a r e  shown on t h e  l e f t ,  and s imula ted  shock and c o n t a c t  
s u r f a c e  l i n e s  have been added on t h e  r i g h t .  Note t h a t  t h e  exper imen ta l  
shock and c o n t a c t  s u r f a c e  i n t e r a c t  e a r l i e r  t h a n  p r e d i c t e d .  

I n  t h i s  c a s e ,  t h a t  c o n t a c t  s u r f a c e  o r i g i n a t e s  abou t  5  m e t e r s  ups t ream 

from t h e  t e s t  s e c t i o n  o f  i n t e r e s t .  Thus, i n  o r d e r  t o  r e p l i c a t e  t h e  

M a r s e i l l e  exper imen t s  f a i t h f u l l y ,  w e  would accoun t  f o r  t h e  a c t u a l  f low 

i n  CO2 produced by t h e  r u p t u r e  of t h e  primary diaphragm c o n t a i n i n g  t h e  

d r i v e r  gas  and t h e  ensuing boundary l a y e r  development dur ing  t h e  5 meter 
run of  t h e  shock i n  CO2. Here we have chosen t o  i g n o r e  t h e  d e p a r t u r e s  

from one-dimensional i ty  i n  t h e  CO2 and c o n c e n t r a t e  on t h e  behavior  i n  

a rgon .  We i n i t i a l l y  p l a c e d  t h e  c o n t a c t  s u r f a c e  a t  y  = 10 cm from t h e  

i n l e t  and s p e c i f i e d  c o n s t a n t  i n f l o w  c o n d i t i o n s  co r respond ing  t o  a  3 . 7  

Mach number shock i n  CO2. 

The c a l c u l a t e d  c o n t a c t  s u r f a c e  v e l o c i t y  m a i n t a i n s  t h e  v a l u e  

expected  from s imple  l - D  a n a l y s i s ,  whereas t h e  exper imen ta l ly  observed 

c o n t a c t  s u r f a c e  immedia te ly  d e p a r t s  from t h e  c l a s s i c a l  r e s u l t s  and 

c o n t i n u e s  on a  s t r a i g h t  p a t h .  Converse ly ,  t h e  r e p o r t e d  shock p a t h  

d i s p l a y s  no d e p a r t u r e  from i t s  normally expected  behav io r ,  whereas t h e  

c a l c u l a t e d  shock l i n e  begins  t o  d e c e l e r a t e  due t o  t h e  e f f e c t  d e s c r i b e d  

above and by M i r e l s  a t  about  500 t o  600 p s  a f t e r  meet ing  t h e  argon 

con tac t  s u r f a c e .  Given t h a t  t h e  observed compression of argon exceeds a 

f a c t o r  of f o u r ,  on average ,  t h e  leakage of argon t o  t h e  boundary l a y e r  

must have been more s u b s t a n t i a l  than  we a r e  p r e d i c t i n g .  Furthermore, t h e  



a p p a r e n t l y  i d e a l  s h o c k  l i n e  i n  t h e  e x p e r i m e n t a l  d a t a  d o e s  n o t  c o n f o r m  

w i t h  Mirels '  o b s e r v a t i o n s  f o r  n o n i d e a l  s h o c k  t u b e s .  E v i d e n t l y ,  t h i s  

s i t u a t i o n  i s  c o m p l i c a t e d  by t h e  p r e s e n c e  o f  two c o n t a c t  s u r f a c e s  and  t h e  

d e v e l o p m e n t  o f  a  b o u n d a r y  l a y e r  i n  t h e  CO2 b e f o r e  t h e  s h o c k  m e e t s  t h e  

s e c o n d  c o n t a c t  s u r f a c e .  

S i n c e  t h e  o b s e r v e d  shock  seems t o  p e r f o r m  n e a r l y  i d e a l l y  a n d  t h e  

c o n t a c t  s u r f a c e  i s  t r a v e l i n g  f a s t e r  t h a n  e x p e c t e d  r i g h t  f rom t h e  s t a r t ,  

t h e  i n f l o w  c o n d i t i o n s  u s e d  must b e  c a l l e d  i n t o  q u e s t i o n  F o r  t h i s  c a s e ,  

m a i n t a i n i n g  c o n s t a n t  i n f l o w  a t  t h e  b o t t o m  of  t h e  mesh f o r  a l l  t i m e  i s  

n o t  a c c u r a t e .  I f  e x a c t  c o r e s p o n d e n c e  w i t h  e x p e r i m e n t s  were  d e s i r e d ,  we 

would r e p l i c a t e  t h e  e n t i r e  e x p e r i m e n t ,  commencing w i t h  t h e  r u p t u r e  o f  

t h e  p r i m a r y  d i a p h r a g m .  However, one  o f  t h e  m a j o r  f e a t u r e s  o f  i n t e r e s t  

c o n c e r n s  t h e  i n t e r a c t i o n  o f  t h e  s h o c k  and  t h e  c o n t a c t  s u r f a c e  a f t e r  

shock  r e f l e c t i o n  from t h e  e n d w a l l .  

.......... 
.... d........ 
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F i g .  1 5 .  C o n c e n t r a t i o n  c o n t o u r s  a n d  v e l o c i t y  v e c t o r  p l o t s  n e a r  t h e  e n d  
o f  t h e  s h o c k  t u b e  a t  1 4 0 0 ~ s  ( l e f t )  and  1 6 0 0 p s  ( r i g h t )  a f t e r  s h o c k -  
c o n t a c t  s u r f a c e  i n t e r a c t i o n .  The r a p i d  e x p a n s i o n  o f  t h e  m i x i n g  r e g i o n  
n o t i c e d  i n  t h e  e x p e r i m e n t  i s  l i k e l y  due  t o  t h e  s w i r l  d e v e l o p i n g  be low 
t h e  c o n t a c t  s u r f a c e .  



I n  t h e  e x p e r i m e n t ,  t h e  c o n t a c t  s u r f a c e  t h i c k n e s s  g r o w s  q u i c k l y  a n d  

a p p e a r s  t o  f i l l  t h e  e n d  o f  t h e  t u b e .  Here a g a i n ,  t h e  t w o - d i m e n s i o n a l  

n a t u r e  o f  t h e  f l o w  p l a y s  a  m a j o r  r o l e .  A s  t h e  s h o c k  r e t u r n s ,  t h e  

c a l c u l a t i o n  shows t h a t  a  v o r t e x  d e v e l o p s  a l o n g  t h e  r i g i d  w a l l  ( F i g u r e  

1 5 )  a n d  e n h a n c e s  t h e  m i x i n g  r a t e  o v e r  t h a t  e x p e c t e d  i n  a n  e x p e r i m e n t  

w i t h o u t  s i g n i f i c a n t  b o u n d a r y  l a y e r  e f f e c t s  . The v o r t e x  i n d u c e d  j u s t  

below t h e  c o n t a c t  s u r f a c e  i n  t h e  CO2 c a u s e s  t h e  a r g o n  o r i g i n a l l y  t r a p p e d  

i n  t h e  b o u n d a r y  l a y e r  t o  s w i r l  t o w a r d  t h e  c e n t e r l i n e  a n d  e n h a n c e  t h e  

m i x i n g  p r o c e s s  g r e a t l y .  Because  t h e  e m i s s i o n  d i a g n o s t i c  i s  f o c u s e d  n e a r  

t h e  c e n t e r  o f  t h e  t u b e ,  t h i s  s w i r l  o f  mixed m a t e r i a l  would a p p e a r  as a 

g r o w t h  o f  t h e  m i x i n g  l a y e r .  The g e n e r a t i o n  o f  v o r t i c i t y  c a n  b e  

q u a l i t a t i v e l y  e x p l a i n e d  by t h e  i n t e r a c t i o n  o f  t h e  d e n s i t y  g r a d i e n t  i n  

t h e  b o u n d a r y  l a y e r  a n d  t h e  r e f l e c t e d  s h o c k  ( t h e  c o r r e s p o n d i n g  s o u r c e  

t e r m  a p p e a r s  i n  t h e  v o r t i c i t y  e q u a t i o n ) .  T h i s  p r o c e s s  i s  a n a l o g o u s  t o  

t h e  shock-bubble  i n t e r a c t i o n s  d e s c r i b e d  by Haas a n d  S t u r t e v a n t  / 1 3 / ,  and  

d i s c u s s e d  a n d  s i m u l a t e d  by P i c o n e  a n d  B o r i s  / 1 4 / .  

N o t i c e  t h a t  t h e  i n t e r f a c e  n e v e r  r e a c h e s  t h e  e n d  o f  t h e  s h o c k  t u b e  

i n  t h e  c a l c u l a t i o n s ,  p r o b a b l y  b e c a u s e  w e  are u n d e r p r e d i c t i n g  i t s  s p e e d  

t h r o u g h o u t  t h e  e n t i r e  s i m u l a t i o n .  I n  f a c t ,  t h e  n o m i n a l  i n t e r f a c e  

a c t u a l l y  i s  somewhat compressed b y  t h e  r e t u r n  s h o c k  a n d  n e v e r  re -expands  

w i t h i n  t h e  s i m u l a t i o n  t i m e .  One would n o t  e x p e c t  t h e  i n t e r f a c e  t o  grow 

r a p i d l y ,  s i n c e  t h e  p o s t - s h o c k  Atwood number  i s  o n l y  a b o u t  - . 2 6 .  

T h e r e f o r e ,  t h e  m i x i n g  t h a t  was a c t u a l l y  o b s e r v e d  i n  t h e  e x p e r i m e n t  i s  

l i k e l y  p r i m a r i l y  due  t o  two-d imens iona l  e f f e c t s  a n d  n o t  t o  shock- induced  

i n t e r f a c i a l  m i x i n g  a t  t h e  c o n t a c t  s u r f a c e .  

V-CONCLUSION 

T h i s  p a p e r  p r e s e n t s  t h e  c u r r e n t  s t a t e  o f  o u r  s t u d y  o f  s h o c k -  

i n t e r f a c e  a n d  s h o c k - t u r b u l e n c e  i n t e r a c t i o n .  The a n a l y s i s  o f  o u r  d i r e c t  

s i m u l a t i o n  l e a d s  t o  a good h o l d  o f  t h e  p h y s i c a l  p r o c e s s e s  o c c u r r i n g  i n  

t h i s  i n t e r a c t i o n ,  a t  l eas t  f o r  t h e  e a r l y  p h a s e s .  The l a t e  p h a s e  o f  f u l l y  

d e v e l o p e d  m i x i n g  w i l l  r e q u i r e  some a d d i t i o n a l  c a l c u l a t i o n  and  m o d e l i n g  

t o  f u r t h e r  s e t t l e  t h e  q u e s t i o n  o f  t h e  u n i v e r s a l i t y  o f  t h e  MZT g r o w t h ,  

a n d  FKE d e c a y .  F u l l  s h o c k  t u b e  e x p e r i m e n t s  c a n  c l e a r l y  b e  s i m u l a t e d  

t h r o u g h  d i r e c t  s i m u l a t i o n s ,  a s  l o n g  a s  b o u n d a r y  l a y e r  e f f e c t s  a re  n o t  

c r u c i a l .  I n  t h a t  case,  o n e  m u s t  t u r n  t o  m o d e l i n g ,  a n d  CAVEAT 

c a l c u l a t i o n s  show, i n  t h e  c a s e  o f  h i g h  Mach number e x p e r i m e n t s ,  t h e  



c r u c i a l  i m p o r t a n c e  o f  t h e  b o u n d a r y  l a y e r  t r e a t m e n t .  Some p r e c i s e  

c o m p a r i s o n s  o f  t h e  n u m e r i c a l  a n d  e x p e r i m e n t a l  r e s u l t s  w i l l  b e  p r e s e n t e d  

i n  t h e  n e a r  f u t u r e  . 
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Plate 2. Pressure plots for the multiple interaction problem (case L). 



Numerical Simulation of Compressible Homogeneous Turbulence 

G. A. Blaisdell*, N. N. ~ a n s o u r t ,  W. C. ~ e ~ n o l d s * t  

*Stanford University 

~ N A S A  - Ames Research Center 

Direct numerical simulations of compressible decaying isotropic turbulence have been performed 

on a 643 grid. The simulations include a passive scalar with and without a mean scalar gradient. 

The balances for the equations of second order statistics are used to evaluate the effect of 

compressiblility on the turbulence. We find that the development of the fluctuations of density 

and of the dilatational portion of the velocity field are dependent on the initial conditions, and 

that the compressible terms in the balances vanish rapidly at the Reynolds numbers considered. 

INTRODUCTION 

Our goal is to aid the development of turbulence models for highly compressible flows by 
using direct numerical simulations. Much of the data required for modeling is not available 

experimentally. However, some of this needed data can be generated numerically by solving the 

time dependent compressible Navier-Stokes equations. Because such simulations can only be 

performed for simple flows we have chosen to study the case of homogeneous turbulence. This 

is an idealized case, but it is useful in developing turbulence models for two reasons. First, the 

statistical quantities needed in the averaged Navier-Stokes equations can be obtained directly 

by averaging over the computational domain. Second, homogeneous flows such as shear flow and 

strained flow can be thought of as basic building blocks of more complicated flows. Numerical 

simulation of homogenous turbulence has been useful in the development of turbulence models 

for incompressible flows and we believe this will be a useful approach for improving compressible 

turbulence models as well. 

In order for the turbulence to be homogeneous the mean fields must satisfy certain restrictions. 

The mean density and pressure must be uniform; the mean velocity field must be linear, G; = 

&,(t)xj, with A;, evolving in time according to 4, + AkAkj = 0; and the mean passive 

scalar must be linear, 3 = Mj(t)xj, with M, obeying + M i l l j  = 0. Some specific solutions 

for Ai,(t) are given by Dang and Morchoisne [l] who studied isotropic turbulence. The case 

of shear flow was studied by Feiereisen [2]. In the current paper, only the case of decaying 

isotropic turbulence, in which Aij(t) = 0, is considered. The scalar field, however, is solved with 

and without a mean gradient. The numerical procedure used to simulate the isotropic case is 

described next. 

NUMERICAL METHOD 

The Navier-Stokes equations are solved in strong conservation form using p,  pui, and pE as 

the dependent variables where E = e + ~ u ; u ,  is the total energy per unit mass. An ideal gas 

with constant specific heats is assumed and the ratio of the specific heats, 7, is taken to  be 1.4. 



Viscosity is allowed to be temperature dependent and follows a power law, p/pO = ( T / T ~ ) O . ~ ~ .  

The Prandtl number and Lewis number are assumed constant and are taken to be 0.7 and 

1.0 respectively. The equations are nondimensionalized using a length scale L. equal to the 

computational box size divided by 2~ and a velocity scale c0 = JmrRTo where To is the mean 

temperature of the initial field. Density is nondimensionalized by p0 equal to the mean density 

of the initial field and the viscosity is nondimensionalized by p0 = p(To). 

Two scalars are solved for simultaneously - one with a mean gradient and one without. 

Since the turbulence is isotropic only one scalar with a mean gradient is needed. The scalar B1 
has a mean gradient a8"1/~z1 = Ml and is nondimensionalized by MILo. The second scalar 

B2 does not have a mean gradient and is nondimensionalized by the standard deviation of the 

initial 02 field. 

The equations of motion are solved using a pseudo-spectral Fourier method. Time advance- 

ment is done in physical space using a compact storage third order Runge-Kutta scheme (Wray 

[3]) while fast Fourier transforms are used to evaluate the spatial derivatives. 

Initial conditions are specified by using random Fourier coefficients with a specified power 

spectrum for the fields of density, velocity, temperature and scalar 82. The scalar B1 has no initial 

fluctuations. The magnitude of the velocity fluctuations are fixed by specifying = 

Since the velocities are scaled by CO, MO is an approximation to the initial fluctuating Mach 

number. The velocity field is further parameterized by the ratio of energy in the dilatational 

part of the field to that in the solenoidal part given by E ~ / E '  similar to Passot and Pouquet 
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For the simulations done to date a square pulse spectrum which has energy for 8 < k 5 16 

as shown in Fiqure l a  has been used to generate the initial fields. The simulations use 643 grid 

points while a simulation with 128~ grid points has been used to assess the numerical errors. 

SIMULATION RESULTS 

Two simulations of decaying isotropic turbulence will be discussed. The parameters describing 

the initial conditions are given in Table 1. Results from simulation I1 are described in detail 

below and differences with simulation I are noted. 

Table 1. Initial condition parameters for simulations I and 11. 

Figure l a  shows the initial velocity spectrum E(k) from simulation 11. It has been decom- 

posed into a solenoidal velocity spectrum, E8(k),  and a dilatational velocity spectrum, ~ ~ ( k ) .  

Figure l b  shows the decomposed velocity spectrum at t = 3.0. (For reference, the initial con- 
1- ditions have a time scale r = gpuiui /c  = 1.3.) The spectrum E(k) has smoothed out and is 

Simulation 

I 
I1 

proportional to k2 at lower wave numbers. No inertial subrange exists because the energy con- 

Ed/E8 
0 .O 
0.1 

taining scales and the dissipation scales are not separated at these low Reynolds numbers. It is 

( )  
0 .O 
0.1 

MO 
0.3 
0.3 

(-)1 
0 .O 
0.1 

Rel 11 

20 
20 

Reo 
365 
395 



interesting that the pulse structure persists in Ed(k).  In general the energy cascade to low and 

high wavenumbers removes any discontinuities in the spectrum. The reason for the persistance 

of the discontinuity in Ed(k) is not known. Simulation I builds a smooth Ed(k) spectrum that 

lies at a low level. 

The history of the rms and maximum Mach numbers is given in Figure 2. The simulation 

decays toward low Mach numbers so that any strong effects due to compressibility can be 

expected to be limited to early times during the simulation. Unfortunately the simulation takes 

time to develop away from the artificial initial conditions into true turbulence. In order to 

determine when the simulation has developed sufficiently some standard measures of validity 

have been examined. The velocity derivative skewness goes from 0.0 to -0.4 by t = 0.2 and 

then decays as the Reynolds number drops. The Taylor microscales decrease slightly and then 

start growing linearly after t = 1.5. Thus the simulation takes about one initial turbulence time 

scale r to develop. 

The symbols shown in Figure 2 show the points where flow fields were stored on tape so that 

detailed statistics could be calculated. In order to provide some information that may be useful 

to turbulence modeling the balances for second order statistics were calculated. In the equations 

below the variables are split into mean and fluctuating components either as 4 = 4 + 4" where 

4 = &/P is a mass weighted average or as 4 = 4 + 4' where 4 is a normal Reynolds averaged 

quantity. 

The equation for the turbulent kinetic energy in homogeneous turbulence can be written as 

Compared to the incompressible case, this equation has three additional terms. The viscous 

dissipation, E ,  has been broken into three parts and can be rewritten as 

The first term is proportional to the enstrophy and is the only term for a constant viscosity, 

incompressible flow. The second term is proportional to the mean squared fluctuating dilatation. 

The last term is a correlation involving fluctuating viscosity. 

Figure 3a shows the balance for the turbulent kinetic energy equation. Symbols corresponding 

to Term 1, Term 2, etc. represent the terms as they appear left to right on the right hand side 

of the equation. The symbols marked RHS give the sum of the terms on the right hand side 

of the equation and D()/Dt corresponds to the time derivative on the left hand side of the 



equation. The discrepancy between D()/Dt and RHS is a measure of the numerical error. 

We find the balance is still dominated by dissipation rate. Term 4, the correlation involving 

fluctuating viscosity, is negligible even with temperature fluctuations of ten percent. It may, 
however, play a role for more highly compressible flows. The relative size of Term 3 compared to 

Term 2 is dependent on the initial condition parameter E ~ / E ' .  Term 1, the pressure-dilatation 

correlation, is small compared to the other terms. It is seen to exhibit erratic behavior early in 

the simulation after which it becomes positive, acting as a gain term. 

Writing an equation for the exact dissipation would be difficult because of the temperature 

dependent viscosity. However equations can be written for the enstrophy and the mean squared 

fluctuating dilatation. The enstrophy equation for homogeneous turbulence can be written as 

Figure 3b shows that the dominant terms are the viscous dissipation term and the vorticity- 

vorticity-strain correlation, which acts to produce enstrophy by vortex stretching. The enstro- 

phy-dilatation correlation is erratic at  early times and then becomes negligible. The term 

corresponding to  the baroclinic torque in the vorticity equation is negligible throughout the 

simulation. 

The large discrepancy between D()/Dt and RHS at early times in Figure 3b caused some 

concern. It was found that the error was due to poor spatial resolution during the early portion 

of the simulation. A 12g3 simulation with the same initial condition parameters as simulation 

11 was carried out to t = 0.6. Balances for the 1 2 8 ~  simulation evaluated at t = 0.2, 0.4, 0.6 

showed a discrepancy of less than 1 percent of the largest term. The qualitative results from 

the 643 simulation were unchanged. The lack of spatial resolution in the 643 simulations can 

be clearly seen by examining the spectra of the enstrophy for the two simulations. Figure 4a 

shows the poor resolution of the small scales for the 643 simulation while Figure 4b shows that 

the high wave numbers are well resolved for the 12g3 simulation. From this we have found two 

diagnostic tools for judging the resolution of a simulation. The enstrophy spectrum should fall 

off sufficiently at  high wave numbers and the equations for higher order statistics of interest 

should balance. 



The other part of the dissipation consists of the mean squared fluctuating dissipation. The 

equation for this quantity in homogeneous turbulence is 

Figure 3c shows the balance for this equation. The obvious point here is that each term is 

significant so that no term can be neglected in the model. 

We thought it might be possible to model the fraction of the dissipation due to the mean 

squared fluctuating dilatation if one had a knowledge of E d / E a .  Figure 5 shows the history 

of E d / E 8  and the ratio of the mean squared fluctuating dilatation to the enstrophy. The two 

curves start together but then develop differently so that E d / E 8  could not be used to model the 

dissipation due to the mean squared fluctuating dilatation. We see that after the initial period 

the dissipation due to dilatation increases so that at the end of the simulation 21 percent of the 

dissipation is directly due to a compressible term. This is surprising since the rms Mach number 

at this time is so low. 

The passive scalars were included in the simulation in order to study mixing. Because the 

scalar 81 has a mean gradient it develops a flux, puY8'1, shown in Figure 6a. The equation for 

this flux in homogeneous turbulence can be written 

The balance for this equation is shown in Figure 6b. Term 4 is the production term from the 

mean scalar gradient. All the other terms act to reduce the flux. The only noticable difference 

in this balance between simulations I and I1 is that the pressure-scalar gradient term is larger 

in simulation 11. 

CONCLUSIONS 

Direct numerical simulations of compressible decaying isotropic turbulence have been per- 

formed on a 643 grid. Rapid changes are seen to take place during the early portion of the 

simulation when the flow is developing away from the initial conditions. During this time the 

643 grid does not adequately capture all the scales of motion, but it gives correct qualitative 

results (as seen by comparison with a 1 2 8 ~  simulation) and is accurate after this initial period. 



In order to perform full simulations at higher Reynolds numbers or under conditions that show 

more of a compressibility effect it will be necessary to use larger grids. 

Our results show that the magnitude of the density fluctuations and of the dilatational ve- 

locity field are dependent on initial conditions. Simulation I, which had no initial density or 

temperature fluctuations and no energy in the dilatational part of the velocity field, did develop 

density and dilatational velocity fluctuations; however, they were an order of magnitude smaller 

than those of simulation I1 which had initial fluctuations of these quantities. Similarly, the 

compressible terms in the equations for the turbulent statistics were present to a much greater 

degree in simulation I1 than in simulation I. However, in neither case did they have a large 

influence. 

One problem with decaying turbulence is that the compressible terms in the equations are 

large only at early times when the turbulence is developing away from the initial conditions. In 

order to overcome this problem and to study flows more closely related to those of engineering 

interest our future plans include inserting a mean shear that will produce turbulence. We hope 

these simulations will provide information useful in developing compressible turbulence models. 
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Figure 1. Decomposed velocity spectra (a) at t = 0.0 and ( 6 )  at t = 3.0. ES(k) is the solenoidal 

velocity spectrum, ~ ~ ( k )  is the dilatational velocity spectrum. 
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Figure 2. Maximum and rms Mach number history. 
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Figure 4. Enstrophy spectra at t = 0.6 for simulations with (a) 643 grid points, and ( b )  128~ 

grid points. 

Figure 5. History of the ratio of energy in the dilatational and solenoidal velocity fields and the 

ratio of mean squared fluctuating dilatation to enstrophy. 
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ABSTRACT 

When a shock wave crosses a turbulent region, it can be assumed that there 

exists an equivalent average shock front, through which average flow variables, 

turbulent transport fluxes and source terms undergo jumps that satisfy modified 

turbulent Hugoniot conditions, independently of the closure model. These relations are 

presented and additional kinematic jump relations are also derived, so that the 

Richtrnyer-Meshkov turbulent source effect can be described quantitatively.With the 
help of the K- E turbulent mixing model presented in the companion paper /l/, the 

results of numerical tests of these relations performed on a classical Air-Helium shock 

tube computer experiment are presented and discussed. 

I - INTRODUcrION 

When a shock front enters a region of fully developed compressible 

turbulence and propagates through it, it undergoes strong local distortions due to 

refraction by flow field random inhomogeneities of all scales, and also by the creation 

and multiple reflection of shocklets in the case of heterogeneous turbulent mixing. 

Therefore, instead of being a single, abrupt transition governed by molecular transport 

and established over a distance of a few particle mean free paths, the overall shock 

process is spread over a much larger distance such that average dissipation can take 

place, that is, a few Kolmogorov scalelengths. 

But, if the incident shock is strong enough, namely if its characteristic propagation 

time is much less than the time scale of the smallest eddies (quasi-frozen turbulence), 

one can postulate that its effect on the turbulent flow is equivalent to that of a single, 

randomly perturbed shock. In particular, the flow variables, including turbulent fluxes, 

undergo jumps that, in view of the classical conservation properties, must satisfy a set 

of relations that should generalize the usual Rankine-Hugoniot jump relations. 

Our purpose in this study is to determine the general form of these relations and the 

role of the average turbulent variables (kinetic energy, transport fluxes, source terms). 



Of particular interest is the quantitative description of the expected amplification(or 

creation) of anisotropy through the average front, following the intuitive view that, in a 

first approximation, transverse velocity components should not be strongly affected, 

while the axial (normal to the average front) average and fluctuating velocity 

components should be compressed in order to conserve the flow rate. 

Besides their physical interest, turbulent jump relations can be simulated numerically 

with a hydrodynamic code using any turbulent closure model. One can thus explore the 

physical conditions under which these relations are relevant and, in a correlated way, 

test the adequacy of a given model for the treatment of strong discontinuities with the 

attendant turbulent production, to be modeled by "turbulent Richtmyer-Meshkov" 

source terms.We establish in sections 11 and I11 the general average jump relations 

derived from the usual conservation laws, as well as two additional ones for the axial 
and transverse turbulent kinetic energy. We then use a K- E turbulent model /l/ to 

compute the development of the turbulent mixing zone in a classical Air-Helium shock 

tube problem and to perform numerical tests on the associated set of jump relations. 

II - GENERAL INSTANTANEOUS AND AVERAGE CONSERVATION LAWS 

For a mixture of two (say) non heat-conducting species, the conservation laws can 

be expressed under the usual conservative form, using standard notations: 

L+ + v.(y ;3 . )  ; 0 , 
at;  

{T i 
> = -+ 

+ q2)j i ~ [ ( e  + itl2+ e ) , & -  B i i _ ] = O ( \ ~ i )  

at: .J 9 Y 

3 
where, denoting by p a ,  c a ,  ua ,  e a ,  respectively, the a-species mass density, 

concentration palp, velocity and internal energy, one has: 



and p is the total static pressure, given by some constitutive law for the mixture, 

assuming an arbitrary equation of state for each species. 

Now, introducing the decomposition of every flow quantity Q into its mass- 

averaged and fluctuating parts: 

Q 
one can obtain the turbulent flow general equations, again under conservative form: 

+ v 1 ( j 4 ? +  y L i 4 x f ) = o ,  
at; 

where k = 1 / 2 1 ~ ~  is the turbulent kinetic energy, and 

average total energy per unit mass. 

EI - JUMP RELATIONS FROM CONSERVATION LAWS 

III. 1-Instantaneous iumu relations. 

Consider a general conservation law, in a scalar or vector form: 

assumed to be valid in the weak sense (i.e. for distributions). One can show in a rather 

simple way that, at any propagating discontinuous front Vt)  , with 
iP 

unit normal T;' and celerity D along n, 

denoting the jump through C as: 

Q Q,- S -  , 



one has the associated jump relation: 

Now, straightforward application of formulas (4) to flow equations (1) gives relations 

which are valid at any instant and for any shock distortion and reflection, provided that 

shock transition is strong enough: 

111.2 - Average turbulent Rankine-Hugoniot jump relations 

The next step now consists in introducing the mean plus fluctuating variable 

decomposition into relations (5) and taking their ensemble average. But this procedure 

induces the appearance of second or third-order correlation products that are usually not 

modeled, since they involve front fluctuation terms D' and?, and are certainly difficult 

to take into account. To make the analysis more tractable, we then assume that the 

overall flow field transition is set up by a single, randomly distorted shock with celerity 

and unit normal: 

Since this relation already incorporates strong local perturbations, it also does 
.+ - 

not seem unreasonable to assume that shock fluctuations (D',nS) about its average (D, 
3 
n) are weak. Then, neglecting first-order and higher-order perturbation terms in (5) 

after averaging leads to the following set of relations ( the average flow through the 
-f N 

front is along the normal z, with average and fluctuating velocity components U and 

U').  



The first remark to be made is that these relations can also be obtained by 

application of jump formulas (4)  to average flow equations (2): this shows the 

consistency of the approximations made above. First-order terms, not shown here, all 

give the incidence of shock velocity fluctuations on transverse momentum terms and 

fluxes. Unfortunately, these terms are usually not modeled, and are not considered in 

the present work. 

If one introduces the average mass flow rate through the front: 

relations (6.2) to (6.4) can also be written: 

< Q > = 1/2 ( Q++ Q ). The close analogy to the classical Rankine- 

/U and the role of additional turbulent jumps are quite clear: 
-to the static pressure? is added a dynamic pressure term pxcrea ted  by axial 

velocity fluctuation U' only. 
rV 

- to the internal energy ?is added the kinetic energy of fluctuations k, which 

therefore plays the role of an equivalent additional internal energy. 

- the generalized internal energy relation (7.3) includes further modifications 

due to the additional jumps of: 
n 

+ the internal energy flux term p e U , 
7 + the turbulent kinetic energy flux term p k U , 
I 

+ the pressure-velocity correlation term p U . 



( note that the sum of the first and third contribution is just equal to the enthalpy flux 
II 

term p h u ) .  

It is important to remark that these relations are perfectly independent of 

turbulent closure models, so that any model can be implemented for numerical tests. 

Now, these relations are not complete, in the sense that they give no separate 

information on the jump of kinetic energy terms. Such an information can actually be 

obtained from instantaneous dynamic relations (5.3). 

III.3 - Turbulent kinetic energv i u m ~  relations 
4 

Introducin the transverse velocity component uithrough the relation: 1 3 4  
U= ( U + U ) n + u,in (5.3), and neglecting the first-order and higher-order 

perturbation terms, one readily obtains instantaneous jump relations for axial and 

transverse momentum: 

(a. 2) 

In @.l), the axial viscous stress can be neglected with respect to the axial 

Reynolds stress. (8.2) shows that the transverse velocity discontinuity 

CU 

by the discontinuity of the transverse component of the axial viscous stress 
-*I Multiplying the above two relations respectively by < U + U' > and < U,>, one gets, 

after some algebra, relations for the axial and transverse kinetic energy 
- 7 -  

Adding up the two equations, one gets the jump relation for the turbulent kinetic 
W h r W  

energy k = k,,+ 5 where the viscous conmbution is indeed negligible: 

These three relations give the general form of the production terms for kh,kLand 
'Y 

k through a shock front. Subtracting Eq.(lO) from the energy relation (7.3), one 

obtains the internal energy jump relation: 



which is the strict generalization of the classical shock adiabatic modlfied essentially by 

the discontinuity of the turbulent thermal flux and of the pressure-velocity correlations. 

It also appears that, within our approximation concerning the fluctuations of the front, 

the dominant production terms across the shock ("turbulent Richtmyer-Meshkov" 

source terms) create axial kinetic energy only. 

IV - NUMERICAL TESTS ON TURBULENT JUMP RELATIONS. 

All the discontinuity relations established above can be tested with any 

hydrodynamic code including a more or less sophisticated turbulent model, provided 

that the right average transport and production terms are accounted for and computed. 

We therefore choose the compressible k-E two-species model and code 

developed at CEAICEL-V /l/ ,  which includes a production term accounting for 

turbulence induced by Rayleigh-Taylor instability, and we consider the associated set of 

jump relations (6.1-3), (10) and (1 l), to be analyzed numerically. 

We have taken as a first test problem a high Mach number shock tube 

simulation, where a shock at a pressure of 20 bars is impinging upon an immaterial 

interface between air and helium at standard temperature and pressure, with an Atwood 

number equal to 0.758. The interface is then subject to the Richtmyer-Meshkov 

instability and, as is well-known experimentally, multiple shock reflections between the 

tube end and the interface induce the development of a turbulent mixing zone (TMZ) 

between air and helium. As seen in Fig. l, the initial TMZ superimposed at time t=0.27 

10-3s is made fairly wide, in order to facilitate numerical measurements of the flow 

discontinuity through the shock reflected from the tube end. The analysis is done at 

time t=0.3 15 10-3 S when the shock is approximately in the middle of the TMZ. Spatial 

profiles of the average density and pressure are shown on Fig.2 and 3, and clearly 
indicate the position of the front. The F profile serves for the identification of the mesh 

zones defining the upstream (-) and downstream (+) boundaries of the shock wave 

structure, between which the jumps are to be computed. Relation (6.2), which does not 

depend explicitly on turbulent fluxes, is used to compute shock celerity from the mass 

flow rate and density jumps: D= 77.8 cm S-l. This value is then used to check the other 

jump relations. For instance, (6.3) is written down as an equality between an upstream 

and downstream quantity: 
--L - - - -  - 7 -31 q+u+-P- p+ = D F- U-- P - -  p"- -e -  - 



Taking the ratio of the numerical value of the the left hand side to the right one 

and comparing it to 1 therefore gives the accuracy of the momentum jump relation, 

which is found to be true within 3.6% in the present case. Similarly, the accuracy of the 

concentration jump relation (6.1) is found to be 14%. The first figure is fairly 

satisfactory, thanks to the fact that the jump of the turbulent axial momentum flux 
9 is fairly well defined, as can be seen on Fig.4. This is less so for the jump of the 

turbulent concentration flux (Fig.5) and accordingly for relation (6.1). Although other 

turbulent fluxes and source terms also experience measurable jumps (see for instance 

the profile of the enthalpy flux on Fig. 6), these are not as steep as would be required to 

obtain an accurate check of relations (10) and (1 1). Therefore, further simulations with 

higher shock strengths will be necessary to obtain stronger flow discontinuities that will 

allow more precise numerical tests. 

V - CONCLUSION 

We have obtained, under reasonable assumptions, a generalization of the 

Rankine-Hugoniot jump relations through a shock front, including the effect of 

turbulent flux and production terms, independently of any turbulence modelling. 

Therefore, with high shock strength numerical experiments, one can perform 

tests of both the adequacy of our underlying assumptions and the ability of any given 

closure model to treat strong discontinuities. 
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Fig. 1 - R-T diagram of shock propagation and 

turbulent mixing zone initialization and 

development 

Fig. 2 - Space profile of average density 
3 a t  t ime 0.315 10- s 

Fig. 3 - Space profile of average pressure p 
3 at time 0.315 10- s 



Fig. 4 - Space profile of turbulent momentum - 
flux pu'2 at time 0.315 10-3s 

Fig. 5 - Space profile of turbulent concentration 

flux p c' U' at time 0.315 10-3s 

Fig. 6 - Space profile of turbulent enthalpy 
flux p h' U' at time 0.315 10-3s 
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I - INTRODUCTION: 

Rayleigh-Taylor and Richtmeyer-Meshkov instabilities occuring in the context of inertial 

confinement fusion have been the object of a growing interest in the recent years. While the linear 

growth of small perturbations on the interface between layers of different densities is relatively &,ell 

understood, the non-linear stage and the subsequent turbulent phase are poorly understood. Some 

insights in the non-linear growth can be done by numerical simulations as opposed to the fully 

developed turbulent phase where models are needed. In the context of interest, the challenge was to 

build a 1D mixing model which had to be imbedded in a ID production hydrocode. As in the 

Andronov et al's pioneering work [l], we used closure models which are probably the only way to 

work out, despite the weaknesses of such an approach. Later on, these authors also published a more 

sophisticated model [2] with evolution equations for every second order quantities. In the same 

time, turbulent mixing models became fashionable on the West and simple models [2-41 and then 

more elahrated models were built up [l]. Nevertheless, it is not clear yet what informations are 

brought by n-equation models. 

However, when using closure models in unsteady situations, we are faced up to some major 

difficulties. The frst  one is the need of giving an initial turbulent state. This necessity comes from the 

basic assumptions where variables are splitted into a mean part and a fluctuating one. In other words, 

statistical models are unable to describe transition mechanisms. As a result, the final state is slightly 

sensitive to the initialization procedure. A second difficulty arises when simulating the interaction of 

turbulence with a shwk wave. The numerical treatment of strong discontinuities requires a numerical 

dissipation in order to smear out shock waves and smooth gradients, which makes them artificially 

less efficient in producing turbulent kinetic energy. It follows some dependence on the spatial 

resolution. A third difficulty is encountered when setting up the closure assumptions. They often 

assume a weak dependence of the nth correlation versus the ( n - ~ ) ~ ~  one. Under shock wave influence, 

such an hypothesis is no longer valid and closure assumptions have to be supplemented by some 

relationships to produce meaningful1 results. Last but not least, closure assumptions are not 

accounting for inhomogeneity. 

In view of this application, a one-equation turbulent model has been developed at Limeil and 

sucessfully used to numerically simulate turbulent mixing at an interface [3]. In this model the 

characteristic length was assumed to be the mixing length which is a global quantity. In order to 

remove these unsatisfactory global quantities we added an equation for the dissipation rate E. 

In section II we present the model, numerical applications are given in the third section. 



I1 - TIlE k-E MIXING MODEI,: 

II. 1 MODEL EQUATIONS 

Our model is based on the assumptions that the two fluids are miscible, the thermal equilibrium 

is reached and the turbulence in the plane normal to the shock propagation direction is statistically 

homogeneous. 

It follows that the mixing flow can be described only by the mean quantities p, T, P, U and 

c=pl/p, where these symbols have their usual meaning. By means of the classical Favre's average, it 

is straigthforward to derive evolution equations for the mean quantities p, c, U, e and k. The equation 

for E is usually built by comparison with the k-equation. Following Launder and Spalding [ 5 ] ,  we 

assume that source terms are equal to the k-equation source terms up to a dimensional factor of the 

form cSt k/e. Adding a diffusion term and a production one due to the compressibility effect, we 

finally obtain an evolution equation for E. The set of equations reads 

Continuity equation 

Concentration equation 

Momentum equation 

Energy equation - Z. + -z= -~a~.+za_e+ - L ( c . ~ &  ~ ( s + : ) ) + ~ s  
9% 2% az. - E 3% 

Turbulent kinetic energy equation 

- 
CII 

7 aF l , rJ  

-9% -P - = - !  l l t a ~ b - k - -  E 

D\: "al. al- ay 

Dissipation rate equation N'L - w ~ + a ( ~ & ~ l " )  a'i a~ .f: z a &  

As assumed in the standard 'k-E' turbulent fluxes are computed from first gradient law where 

diffusion coefficients are built from the two basic local quantities k and E. However, on the shock 



wave these fomlulae have to be supplemented by algebraic relations in order to satisfy realizability 

conditions. For example, the radial turbulent kinetic energy has to satisfy the obvious inequalities 

Therefore, on strong discontinuities, we use the classic invariant closure 

where h, and hM have been respectively chosen equal to 0.10 and 1.25 and h = cdp? /F - 
In the same way approximating the turbulent mass flux p'u' by the density gradient may lead to very 

high unphysical values under a shock wave. On the other hand, this flux has to satisfy the Schanvz 

inequality 

The momentum mass flux being bounded by the total turbulent kinetic energy and the variance of 

density fluctuations is assumed to be bounded by the mean density itself, we fially write the turbulent 

mass flux as 

C-C 

pqu' = D *ad: with the realizability condition < a hM1l2 lI2 P 

where a is equal to 0.67. 

The closure relations for f= c, e and k are now simply written as 

rU 

p f U' = Df grad f with Df= &/cT~ k 2 E  

II.2 MODEL CONSTANTS 

We consider the following set of key experiments connecting experimental data to model 

constants, for calibration purposes: 

- turbulence decays according to a power law in time with the exponent n . Consistency requires: 

CE2=( l+n) /n  withn= 1.1 

-in self induced diffusion of turbulence from a steady source of turbulence at a plane in a fluid 

[6], experiments show that the turbulent intensity decays exponentially away from an effective source 

plane. Assuming: 

k(x) and &(X) X-" , we have : 
2 2 or = (3 cd P m ) / 2 and = ( cd p2 (2+3m) (1+2m)) / 2 C& 

with p = 0.846 and m = 3 [6] 
experiments on nearly homogeneous turbulent shear flow. In such a stationary flow [7], the k-E 

model reduces to : 



- l. 
pU. Q + cl, E pac &Lt e ,O 

dx h % L 
with du/dy=constant. An exact solution may be exhibited. More interesting is its asymptotic 

2 behavior leading to the relation: cd = 7 ( eel - l)/ ( C& 2- 1) linked to the experimental value ~=0.34  

with cE2=(l+p)/p where p is an asymptotic exponent for decaying turbulence. 

-boundary layer flows yield the well-known relation : 
2 cE1 = cE2 - X / G& cdli2 with X = 0.41 

-rapid isotropic compression of homogeneous turbulence. There is little experimental evidence to 

test the compressible aspects of a k-E model . Nevertheless, ignoring the Reynolds turbulent stress 

and dissipation the model equations become 

2 Assuming an invariant eddy viscosity coefficient cd k / E /3/, we have: cE3 = 2 ( 2 - cEl ) . 
The set of above relations gives a consistency equation on cd which writes : 

The classic value ~ ~ 4 . 0 9  given by numerical optimisation for years can be obtained from this 

equation by setting p=1.652. In that particular case, we must mention an another solution ~ ~ 4 . 1  15 

is associated with cd=0.09. 

Now, an attempt is made in order to connect c& with op by regarding turbulence decaying in a 

stratified stationary incompressible fluid .The k-E model reduces to : 



and defining @=a. the set of equations beconics : 

1 

The asymptotic behavior of the solution is : 

C&(, = l +  (( CE2 - 1 ) OP &2(m)) 1 N2 Cd k(w) 

Using the experimental data from Ref.[8], an estimate can be made that yields : cE0=0.20 +l with 
P 

cE2=1.9 and cd=0.09 . 
Conventional choices are made for oc and oe . 

oc=0.7 passive scalar mixing 

0,=0.9 heat transfer experiments 

Finally, the set of model constants used for numerical applications is : 

m - NUMERICAL APPLICATIONS: 

The model is numerically solved by the Richtmeyer scheme. K and E diffusion terms are handled 

in a coupled implicit manner while Rayleigh-Taylor source terms are discretized in an explicit way. 

The canonical Andronov et al's experiment has been simulated with our k-E model. The 1.3 

Mach number shock wave was produced by a constant pressure at one boundary. We used the perfect 

gas equation of state. The initialization was done by using the Mikaelian's model [g] and the mix 

model was turned on at t = 8 0  ps. We have displayed on Fig. 1-2 the interface velocity profile and its 

spatial derivative. It is clear that the velocity gradient is applied for a short time - lops - compared to 

the characteristic time of diffusion which is of the order of 700ps, in other words, shock waves act as 

a rapid distorsion which is essentially governed by linear effects [10]. This conclusion is enforced by 

looking at Fig.1 l where the return time to isotropy is of the order of lops and the turbulence decaying 

time is of the order of 200ps (Fig.3). It follows that the dominant behavior is essentially a diffusion 

one, and model responses are weakly non-linear. 

The time evolution of the total turbulent kinetic energy is displayed on Fig.3. It is easy to notice 

the effect of shock wave on turbulence: it increases the turbulent kinetic energy by one order of 

magnitude, for the first shock. As shock waves become more and more attenuated after some 

reflections on the wall, the enhancement of turbulent kinetic energy is smaller and smaller. By looking 

at any typical quantity such as the turbulent kinetic energy, the dissipation rate or turbulent fluxes, we 

observe the same kind of behavior: the quantity is strongly enhanced by shock waves and decays over 

a large characteristic time. We notice that the Mach number of the two fmt shocks Ma, are greater than 

one. But the Mach number of the flow, computed by Maflu/cs, is never greater than 0.60 Fig.5), 

and the maximum decreases as time goes on. The Mach number of the fluctuating velocity, computed 

by ~ a ~ = k l / ~ / c ~  (Flg.6), is largely less than the unity: velocity fluctuations are strongly subsonic. 

Fig.7 shows the evolution of both experimental and calculated mixing zone boundaries.The mixing 

thickness is displayed on Fig.8 and is in good agreement with the experimental data. It clearly appears 



that the mixing penetrates more rapidly in the light fluid than in the heavy one. 

On Fig.8 we have plotted the evolution of the characteristic length k3/2 / E at different locations 

of the mixing zone together with the mixing zone width. It appears that they are not proportional as 

assumed in a one equation model. In other words, the size of largest eddies saturates as shock waves 

attenuate. 

In the experiment described in [ l  l ]  a shock wave in CO2 accelerates a C02/helium or argon 

contact surface thus creating a turbulent mixing zone which is then decelerated by a reflected shock. 

The initial pressure of gases is 2000 Pa or 1500 Pa. So, three experimental combinations are carried 

out. The comparison between calculated and experimental turbulent mixing zone thicknesses are 

presented on Figures 13-15. Using the same initialization procedure as for the Andronov et al's 

experiment, a value of o of about 0.32-0.33, yields satisfying simulations of the turbulent P 
thickening. This result emphasizes the turbulent model ability to simulate different Atwood and Mach 

number experiments. 

Finally, we must mention and recall that a part of the discrepancy between experimental and 

calculated values is probably due to non negligible boundary layer effects. The Marseilles k-E 

simulations are now under way and a detailed analysis will be published later on. 

IV - CONLUSION: 

We have developed a k-E model for handling situations characterized by high values of the 

turbulent flux Richardson number. Closure relations have been supplemented in order to be valid 

under strong discontinuities. Calibration has been done by classic experimental available data and by 

studying the k-E model in some special cases. Simulations on several shock tube experiments agree 

fairly well with available experimental data. 

ACKNOWLEDGMENTS: We would like to thank A. Grimaldi for her help in preparing the 

manuscript. 

REFERENCES : 

1 - V. A. Andronov et al. JETP Lett. 29, 1 (1979) and Sov. Phys. Dokl.,27 , 5  (1982). 

2 - S. Gauthier, CEA Lirneil-Valenton Internal Report (1982). 

3 - M. Bonnet, S. Gauthier, P. Spitz, CEA Limeil-Valenton Internal Report (1987). 

4 - C. E. Leith Preprint-Livermore (1987). 

5 - B. E. Launder and D. B. Spalding, Comp. Meth. in Applied Mech. and Eng., 3, 1974. 

6 - A. Sonin, Phys. Fluids 26, 10, 1983. 

7 - F. C. Champagne et al., J. Fluid Mech., 41, 81, 1970. 

8 - E.C. Itswere et al, J. Fluid Mech., 162, 299, 1986. 

9 - K. 0. ~ikaelia;,  Phys. Rev. Lett. 54,5 (430) 1985. 

10 - J. Mathieu, BrCau-Sans-Nappe Summer School (1982). 

11 - L. Houas et al.. 15 th International Symposium on shock waves and shock tubes. Stanford 

University Press (1986). 



Fig. 1 - Interface velocity profde 

with and without mixing. 
Fig. 2 - Interface velocity gradient profile. 

Fig. 3 - Evolution of the turbulent kinetic Fig. 4 - Evolution of the turbulent kinetic 

energy at three different locations. energy flux (same locations as in Fig.3). 



Fig. 5 - Flow Mach numbers. Fig. 6 - Turbulent Mach number of the 

interface. 

Fig. 7 - Turbulent mixing zone boundaries. Fig. 8 - Thickness of the turbulent mixing zone. 



Fig. 9 - Evolution of the chamcteristic length k3I2/& Fig. 10 - Turbulent characteristic time k/& 

at three different locations (same as in Fig.3) with (same locations as in Fig.3). 

the turbulent zone thickness 

Fig. 11 - Radial part of the Reynolds stress Fig. 12 - Turbulent flux Richardson number. 
tensor deviator. 



Fig. 13 - He/C02 - Pi~t id=2000 Pa thickness 

of the TMZ. 

Fig. 14 - He/C02 - Pirutid=1500 Pa thickness 

of the m. 

Fig. 15 - Ar/C02 - Pinitia1=2000 Pa thickness of the TMZ. 
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INTRODUCTION 

The c l a s s i c a l  second-order c l o s u r e s  a r e  general  l y  we1 l adapted t o  

t h e  computat ion o f  superson ic  f l o w s  i n  which non- l  i n e a r  e f f e c t s  due t o  compres- 

s i b i l i t y  a r e  weak f o r  moderate superson ic  Mach numbers (Dussauge, Gav ig l i o , l 987 ) .  

For  h i g h e r  Mach numbers, t h e  s t r u c t u r e  o f  t u rbu lence  i n  boundary- 

l a y e r s  seems a1 t e r e d  (Laderman, Demetriades, 1979). The measurements i n v o l  ved 

a r e  d i f f i c u l t ,  b u t  some conc lus ions  o f  t h i s  a n a l y s i s  a r e  i n  agreement w i t h  t h e  

r e c e n t  work o f  Smits e t  a l .  1988. A good example o f  t h e  e f f e c t s  o f  compress ib i -  

l i t y  i s  g i v e n  by superson ic  f r e e  shear f l ows ,  which cannot  be computed w i t h  

low-speed tu rbu lence  models. T h i s  i s  p robab ly  due t o  t h e  l a r g e  dens i t y  f l u c t u a -  

t i o n s  produced by t h e  h i g h  speeds. F o r  example, a  c l a s s i c a l  k - e model does 

n o t  reproduce t h e  spread ing r a t e  o f  t h e  superson ic  f r e e  shear l a y e r .  An ana ly -  

s i s  i s  proposed i n  t h e  p r e s e n t  paper t o  t a k e  i n  account  small  depar tures  from 

incompress ib i l  i ty caused by d e n s i t y  f l u c t u a t i o n s .  An a1 geb ra i c  s t r e s s  model i s  

deduced and i s  used t o  compute f r e e  shear l a y e r s .  The r e s u l t s  a r e  compared t o  

measurements o f  mean and f l u c t u a t i n g  q u a n t i t i e s .  

ANALYSIS 

It i s  known f rom exper iment  t h a t  t h e  spreading ang le  o f  supersonic 

f r e e  shear l a y e r s  i s  a  dec reas ing  f u n c t i o n  o f  t h e  Mach number. The reasons o f  

t h e  r e d u c t i o n  o f  t h e  t u r b u l e n t  m i x i n g  a r e  n o t  c l e a r l y  i d e n t i f i e d ,  b u t  some 

s a l i e n t  f e a t u r e s  of superson ic  shear l a y e r s  can be r e c a l l e d ,  and used as g u i -  

de l  ines t o  f i n d  t h e  c o m p r e s s i b i l  i ty  e f f e c t s  invo lved.  

F i r s t l y ,  as t h e  f l o w  i s  n e a r l y  p a r a l l e l ,  t h e  mean divergence can 

be neg lec ted:  t h e  mean f l o w  reduces p r a c t i c a l l y  t o  a pure  shear, and t h e  obser-  

ved phenomena cannot  be unders tood as an e f f e c t  o f  mean c o m p r e s s i b i l i t y  o r  

mean v e l o c i t y  d ivergence.  Secondly, t h e  d e n s i t y  f l u c t u a t i o n s  can be ve ry  l a r g e .  

Fo r  f l ows  w i t h o u t  h e a t  sources, t h e i r  o r d e r  o f  magnitude i s  g i ven  by t h e  



"Strong Reynol ds Anal ogy" ( S R A )  re1  a t i o n  : 

p ' /  P ( Y - 1  ) M2 (U'/:) = ( y - l  ) Mm ( 1 )  

- 
U i s  t h e  l o n g i t u d i n a l  mean v e l o c i t y ,  p t he  dens i t y ,  M t h e  mean Mach number, 

m = u ' / a  i s  t h e  Mach number of t h e  f l u c t u a t i o n s ,  y = C /C  . Formula ( 1 )  essen- 
P  v  

t i a l l y  assumes t h a t  t h e  t o t a l  temperature f l u c t u a t i o n s  a r e  sma l l e r  t h a t  t h e  

temperature f l u c t u a t i o n s  (Debieve, Gouin, Gavig l  i o ,  1983), and t h a t  t h e  d e n s i t y  

( o r  temperature)  f l u c t u a t i o n s  a r e  i s o b a r i c ,  as i n  zero  pressure  g r a d i e n t  t u r -  

bu l  e n t  boundary- l  ayers  (Lau fe r ,  1968). 

T h i s  r e l a t i o n  shows t h a t  even a t  M = 1  , d e n s i t y  and v e l o c i t y  

f l u c t u a t i o n s  have comparable i n t e n s i t i e s .  High d e n s i t y  f l u c t u a t i o n s  may change 

t h e  p r o p e r t i e s  o f  t u rbu lence .  Fo r  example f o r  subsonic f lows,  some c losu res  can 

be d e r i v e d  f rom t h e  i n c o m p r e s s i b i l i t y  o f  t h e  f l u c t u a t i n g  mot ion.  I t  i s  t hen  

use fu l  t o  have some h i n t  about  t h e  general  i t y  o f  t h i s  hypothes is .  Fo r  smal l  

f l u c t u a t i o n s ,  t h e  d ivergence o f  t h e  f l u c t u a t i n g  v e l o c i t y  i s  g i ven  by : 

1 E BI  €0 B '  d i v u '  = - - (d c)- p' - - - - 
Y  d t  p  ax .  1 p ) cp:G yv B  

0 i s  t h e  temperature and t h e  r a t e  o f  d i s s i p a t i o n  o f  temperature var iance.  

Dussauge, Debieve and Smits (1988) n o t i c e d  t h a t  t h e  pressure  terms i n  eq. ( 2 )  

can be neg lec ted  of t h e  l e v e l  of p l / p  i s  small  compared t o  @ ' / G  and i f  t h e  

c h a r a c t e r i s t i c  t ime  s c a l e  of p ressu re  f l u c t u a t i o n s  i s  n o t  t o o  smal l ,  compared 

t o  t h e  t ime  s c a l e  o f  t h e  o t h e r  q u a n t i t i e s .  Wi th  these  assumptions they  found  

t h a t  t h e  r a t i o  d i v u l / ( a u ;  / a x . )  i s  p r o p o r t i o n a l  t o  m3M( 1 + CM2) , where 
J 

C i s  a  cons tan t .  T h i s  r e s u l t  i s  v a l i d  o n l y  i n  cases where d i v u '  i s  caused by 

hea t i ng  th rough v iscous d i s s i p a t i o n  and heat  conduct ion .  I t  suggests t h a t  i n  

many supersonic ( b u t  n o t  hyperson ic )  f lows,  d i v u '  i s  p robab ly  smal l ,  and t h e  

f l u c t u a t i n g  f i e l d  i s  n e a r l y  solenoYda1. Such a s i t u a t i o n  occurs probab ly  o n l y  

when m i s  much l e s s  than 1 .  I f  m - I-, t h e  t u r b u l e n t  mot ion may produce a  

s i g n i f i c a n t  number o f  shock le t s .  I n  t h i s  case, t h e  pressure  term o f  eq.(2) 

cannot be neg lec ted  and t h e  p rev ious  r e s u l t  does n o t  ho ld .  I n  many f lows 

w i t h o u t  h e a t  sources a t  moderate superson ic  Mach numbers ( M  - 2, say), i t  seems 

t h a t  m i s  much l e s s  than 1 ,  b u t  t h e  d e n s i t y  f l u c t u a t i o n s  a r e  n o t  smal l .  

Then, f o r  such f l ows ,  i t  may be assumed t h a t  t h e  v e l o c i t y  f i e l d  i s  solenoydal  

b u t  t h e  t u r b u l e n t  d i f f u s i o n  o f  momentum, k i n e t i c  energy, e t c .  .. and t h e  r e t u r n  

t o  i s o t r o p y  can be m o d i f i e d  by t h e  d e n s i t y  f l u c t u a t i o n s .  Brown and Roshko (1974)  



p o i n t e d  o u t ,  f r o m  d i m e n s i o n a l  r e a s o n i n g  and f r o m  o r d e r  of magn i tude  e s t i m a t e s ,  t h a t  

t h e  p r e s s u r e  f l u c t u a t i o n s  s h o u l d  depend on t h e  Mach number. They supposed t h a t  es-  

s e n t i a l l y  t h e  " p r e s s u r e  t r a n s p o r t "  te rms  were a f f e c t e d  by  t h i s  e f f e c t .  I n  t h e  p r e -  

s e n t  work i t  i s  supposed t h a t  t h e  p r e s s u r e - s t r a i n  te rms  i n  t h e  Reynolds s t r e s s  equa- 

t i o n  s h o u l d  be m o d i f i e d  as  w e l l .  Indeed ,  t h e  decrease  o f  t h e  s p r e a d i n g  r a t e  i n d i c a -  

t e s  t h a t  t h e  t u r b u l e n t  d i f f u s i o n  (and  t h e  Reynolds s t r e s s  W) becomes s m a l l e r  

w i t h  i n c r e a s i n g  Mach number. Then, t h e  i n f l u e n c e  o f  d e n s i t y  f l u c t u a t i o n s  on t h e  

p r e s s u r e - s t r a i n  terms has t o  be examined, as  p r e v i o u s l y  sugges ted  by  Bonnet  ( 1 9 8 1 ) .  

The p r e s e n t  paper  u n d e r l i n e s  t h i s  a s p e c t  o f  t h e  problem, b u t  we must  have i n  mind t h a t  

t h e  e f f e c t  o f  p r e s s u r e - t r a n s p o r t  i s  t o  b e  a l s o  c o n s i d e r e d  i n  a  more comple te  model.  

A t e m p t a t i v e  i l l u s t r a t i o n  o f  t h e  m o d i f i c a t i o n  o f  t h e  r e t u r n - t o - i s o -  

t r o p y  p r o c e s s  b y  d e n s i t y  f l u c t u a t i o n s  can b e  p roposed  b y  r e c o n s i d e r i n g  t h e  

scheme used  by  E o t t a  ( 1 9 5 1 ) ,  f o r  c o n s t a n t  e n t h a l p y  e v o l u t i o n s  : a  lump of incom- 

p r e s s i b l e  f l u i d  i s  p i n c h e d  i n  t h e  l o n g i t u d i n a l  d i r e c t i o n  b y  a  f l u c t u a t i o n  o f  

v e l o c i t y  u ' l  . Because o f  i n c o m p r e s s i b i l i t y ,  i t  i s  s t r e t c h e d  i n  t h e  o t h e r  d i r e c -  

t i o n s ,  p r o d u c i n g  U ' >  and  U ' ,  f l u c t u a t i o n s .  

If now t h e  f l u i d  i s  c o m p r e s s i b l e  w i t h  a  c o n s t a n t  t o t a l  e n t h a l p y  

t h e  p i n c h i n g  i n  d i r e c t i c n  1  p r o d u c e s  uil and p '  f l u c t u a t i o n s  ; u a 2  and 

u I j  a r e  t h e n  n o t  t h e  same a s  i n  t h e  i n c o m p r e s s i b l e  case.  Moreover  t h e  S.R.A.  

i n d i c a t e s  t h a t  U ' >  and u i 3  a r e  n o t  l i n e a r l y  a s s o c i a t e d  w i t h  d e n s i t y  f l u c -  

t u a t i o n s .  From t h i s  p o i n t  o f  v iew,  u ' ~  and u i 2  o r  u t 3  do n o t  p l a y  symme- 

t r i c a l  r o l e s .  

The o r d e r  o f  m a g n i t u d e  a n a l y s i s  shows ( Q u i n e ,  1986) t h a t  f o r  an 

i n c o m p r e s s i b l e  f i e l d  w i t h  non c o n s t a n t  d e n s i t y  and  z e r o  mean p r e s s u r e  g r a d i e n t ,  

t h e  s i r n ~ l i f i e d  e q u a t i o n  f o r  p r e s s u r e  r e a d s  : 

+ h i g h e r  o r d e r  te rms .  

The q u a d r a t i c  t e r m s  i n v o l v i n g  d e n s i t y  f i  u c t u a t i o n s  a r e  : 

I f  t h e  t h r e e  t e r m s  i n  b r a c k e t s  a r e  o f  t h e  same o r d e r ,  t h e i r  m a g n i t u d e  can 

' au! "o - 1 
be o b t a i n e d  by  c o n s i d e r i n g  t h e  second one - U - axi j ax 

j 



au; au' 
I t  i s  o f  t h e  o rde r  o f  ( y - 1 ) M* p - - j i f  r e l a t i o n  (1 )  ho lds  and i f  t h e  

space sca les  f o r  d e n s i t y  and v e l o c i t y  f l u c t u a t i o n s  a r e  o f  t h e  same order .  

Therefore,  these terms cannot be negl ec ted i n  supersonic f lows.  T h e i r  c o n t r i -  

b u t i o n  t o  t h e  p r e s s u r e - s t r a i n  terms i s  modeled i n  t h e  f o l l o w i n g  way : 

By analogy w i t h  R o t t a l s  model f o r  t h e  r e t u r n - t o - i s o t r o p y ,  nij i s  supposed o f  
9 P 

t h e  fo rm : 

1  where Tij i s  a  f u n c t i o n  o f  t h e  arguments p ' u i  , plu;u; , e t c  ... Only t h e  

argument of l owes t  o r d e r  i s  r e t a i n e d  here. As t h e  i s o t r o p i c  va lue  o f  

p'u; i s  zero  an expansion t o  t h e  f i r s t  o rde r  w i t h  respec t  t o  plu; i s  made. 

As t h e  t u r b u l e n t  f i e l d  i s  n e a r l y  incompressib le,  t h e  c o n d i t i o n  nii ,p 
= 0  

can be used. App ly ing  t h e  c o n d i t i o n s  o f  symmetry and i n c o m p r e s s i b i l i t y ,  t h e  

expression o f  T: i s  found : 

where a i s  a  constant  t o  be determined f rom experiment. 

For  f l o w s  w i t h  cons tan t  t o t a l  en tha lpy ,  t h e  t u r b u l e n t  mass f l u x  

can be r e l a t e d  t o  t h e  Reynolds s t r e s s  through r e l a t i o n s  s i m i l a r  t o  ( 1 ) .  Fo r  

example, Debieve e t  a1 . (1983) and Dussauge and Gav ig l  i o  (1987) use 

w i t h  k ( i  ) a r e  f u n c t i o n s  o f  t h e  c o r r e l a t i o n  c o e f f i c i e n t s  between v e l o c i t y  

components o r  between v e l o c i t y  and dens i t y ,  k ( 1 )  = 0.8 and k ( 2 )  = 1.5 . 
Re la t i ons  ( 3 ) ,  ( 4 )  and (5 )  a r e  used toge the r  w i t h  t h e  A.S.M. 

proposed by Rodi (1976). M o d i f i e d  a l g e b r a i c  expressions a r e  deduced : 



w i t h  

The s u b s c r i p t  o  i n d i c a t e s  the  va lue f o r  incompressible (zero Mach number) 

f lows. 

y = C /C = 1,4 ; C, = 1.5 i s  t h e  constant  i n  R o t t a ' s  model f o r  the  
P  v  

re tu rn - to - i so t ropy ;  P i s  t h e  p roduc t ion  per  u n i t  mass o f  t u r b u l e n t  k i n e t i c  

energy k and E i t s  d i s s i p a t i o n  r a t e .  

I n  p a r t i c u l a r  t h e  r a t i o  C = used i n  eddy v i s c o s i t y  
Ir 

formula t ions can be determined : 

w i t h  

A s i m p l i f i e d  model was a l s o  tes ted,  by r e p l a c i n g  i n  (6)  t h e  Mach number by i t s  

ex terna l  value M, : 

B '  i s  a  constant  



Ca lcu la t i ons  o f  m ix ing  l a y e r s  were performed w i t h  d i f f e r e n t  models. 

F i r s t l y  t h e  h igh  Reynolds number p a r t  o f  t h e  model o f  Jones and Launder (1971) 

was used; t h i s  model uses r e l a t i o n  (5 )  w i t h  C = 0.09 (model I ) .  Secondly, 
C1 

formula ( 4 )  was used t o  determine C ; t h e  value of a had t o  be determined 
C1 

(model 11). T h i r d l y ,  (model I I I ) ,  t h e  s i m p l i f i e d  fo rmu la t i on  ( 6 )  was tes ted.  

The p a r a b o l i c  s e t  o f  equat ions was so l ved  by t h e  numerical  procedure o f  

Patankar and Spalding (1970). 

RESULTS 

The r a t e  o f  spread S = dd/dx was c a l c u l a t e d  t o  determine t h e  

constants  a and B ' .  The recornendat ions  o f  t h e  S t a n f o r d  Conference (1980) were 

f o l l o w e d  t o  d e f i n e  t h e  th ickness o f  t h e  l a y e r  6 : 6 was determined between 

t h e  p o i n t s  where t h e  v e l o c i t y  i s  V E T  U, and Ue. 

For  subsonic f l ows  (Me<O. l ) i t  was found t h a t  t h e  th ree  model S 

g i v e  a s a t i s f a c t o r y  spreading r a t e  , s = 0.13. F o r  h i g h e r  speeds, model I 

keeps S unchanged and does n o t  f o l l o w  t h e  exper imental  data. Model I 1  w i t h  

- 1.35 d a S -0.8 and model I 1 1  w i t h  B '  = -0.05 g i v e  s a t i s f a c t o r y  p r e d i c -  

t i o n s  o f  S (F ig .  1). A b e t t e r  agreement f o r  h igh  Mach numbers i s  obta ined f o r  

l a r g e  values o f  -a , b u t  t h e  e v o l u t i o n  a t  low Mach number i s  t o o  rap id .  As 

t h e  model i s  n o t  expected t o  be adequate i n  t h e  hyperson ic  regime, t h e  v a l u e  

a = -0.8 seems t o  be a b e t t e r  compromise. 

F i g u r e  1: 

Computed r a t e  o f  spread o f  

t h e  supersonic mix ing l a y e r  
--p experiments 

model I ; 
- - -  model I 1  a = -0.8 ;... 

a = 1.35 
- - - -  model I 1 1  

F igu re  2 presents  t h e  e v o l u t i o n  o f  t h e  maximum va lue  o f  t h e  shear 

s t r e s s  - u'1u'2/U2, . The exper imental  da ta  a r e  ve ry  sca t te red ;  i t  seems 

however t h a t  - U ' ~ U ' ~  decreases w i t h  i n c r e a s i n g  Mach number. Model I i s  n o t  

a b l e  t o  reproduce t h i s  t r e n d  w h i l e  model I 1  and I11 f i n d  r e s u l t s  qual i t a t i v e l y  



F i g u r e  2 : 

Maximum va lue  of t h e  shear s t r e s s  

i n  supersonic m i x i n g  l a y e r s  

Model I - ; 

Model I11 - - - - ; B '  = - 0.05 

Model I 1  : - - - a = -0.8 

a = -1.35 

~ 'L iepmann, Lau fe r  1947; 

A Wygnanski, F i e d l e r  1970; 

+ Bradshaw, 1966; 

X Ikawa Kubota 1975 ; 

o Lau e t  a l .  1979; 

A Samimy e t  a l .  1986. 

s i m i l a r .  The same comments can be made f o r  t h e  maximum va lue  o f  =/u2_ 
(F igu re  3) .  

F i g u r e  3  : 

E v o l u t i o n  o f  t h e  maximum va lue o f  m 
i n  supersonic m i x i n g  l aye rs .  

 champagne, Pao, Wygnanski, 1976 ; 

o Wagner, 1975 

Other  symbol S as i n  F igu re  2 

F i g u r e  4  shows the  r e s u l t s  about  t h e  maximum va lue  o f  t h e  va r iance  

of t ransve rsa l  v e l o c i t y  f l u c t u a t i o n s  U '  22/U2, . 
The computations i n d i c a t e  t h a t  u ~ ~ * / U ~ ,  increases,  b u t  no c l e a r  

t rend  can be deduced f rom measurements which a r e  p a r t i c u l a r l y  d i f f  i c u l  t f o r  

t h i s  component. Then t h e  computat ion f i n d s  t h a t  t h e  a n i s o t r o p y  of t h e  t u r b u l e n t  

s t resses i S s t r o n g l y  changed, w h i l e  t h e  r a t i o  k/U2m remains n e a r l y  constant :  



the  e f f e c t  o f  t he  model i s  t o  t r a n s f e r  energy from u12 t o  the  o the r  compo- 

nents. Moreover i t  was found t h a t  the  r a t i o  - U ' ~ U ' ~ / U ~  i s  a  weak f u n c t i o n  

o f  the Mach number. 

F i g u r e  4 : 
l 

Maximum values o f  u tZ2/Uzco 

i n  supersonic m ix ing  laye rs .  

Symbols as i n  F i g u r e  3  

Computations us ing Model 11 and I11 p r e d i c t  t h a t  t h e  c o r r e l a t i o n  

c o e f f i c i e n t  - R 1 2  between the l o n g i t u d i n a l  and t ransversa l  v e l o c i t y  f l  uc- 

t u a t i o n s  i s  a  decreasing f u n c t i o n  o f  t h e  Mach number. Al though the  complete 

c a l c u l a t i o n  o f  a  boundary l a y e r  was n o t  performed w i t h  t h e  present  model S, i t  

was tempt ing t o  compare them w i t h  some recen t  measurements o f  c o r r e l a t i o n  

c o e f f i c i e n t  i n  a  boundary l a y e r  a t  Mach 3 (Fernando 1988, Smits e t  a l .  1988). 

F i g u r e  5 : 

V e l o c i t y  c o r r e l a t i o n  c o e f f i c i e n t  

i n  subsonic and supersonic boundary 

l a y e r s  

--p Subsonic boundary l ayer 

( A l v i n g  1988) 

/ / /  Supersonic (Me = 3) boundary 

l ayer  (Fernando 1988 and Smi t s  , 
p r i v a t e  communication, 1988) 

Model I1 

Model I1 was a p p l i e d  w i t h  P / €  = 1. The comparison w i t h  t h e  experiments i s  

g iven i n  F igu re  5. The r e s u l t s  o f  Model I1 a r e  lower  than the  exper imental  

value, b u t  i t  i s  s t r i k i n g  t h a t  t h e  r i g h t  t r e n d  was obta ined i .e. values s i g n i -  

f i c a n t l y  sma l le r  than t h e  sllbsonic ones, a l though t h e  r a t i o  P/€ = 1  i s  a  

good cho ice o n l y  i n  t h e  inner  p a r t  o f  t h e  l a y e r .  



CONCLUSIONS 

I t  has been proposed t o  e x p l a i n  t h e  anomalous r a t e  o f  spread o f  the  

supersonic m ix ing  l a y e r  by the  i n f l u e n c e  o f  d e n s i t y  f l u c t u a t i o n s  on t h e  t u r -  

b u l e n t  f l u x e s .  The t u r b u l e n t  mo t ion  was supposed incompress ib le  w i t h  a  cons tan t  

t o t a l  entha lpy .  A m o d i f i c a t i o n  t o  t h e  model i n s  o f  t h e  r e t u r n - t o - i s o t r o p y  i s  

proposed. Cor rec t  values o f  t h e  sp read ing  r a t e  o f  t h e  m i x i n g  l a y e r  have been 

obtained,  b u t  t h e  p resen t  models can p robab ly  be improved by t a k i n g  i n  account 

t h e  i n f l u e n c e  o f  compress ib i l  i t y  on t u r b u l e n c e  d i f f u s i o n  and pressure t r a n s -  

p o r t ,  w i t h o u t  changing t h e  qual i t a t i v e  t r e n d s  found i n  t h e  p resen t  vers ion.  

The more s t r i k i n g  r e s u l t  i s  a  d r a s t i c  change i n  t h e  s t r u c t u r e  o f  tu rbu lence  

and i n  t h e  a n i s o t r o p y  o f  the  Reynolds s t resses.  A f i r s t  evidence i s  t h a t  t h e  

smal l  number o f  measurements o f  u ' 2 2  and t h e i r  l i m i t e d  accuracy p rec lude  

any f i r m  conc lus ion  on t h e  a b i l i t y  o f  t h e  model t o  c a l c u l a t e  t h i s  component. 

The p a r t i c u l a r  e v o l u t i o n  o f  t h e  a n i s o t r o p y  i m p l i e s  a  r e d u c t i o n  of utI2 

and an inc rease  o f  ~ ' ~ 2  and u ' ~ ~  . 
I f  t h e  proposed mechanism g i v e s  a c o r r e c t  d e s c r i p t i o n  of tu rbu lence  

i n  supersonic f lows,  an impor tan t  c o n c l u s i o n  i s  t h a t  t h e  mot ions w i t h  l o n g i t u -  

d i n a l  v o r t i c i t y  can be r e i n f o r c e d  b y  c o m p r e s s i b i l i t y .  
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EVIDENCE OF RAYLEIGH-TAYLOR INSTABILITIES IN TRI-LAYER TARGETS 
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Centre d'Etudes de Limeil-Valenton 

BP 27,94190 Villeneuve st Georges, France 

INTRODUCTION 

In laser fusion, the Rayleigh-Taylor (RT) instability represents a major obstacle by dest~oying the 

spherical symmetry of the i m p l d n g  shell, thus leading to a degradation of target performance [ l  ,2,3,4]. 

During implosion process, this instability may occur at the ablation layer on the outer surface, at an internal 

interface, or at the fuel-pusher interface during the deceleration phase. If the instability grows enough, it 

will buckle or break the shell and will cause fuel mix. 

Experiments have k e n  canied out at Limeil on P102 laser system in order to investigate the problem 

of target stability under ablative acceleration and to get direct evidence of RT instability [ 5 ] .  Main 

experimental results are reported here. 

Numerical simulation have been performed with the l-D hydrocode FCIl coupled with a simple 

mixing model. We present, in the following text, part of our numerical investigations which support the 

occurrence of a mixed layer. 

I - EXPERIMENTS 

1.1 - Experimental set-up 

Tri-layer targets Au/Al/Au are accelerated by a main laser beam. The RT instability is thought to occur 

at the rear interface AVAu where the pressure and density gradients are opposed. The front Au layer 

function is to smooth the energy deposition and to avoid a straight heating of the AI layer by the laser. 

To evidence an AI-Au mixing, the rear surface composition of the target is diagnosed by using a 

probe laser beam being delayed with respect to the main beam. If the AI-AU mixing is quite developed,this 

probe beam heats up the rear mixing boundary; AI X-ray lines are excited and are observed with a 

spectrograp h [6 ] .  
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FIGURE 1 
Schematic of experiment principle : AI emission is observed 
when the mixing region is well developed. 

The main laser h a m  is at 0.35 pm and is focused from 1013 to 1014 w/cm2 on target in a 180 pm 

diameter spot (its energy ranges from 1 to l I J). The pulse is a sum of two gaussians with a 0.8-1 ns 

FWHM (full width at half maximum). 

The probe beam is at 1.06 pm and is focused to 3 1013 w/cm2 in a 180 pm diameter spot (its energy 

is 11 J); it is delayed by 1 ns relative to the main beam, and has a similar pulse shape with a 900 ps 

FWHM. 

The X-ray spectrum from the rear target surface is measured in the range 1.4-2.7 keV with two 

spectrometers : the first one (TIS) temporally integrates the Al-lines, and the second one (TRS) gives the 

temporal resolution. 

Typically the thickness is 0.3 pm for Au foils and 1 or 2 pn for A1 foil. 

1.2 - Benefit of time-resolved spectrometer (TRS) 

The TRS supplies us with the intensity of lines emissions in the range 1.5- 1.7 keV for A1 ions and in 

the range 2.3-2.5 keV for Au ions; in addition, it gives us the durations and the shift between both 

emissions. Only the intensities higher than the detection threshold are experimentally observed 
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FIGURE 2 
Schematic illustration of experimental data obtained 
with the time-resolved spectrograph (TRS). 

The femwral shift 6t gives informations about the depth of the mixing zone : 6t is all the higher as the 

non-polluted Au thickness is large. For a small unmixed Au layer, the A1 line emission may start before the 
Au emission, so that 6t is negative. 

X-rav I I ~  emissiom should enable us to get an evaluation of the mixing zone composition. To this 

end, it has been necessary to calibrate the intensity of emission for mixed A1 and Au samples of which ions 

mtios were known. This step was followed by an other set of samples covered with Au, in order to point 

out the effect of a non-polluted Au layer. 

Emission duration~ may drive numerical simulations. Comparisons between experiments and 

computations require the knowledge of emission threshold, and are proving hard to deal with. 

Au emission in the A1 lines range has to be subtracted. As signals are noisy, this systematic correction 

is approximate and we have to be very cautious in temporal shifts and lines intensities interpretation. 



The advantage we should reap from TRS is illustrated at Figure 3 where results obtained with three 

samples are presented : 

two mixed AI-Au samples with different ions ratios are well characterized by emission levels 

and by temporal shift 

two identical mixed AI-Au samples, one of which is covered with a Au layer, yield very 

different results. 

in spite of similar emissions, the temporal shift let us differentiate the (20%0A1,80%Au) 

sample to the (50%A1, 50% Au)+0.04 pm Au sample. 
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6t = -40ps 

FIGURE 3 
Experimental spectra obtained with the TRS. The intensities of Au emission, 
AI emission and the whole emission, and the temporal shift between Au and 
AI emissions are given for three different targets. 



1.3 - Experimental results 

The front gold layer prevents the A1 layer from a direct heating and smooths the energy deposition by 
radiation. Former experiments carried out at Limeil have shown that for a 0.3 pm gold layer the pressure 

asymrnetries at the ablation surface are reduced by a factor 3-4 [7], which may ensure the absence of large- 

scale instabilities due to irradiation non-uniformity. In the present experiment, optical smoothing with the 

"Random Phase Plates" technique (RPP) has been realized during last shots; as results obtained with and 

without RPP are similar, it has confirmed that large-scale illumination non-uniformities are not responsible 

for the apparent mixing. 

Preliminary experiments have been realized to determine the ablation depth in order to make sure that, 

in the initial configuration, the A1 layer cannot be heated by the probe laser beam. Two-layer targets have 
been irradiated with the probe beam : over 0.1 pn gold thickness, the Al He, line emission is below the 

experimental threshold. A 0.3 pm rear gold thickness assures us that there will be no emission in the 

absence of mixing. 

Figure 4 gives the A1 line energy versus the main laser energy with a 2 pm Al foil tri-layer target. 

Despite the 0.3 pm gold thickness, the Al line appears, therefore some mixing occurs. Dispersion of the 

data is due to the very small signals receive on the spectrograph. Al line emission, which is our mixing 

signature, appears between 2 and 4 J, and increases with the main beam energy. 

without RPP I.-) 

Main beam energy (J) Main beam energy (J) 

FIGURE 4 
AI line energy versus main laser energy : experimental results obtained 
from the TIS (a) and the TRS (b) (for the TRS, Au emission has not be 
subtracted so that emission is not zero at small energy). 

Temporal shifts between Au and A1 emissions obtained with the TRS scatter close to 6t = 0, which 

means that both emissions occur quite simultaneously whatever is the main beam energy. 

Ln order to assess quantitatively the mixing composition, we measured the A1 line emission by 

irradiating samples with pre-made mixing layers of variable A1-Au ions densities. As the rear Au layer may 



be non-totally polluted, we made measurements again with these samples coated with Au. With the help of 

TRS signals, for a main beam energy in  the region of 10 J, the composition of the probed zone seems to 

correspond to a 20 % A1 ions density mixing zone with a Au layer in the range 0-40 nm. 

We made another set of experiments with 1 pm A1 foils instead of 2 pm. Data obtained with these tri- 

layer targets exhibit an opposite behavior : the mixing becomes smaller as the main energy increases fiom 5 

to 10 J. In the same time, the temporal shift grows: A1 emission starts before Au emission at low energy, in 

a less and less marked way as the energy increases, till the Au emission occurs first at high energy. 
The distinct behaviors of 1 pm and 2 pm are analysed in the next section. 

II - NUMERICAL RESULTS 

Numerical simulations have been performed with the monodhensional hydrocode FCIl coupled with 

a mixing code which is a rough modeling of ordered energy conversion into disordered energy. This mixing 

code is a static model and evaluates masses of mixed A1 and Au as a postprocessor at each step of the 

calculation. 
FCIl is run with the ionization model MM W e d  Model B/)  to obtain relevant Au emission. 

The temporal shape of the interface velocity depends strongly on the energy and on the shape of both 

laser pulses, and on the delay of the probe beam Typical interface velocity and acceleration plots are shown 
in Figures 5 and 6. In this case, the A1 layer thickness is 2 pm and main and probe beam energies are 

respectively 6.7 J and 10.7 J. 
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FIGURE 5 FIGURE 6 
Allrear Au interface velocity Allrear Au acceleration 
versus time. versus time. 



The probe beam is responsible for the deceleration; this slowing down of the interface is followed by 

another positive acceleration phase due to the decompression of target material related to the deposition of 

rear Au X-ray energy. The Richtmyer-Meshkov (RM) stage (when the shock goes across the interface) is 

short, and the RT stage plays a prominent part. As long as the velocity increases, we may consider that the 

acceleration process is RT unstable. We recall that we do not use grooved targets, but the instability growth 

originates from the interface roughness. As the probe beam is delayed, perturbations have time to develop 

and induce turbulent mixing. 

The evolution of mixed materials masses is shown in Figure 7. The unstable phase starts as soon as 

the first strong shock goes across the interface. The rear Au pollution expands very quickly and is almost 

entire. The Al pollution develops more slowly and affects half of the whole Al layer. 

rear Au laya total mass 
AI layer total mass 

E- = 6.7 J 

E,,, = 10.7 J 

TIME (ns) 
FIGURE 7 
Temporal evolution of masses of mixed Au and Al. 

The X-rays coming from the front Au layer induces a more or less important preheating, so the matter 

expands and the mixing is reduced as material density is decreased, although Atwood number has not much 

changed. Simulations pointed out that this radiation preheating, which is very sensitive to the pulse rise 

time, can become large enough when the beam energy is increased so that the rear Au expands very much 

and the mixing mass is reduced. Main beam energy and radiative preheating are strongly correlated but have 

opposite influence on the growth of the mixing, as the first one increases the acceleration of the target and 

the other lessens the material densities. 

Our numerical investigations lead us to the following remarks : 

the mixing process is not much sensible to the main beam pulse shape as long as we consider 

gaussian (or sum of gaussians) pulses (i.e. smooth pulses) 

the delay of the probe beam is a major factor, it is all the more determinant as the main beam 

energy is small, because the unstable phase starts later and develops more slowly 

A1 and Au emission levels are very sensitive to the value of the probe energy. 



For 2 m-layer targets, the rear Au layer is nearly wholly polluted in the range of energy 2 J to 

12 J : entire mixing for 12 J, and some nanometers of the initial Au layer unmixed for 2 J. The 

disappearance of this unmixed layer could validate the experimental growth of A1 emission as the energy is 

increased. 
The weak scattering in temporal shift 6t data is relevant too as pollution of rear Au layer is quite 

complete in most cases : for low energies, a small non-polluted Au layer may induce a little delay of A1 

emission; for high energies, front Au radiarive preheating may set before the Au emission. Both behaviors 

could explain a non-modified shift between emissions. 

Numerical results for various main beam energies gives a remarkably stable mixing composition. 

Assuming an homogeneous mixing layer, the composition is close to 25 % Au ions and 75 % A1 ions 

densities. It is quite the reverse of the experimental proportion, but in the experiment only a small region of 

the mixing layer is probed. The existence of a concentration gradient is a possible explanation. 

Experiments with 1 um A1 layer, performed without the probe beam, displayed that front Au X-rays 

can go through the target. Simulations assert the major role of front Au preheating with these structures. 

With both laser beams, numerical spectra obtained at the rear side of the tri-layer targets exhibit precursory 
signals connected to front Au radiation. This supports the experimental increase of the temporal shift at. 

From the mixing code, according to the growing reduction of A1 layer density, polluted A1 mass is 

shown to lessen when the main beam energy is increased; in the same time, Au layer mixing is not much 

disturbed and remains total. Therefore the experimental decrease of A1 emission is coherent. 

The competition between radiative preheating and target acceleration drive the opposite behavior 
observed with 2 pm and 1 pm A1 foil tri-layer targets. 

III - CONCLUSIONS 

Tri-layer experiments assert the validity of X-ray spectroscopy measurements as experimental method 

to investigate the problem of target stability under ablative acceleration. A mixing zone is evidenced and 

general trends of mixing development versus target acceleration are coherent with numerical simulations 

(emission level, shift between emissions). 

Results obtained with optical smoothing demonstrate that the apparent mixing is not due to large-scale 

illumination non-uniformities. As numerical simulations have confirmed, the Rayleigh-Taylor instability 

seems to be the dominant process responsible for the mixing. 

Benefit of time-resolved spectroscopy appears very attractive and should supply us with a real 

knowledge of the mixing layer (span and composition). Its ability to discriminate between distinct mixing 

compositions with or without remaining Au layer is most valuable. Yet, under our present experimental 

conditions, especially dispersion of the data, it remains difficult to make full use of this diagnostic. We got 



an estimate of the probed zone composition which is consistent with our numerical results. More numerical 

runs are necessary, and we intend to realize an additive set of sirnulations with other turbulence models. 

Improving this experiment needs more beam energy in order to get higher emission intensities. 

Acquisition of repetitivity should enable us to get real quantitative results : with reproductive shots, by 

varying the probe energy, we could probe the mixing zone at different depths, and display (perhaps!) a 

concentration gradient. 

REFERENCES 

K. Tanaka, E.I. Thorsos 

M.H. Key et al. 

M.H. Key et al. 

J.S. Wark et al. 

11. Azechi et al. 

P.A. Holstein et al. 

A. Raven et al. 

J. L. Bocher et al. 

M. Busquet 

Appl. Phys. Lett. 35, 853 (1979) 

Appl. Phys. Lett. 36,269 (1980) 

Phys. Rev. Lett. 45, 1801 (1980) 

Appl. Phys. Lett. 48,969 (1986) 

Phys. Rev. Lett. 59,2635 (1987) 

C.R. Acad. Sci. Paris, t. 307, Skrie II, p. 211 (1988) 

Phys. Rev. Lett. 47, 1049 (1981) 

Phys. Rev. Lett. 52, 823 (1984) 

Phys. Rev. A 25, 2302 (1982) 





SHOCK-WAVEISHEAR LAYER INTERACTION IN CIRCULAR SUPERSONIC JETS 

E. Gutmark, S. Koshigoe, and K. C. Schadow 
Research Department 

Naval Weapons Center 
China Lake, CA 93555-6001 

Abstract 

The interaction between shock-waves and large coherent structures in a turbulent compressible jet 

flow, is studied experimentally. The results are compared qualitatively with trends predicted by the linear 

stability theory. The techniques developed for analyzing the stability of circular jets are extended to 

include the shock-cell interaction with the instability waves. The controlling effect on the shear layer 

evolution, of the turbulent initial conditions, the shape of initial mean velocity profile, and Reynolds and 

Mach numbers are investigated. The shock wave strength is varied as well as the shear layer parameters, 

i.e., mean and turbulent velocity distribution, thickness, etc. These parameters determine the extent of 

penetration of the shock into the shear layer, the compression/expansion pattern, the diffusion rate of the 

shocks, and the shear layer instability characteristics. A possible feedback which is generated by the 

sound emitted from the shocWvortices interaction locations and subsequently excites the roll-up of vortices 

in the shear-layer, is discussed. 

Introduction 

The present study is concerned with understanding the behavior of a supersonic jet shear layer in the 

presence of shocks. This is related to the understanding of the mixing process in the supersonic jets which 

become more stable with increasing Mach number [l]. Similar to the subsonic, incompressible flows, the 

supersonic shear flow dynamics are governed by large-scale coherent structures. Their development, 

starts from selective amplification of initial disturbances into vortices and continues with subsequent vortex 

interaction. The role of large-scale structures and their generation by flow instabilities were studied 

extensively in subsonic shear flow both experimentally (21 and theoretically I] .  Sinilar studies in sonic 

and supersonic flows were done mainly in low Reynolds number flow (up to 105) 131 and some in high 

Reynolds number (>l@) 141. Evidence on the existence of large-scale structures in supersonic flows of 

both low and high Reynolds numbers was presented in these works. Efforts to increase the mixin: by 

acoustic excitation, similar to the mixing enliancement method used for subsonic flows, encountered 

problems due to the difficulty to produce sufficient acoustic energy in the high frequency range required 

for supersonic jets [S] .  When the flow cont;~ins shock waves, as in over or underexpanded jets, the shear 



layer interaction with the shock can produce enough acoustic energy to excite the shear layer. This 

mechanism was shown to have the potential to significantly enhance mixing [6].  The objective of this 

work is to study the mechanism of the interaction between the shock cells and the shear layer in a circul:r 

configuration. 

Experimental Arrangement 

The jet system consisted of a cylindrical settling chamber, 24.1 cm long and 10.8 cm in diameter. 

The nozzle section was attached to the converging section of the settling chamber with an area ratio of 32. 

Two different nozzles were used to obtain jets with different initial momentum thickness. One jet was 

discharged through a pipe, with a thicker momentum thickness of 0 = 0.6 mm. The second nozzle was 

an orifice plate with sharp edges, yielding a thin momentum thickness of 8 = 0.16 mm. Experiments 

were done in underexpanded conditions. The initial turbulence level at the exit was 2% in the circular jet. 

The stagnation pressures, p,, for the underexpanded jet were 29 to 40 psia. These pressures correspond 

jet Mach numbers of M, = 1.09 to 1.33, for a fully expanded isentropic flow. The Reynolds number for 

the largest M, was Re = UoD Jv = 5.7 105. The flow field measurements were done using a hot-wire 

anemometer, with frequency response of 50 W z .  The hot-wire scanned the flow field using a computer 

controlled three-axes traverse mechanism. Each scan consisted of 250 measurement points. Calibration, 

data acquisition, and analysis were perfomled using a VAX 750 computer. Spark Schlieren photography 

was used to visualize the shock structures of the jets. 

Results and Discussion 

Shock Cell Stnictrlres 

The effect of the initial shear layer thickness on the shock cell structure is studied by comparing the jet 

issued from a pipe nozzle to the orifice jet which has a very thin initial momentum thickness. The two jets 

are visualized using spark Schlieren photography in Figure 1, for M; = 1.3 and in Figure 2 for 

M, = 1.6. The photograph in Figure 1 covers the first 10 diameters of the jets. The differences in the 

near flow field of x/D 3 are especially in the shock cell structures which are larger for the orifice jets. 

The far field difference is related to the jet's shear layer structure. helical coherent structures 

tle~,elop in the pipe flow at x/D > 3, while the orifice jet retains a predominr~ntly symmetric behavior. 

Consequently, the pipe jet is spreading more than the orifice jet at these conditions. For a slightly l~igller 

h 5  = 1.6,  he differences in the initial shock-cell structure are more pronounced (Figure 2). The initial 



shock cell is larger for the orifice jet relative to the pipe jet, resulting in a different size of the normal shock 

and the angles of the oblique shocks. The pipe jet has a section of a normal shock, with slip lines 

downstream of the intersection of the oblique and normal shocks. The orifice jet does not have any nomisl 

shock and the intersection occurs between two oblique shocks, with a very weak slip line. Subsequently, 

the slip-line shear layer has chfferent velocity ratio across it and the mean velocity characteristics will vary. 

Figure 1. Schlieren photogaph of jets discharging with a c i rcu l :~  pipe profile 
thick n~onlentum thickness (8) (a); and a top-hat profile thin O (b). M; = 1.3. 

Figure 2. Same as 1, Mj = 1.6. 

For increasing Mach numbers, M,, the shock-cell length (Ls .~, )  was shown to be growing as 
b/2 apt) = a ( ~ ~ 2  - 1) , where a and b are experimental coefficients. Figure 3 shows this behavior for the 

two jets. The jet with the larger initial shear layer thickness has shorter shock cell length up to M, < 2.2 

The difference between them is reduced with increasing M;, until they become equal for M; > 2.2. The 

cunzes deviate slightly from the above linear logarithmic dependence of the shock length on P for the 

nearly sonic hl; which correspond to P = 0.46. The slope (b) is larger for the pipe jet. 

Linear stability theory is used to calctilate the shock-cell and sp:ltial instability modes for supersonic 

I-ound jets with finite moi1ienrum thickness. The shock-cell eigcnmodes itre detemlined from the zero- 

frequency limit of  the rezlll:~r iilst;lbiIity equations. The esperiment:11 ~-cslllts (Figure 3) are in good 

~1u:ifir;itive agreement x.ith the instability :in:ilysis ca2cul:ttions. Figure 4 shows the effcct of the rnornenrunl 

thickness on the real part, a,, of the shock cell eigenvrtli~es when hhch  number is taken as parameter for 



the fundamental eigenmode of the shock cells. a, is inversely proportional to the shock-cell wavelength 

As evident from the figure, increasing momentum leads to reduction of the shock cell spacing for all 

eigenrndes in a wide range of Mach numbers. This effect is more eminent in the low Mach numbers 

range. 

Figure 3. Shock cell spacing versus Mach number. Pipe jet (-), orifice jet (---). 
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Mean and Turbulent Flow Field 

The pipe and orifice jets flow fields were measured using hot-wire probes for three exit Mach 

numbers, M, = 1.09, 1.21, and 1.33. The initial shear layer surrounding the jet's potential core was 

mapped. For these fully expanded jet conditions, the jet behavior is similar to subsonic flow with linear 

spreading rate. The maximum turbulence intensity is not reached at the center of the shear layer, where the 

velocity drops to 50% of the centerline value as in subsonic jets, but in the inner section closer to the jet 

centerline (Figure 5a). This location corresponds to a shift of the velocity profile inflection point into the 

jet, to smaller radial positions relative to the subsonic jets due to the effect of the shock cells. Similar 

behavior was measured for the other turbulence intensity components v' and W', (not shown here) which 

had about half the intensity of the axial component. The orifice jet at the same conditions had an initial thin 

momentum thickness, but further downstream a similar mean velocity field, with a similar pattern of 

turbulence intensity distribution (Figure 5b). 

Figure 5. Contours of axial turbulence intensity of the pipe jet (a), and in the orifice jet (b), at M, = 1.09. 

The flow structure was substantially altered when the shock waves became stronger as the pressure 

ratio increased. For M, = 1.33 (Figure 6a), the contours in the outer part of the shear layer are deflected 

into the flow with a subsequent reduction in the jet's spreading rate. The velocity profile gets distorted 

with multiple inflection points, which leads, according to stability theory, to additional instability in the 

flow field. Consequently, the intensity of the axial turbulence component is increased more than twice 

(Figure 6b) relative to the lower M,. Similar trends were measured for the other components of the 

turbulence intensity. An indicator of the presence of shock-cells in the shear layer are the Reynolds 

stresses u'v' shown in Figure 7. Four maxima in the contour plot correspond to the location of the shock 

cells. The peak values of these maxima are reduced in the downstream location with the decreased 

strength of the shock waves. 



Figure 6. Contours of mean axial velocity and turbulence intensity of the pipe jet, at M, = 1.33. 
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Figure 7. Contours of Reynolds stresses, u'v' ,of the pipe jet, at Mj = 1.33. 

The effect of Rl, on the spreading rate of the two jets is summ;1ri7.d in Figure 8, where R0 .o~  is 

plotted as a function of the axial distance. R0.05 is the radial distance from the centerline where the mean 

velcxity drops to 5 %  of the center line value. This is a nierisure of the total radial extent of the jet. This 

specific criterion is chosen because the effect of the shocks on the mean veltxity field of the shear layer is 

most prominent in the outer sections of the shear laycr. For M, = 1.09, both the pipe and orifice jets 

e~l i ibi t  similar linear sprer~d. As hlJ is incre;~.;ed, the jet width is redllced, and sever:il steps are measured 

in the spread cuive. cspecir~lly at MJ = 1.33. These steps correspond to the deflection of the streamlines 

by the compression/esp3nsion wa\,es. The v:triation of the momentum thickness in the down.\trearii 



direction was measured for the two jets. In spite of the initially thicker momentum thickness of the pipe jet 

(R/@ = 16 relative to 60 for the orifice jet), the two curves, for the pipe and orifice jets, nearly overlap 

further downstreani. There is no significant change as the jet Mach number is increased. 
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Figure 8. Spreading rate of the pipe and orifice jets for various Mj. 

Tnstnbilits Considerations and Turbulence Am~lification 

Instability analysis of circular jets [l]  shows that as the Mach number increases the jet becomes more 

stable. This behavior is shown in Figure 9, for thin (@/R = 0.02, solid line) and thick (B/R = 0.08, 

dashed line) initial momentum thickness. The lines without circles show the maximum amplification rate 

of the shear la!,er instability waves as a function of Mj.The thinner shear layer is less stable than the thicker 

one. Both cases become more staible with increased Mj, with very weak dependency on this variable. 

This analysis is valid for fully expanded jet flows without the presence of shock cells in the flow. When 

the jet operates 3t off-design conditions, shock cells are interacting with the large-scale structures in the 

jet's core. '1.11~ interriction results in a modification of the instability characteristics. As shown in Figure I) 

(circle symbold, an increase of the pr-essure ratio, or incre;~sed difference between hl, and Md (design 

Mach number) results in an increxe of the amplification rate related to the shock cells interaction with the 

shear layer str-uctures. This ir~crease rate is highly dependent on h4j. Similar to the fully expanded jet, the 



amplification rate of the thin shear layer is higher than for the thick one. For the off-design conditions the 

difference is much more significant In both cases, the shock cell-shear layer interaction destabilizes the 

flow and contributes to l ager  amplification of disturbances. 

Figure 9. Dependence of the maximum amplification rate of the shear layer instability waves in a fillly- 
expanded jet and in an underexpanded jet (circles), corresponding to the shock-cell shear layer 
interaction. Solid lines correspond to @/R = 0.08, dashed lines to @/R = 0.02. 

The stability analysis can explain the experimental observation shown along the shear layer center 

(Flgure 10). In this figure the maximum values of the axial turbulence intensity are plotted as a function of 

X. The turbulence intensity for Mj = 1.33 is more than double relative to Mj = 1.09. Similru. results 

were obtained along the centerline of the jet. 

The vrviation of the peak value of the Reynolds stresses, u'v' , along the axial direction is given in 

IFigure 11 for MJ = 1.09 and 1.33. For the lower Mach number the variation is relatively smooth with 

few undulations, which could correspond to the appearance of weak shock cells. At Mj = 1.33 sharp 

periodic peaks in the u'v' curve, suggest that the shock waves produce high shearing stresses in the shear 

layer, which can be related to the generation of strong acoustic waves from the t~nderexpnnded jet. 





Conclusions 

The interaction between shock waves and shear layer structure was studed in a supersonic 

underexpanded circular jet. It is shown that the shock behavior rind the shear layer flow field are n~utually 

affected in this flow configuration. The gas dynamics equations for cor~ipression/expansion wave 

behavior are not sufficient to describe the shock-cell structure. The flow initial conditions, i.e., 

momentum thickness and initial turbulence level determine the shock orientation and strength. In the low 

Mach numbers range, when the shock strength is not overcoming the s h e x  flow dynamics, the thicker 

sliear layer is reducing the shock cell length which is equivalent to reducing the effective Mach number, 

since the shock cell sp:tcing grows proportionally to the jet's exit Mach number. The thicker shear layer 

causes faster dissipation of the shock waves. The flow field in the shear layer is altered by the 

compression/espnnsion waves. At the intersection with these waves the mean flow field is deflected inside 

or outside the flow depending on the wave type. This deflection nitxiifies the mean velocity profile, and 

generates new inflection points, resulting in additional flow instability. Thus, the turbulence production is 

enhanced. Of specific interest are the Reynolds shear stresses, which reach a high sharp peak ai the 

locations where the shocks are intersecting the shear layer. The time dependent change in these stresses 

are sources for acoustic radiation of the supersonic jets. It is possible, as was previously shown, that this 

sound is exciting the initial shear layer and modified its structure and evolution, to enhance its spreading 

rate. 
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H IGH MACH NUMBER SHOCK- INTERFACE I N T E R A C T I O N  

L.  Houas ,  A .  R a m d a n i  a n d  J. F o r t e s  

U.A. CNRS 1168 ,  SETT, D e p a r t e m e n t  des m i l i e u x  h o r s  d ' equ i l i b re ,  U n i v e r s i t e  de 
Provence, Avenue E s c a d r i l l e  Normand ie  Niemen, 1 3 3 9 7  M a r s e i l l e  cedex 13, FRANCE. 

The  b i r t h  and g r o w t h  o f  t u r b u l e n t  m i x i n g  o f  t w o  gases hav i ng  d i f f e r e n t  d e n s i t i e s  
a f t e r  a c c e l e r a t i o n  and  d e c e l e r a t i o n  by  h i g h  Mach  n u m b e r  shock  w a v e s  a r e  
i nves t i ga ted  i n  a  double d iaphragm shock tube .The  gases are i n i t i a l l y  separated by an 
i n t e r f a c e  m a t e r i a l i z e d  by  a  t h i n  p l a s t i c  membrane .  When a  h i g h  Mach numbe r  shock 
w a v e  a c c e l e r a t e s  t h e  i n t e r f a c e ,  t h i s  one i s  s u b j e c t e d  t o  t h e  R i ch tmye r -Meshkov  
i n s t a b i l i t y .  D i f f e r e n t  measurement  techniques have been used and adapted t o  observe 
the  c rea ted  t u rbu l en t  m i x i n g  zone : heat  t r a n s f e r  gauges f o r  t he  s t udy  o f  t he  i nc i den t  
m i x i n g  zone f r o n t ,  i n f r a r e d  a b s o r p t i o n  o f  a  C02  v i  b r a t i o n a l - r o t a t i o n a l  l a s e r  l i n e  
w h i c h  p r o v i d e s  t e m p e r a t u r e  and d e n s i t y  p r o f i l e s  i n  t h e  m i x i n g  zone and i n f r a r e d  
emiss ion  o f  C02  w h i c h  g ives  t h e  evo lu t ion  o f  t he  m i x i n g  zone th ickness.  

I .  INTRODUCTION 

I n  t h e  con tex t  o f  nuc l ea r  f us i on  by  i n e r t i a l  conf inement ,  a  fundamenta l  p rob lem 
apears : t h e  c r e a t i o n  and deve lopment  o f  a  t u r b u l e n t  m i x i n g  zone b e t w e e n  t h e  she l l  
m a t e r i a l  and t h e  t h e r m o n u c l e a r  combus t i b l e .  T h i s  m i x i n g  zone, i n i t i a l l y  due t o  t h e  
R a y l e i g h - T a y l o r  i n s t a b i l i t y ,  c o n t r i b u t e s  t o  r educe  t h e  e f f i c i e n c y  o f  t h e  n u c l e a r  
r eac t i on  by an ea r l y  break-up o f  t h e  she l l  and a  coo l ing  o f  t h e  combus t ib le .  The a i m  o f  
t h e  p resen t  w o r k  i s  t o  s tudy  i n  t h e  s i m p l e r  shock tube env i r onmen t  t h e  evo lu t i on  o f  
t h e  m i x i n g  zone c r e a t e d  by  t h e  i n t e r a c t i o n  o f  a  h i gh  Mach n u m b e r  shock w a v e  and a  
gaseous i n t e r f a c e  ( i n i t i a l l y  a t  rest ) .  

E x p e r i m e n t s  a re  conduc ted  i n  a  doub le  d i aph ragm shock  tube .  I t  has a  square 
c r o s s  s e c t i o n  (8 .5  X 8 .5  c m )  and i t s  t o t a l  l e n g t h  i s  about  9  m .  The  t e s t  s e c t i o n  ( t he  
t h i r d  one) i s  abou t  1.5 m long .  The  gases, ca rbon  d i oxyde  u p s t r e a m  and h e l i u m  o r  
argon downs t ream,  a re  i n i t i a l l y  separa ted  by  a  t h i n  p l a s t i c  f i l m  (0 .5  - 1.5 - 19  pm)  
w h i c h  co r responds  t o  t h e  second  d i aph ragm.  When a  shock  w a v e  a c c e l e r a t e s  t h e  
i n t e r f a c e ,  t h i s  one i s  s u b j e c t e d  t o  t h e  i m p u l s i v e  Ray le i gh -Tay l o r  i n s t a b i l i t y  a l s o  
c a l l e d  R ich tmyer -Meshkov  i n s t a b i l i t y .  When t h e  membrane  i s  i n i t i a l l y  p lanar ,  on ly  
t h e  r andom s m a l l  s p a t i a l  s ca l es  c r e a t e d  by  t h e  membrane  b reak-up  a re  e x c i t e d  and 
t h e  t u r b u l e n t  m i x i n g  o c c u r s  soon. W i t h  an i n i t i a l  bu l ge  o f  t h e  m e m b r a n e  s e t  by  
p ressure  d i f f e r e n c e  be tween  t h e  gases, t h i s  t u rbu l en t  m i x i n g  ,a r i s ing  f r o m  t he  s m a l l  
sca les ,  i s  superposed  t o  a  l a r g e  s c a l e  R i ch tmye r -Meshkov  i n s t a b i l i t y  ( i n  i t s  non 
l i n e a r  phase) w h i c h  can a l s o  be desc r i bed  as a  b a r o c l i n i c  g rad i en t  o f  t h e  shock and 
dens i t y  grad ient  o f  t he  non p lanar  i n t e r f ace .  

T h e  t h r e e  d i m e n s i o n a l  t u r b u l e n t  m i x i n g  zone i s  l a t e r  d e c e l e r a t e d  by  one o r  
seve ra l  shock w a v e s  r e f l e c t e d  f r o m  t h e  end w a l l  o f  t h e  shock tube .  Us i ng  t w o  gas 
p a i r s ,  C02 /He and C 0 2 / A r ,  a l l o w s  t o  ana l yse  t h e  m o r e  p r e c i s e  i n f l u e n c e  o f  t h e  
A t w o o d  n u m b e r  ( I A ~  I C02 /He = 0 . 8  and I A ~  I C 0 2 / A r  = 0 .3 )  on t h e  i n s t a b i l i t y  and 
subsequent tu rbu len t  m i x i n g  zone. 



The C02 i s  used f o r  i t s  spec t roscop ic  p r o p e r t i e s  and He and A r  because t hey  p resen t  
no i n f r a r e d  e m i s s i o n  o r  a b s o r p t i o n  i n  t h e  d o m a i n  o f  o u r  e x p e r i m e n t s ,  and a l s o  
because t h e i r  dens i t i e s  a re  r espec t i ve l y  ve ry  d i f f e r e n t  and c l ose  t o  t he  C02 one. 

Measu remen ts  a re  based on i n f r a r e d  e m i s s i o n  o r  a b s o r p t i o n  o f  shock hea ted  
C02 and enable us  t o  ob ta i n  t h e  t r a j e c t o r y  and t h e  t h i c kness  o f  t h e  m i x i n g  zone as 
w e l l  as average tempera tu re ,  C02  dens i t y  and concen t ra t ion  p r o f i l e s  w i t h i n .  

These  techn iques  r e q u i r e  s t r o n g  shocks  (Mach 3 . 5  - 6.5 i n  C02  and Ar ,  1.5 - 3 
i n  He) and t h e r e f o r e  t h e  v e l o c i t i e s  beh ind  t h e  shock ( 1 0 0 0 - 2 0 0 0  m / s )  are w e l l  i n t o  
t h e  c o m p r e s s i b l e  range  (see  T a b l e  1 ) .  T h u s  i t  i s  expec ted  t h a t  m i x i n g  shou ld  be 
d i f f e r e n t  f r o m  t h a t  ob ta i ned  i n  t h e  e x p e r i m e n t  o f  r e f .  l w h e r e  a  Mach n u m b e r  1 3  
shock i n t e r a c t s  w i t h  an a i r /He  i n t e r f ace ,  and mo re  s i m i l a r  t o  r ecen t  expe r imen t s  o f  
r e f .  2 where ,  f o r  example ,  a  Mach n u m b e r  3.shock i n t e r a c t s ,  w i t h  H e / A r  o r  Ar /He  
i n t e r f aces .  

Howeve r ,  h i g h  Mach numbe r  shocks  and l o w  i n i t i a l  p r e s s u r e s  l e a d  t o  t h i c k e r  
boundary l a y e r s  on t h e  shock tube  s ide  w a l l s  and t hus  v i s c o s i t y  e f f e c t s  a re  a l w a y s  
combined w i t h  t he  development o f  the i n s t a b i l i t y .  

I I .  EVOLUTION OF THE TURBULENT MIXING ZONE FRONT 

Large sca le  de fo rma t i on  o f  t he  t u rbu l en t  m i x i n g  zone f r o n t  have been measured 
us ing  an a r r ay  o f  f i v e  p l a t i n u m  heat  t r a n s f e r  gauges l oca ted  a t  t he  same absc issa and 

a t  d i f f e r e n t  o rd ina tes  perpendicu lar  t o  t h e  f l o w 3 .  
F o r  each  gas pa i r ,  t h r e e  k i n d s  o f  e x p e r i m e n t s  have  been done. T w o  w h e n  t h e  

i n t e r f a c e  i s  i n i t i a l l y  bu lged  and one w h e n  i t  i s  p lane .  T h e  i n t e r f a c e  i s  s a i d  t o  be 
pos i t i ve l y  o r  nega t i ve ly  bulged when the i n i t i a l  pressure o f  t he  C02 f i l l i n g  t he  second 
c h a m b e r  i s  g r e a t e r  o r  s m a l l e r ,  r e s p e c t i v e l y ,  t h a n  t h a t  o f  t h e  g a s  i n  t h e  t h i r d  
chambe r  (He o r  A r ) .  When t h e  p ressu re  d i f f e r e n c e  i s  equal  t o  ze ro  t h e  i n t e r f a c e  i S 

i n i t i a l l y  plane. 
The  a i m  o f  these  expe r imen t s  i s  t o  eva lua te  t h e  shape o f  t h e  i n c i d e n t  f r o n t  o f  

the  m i x i n g  zone i n  t h e  presence o f  a  boundary l a y e r  and t o  compare  i t  w i t h  t h e  l i n e a r  

theory  p red ic t ions3 .  The g r o w t h  o f  a  s inuso ida l  de fo rma t i on  o f  t he  m i x i n g  zone f r o n t  
i s  (assuming  (2 l la /h )  1 )  

2n * =- a o A t  U ,  
d t  h 

whe re  a0 i s  t he  amp l i t ude  o f  t h e  i n i t i a l  de fo rmat ion ,  h 0  i t s  wavelength,  A t  the  
A t w o o d  n u m b e r  and U1 and US t h e  abso lu te  v e l o c i t i e s  o f  t h e  m i x i n g  zone and shock 
wave  r e s p e c t i v e l y .  

The  amp l i t ude  evo lu t i on  o f  t he  m i x i n g  zone f r o n t  de fo rma t i on  appears on f i gu re  
1 f o r  t h e  t w o  gas p a i r s  ( r e f .  3), w h e r e  "L i nea r  t heo ry "  means  t h e  l i n e a r  evo l u t i on  o f  
t h e  R i c h t m y e r - M e s h k o v  i n s t a b i l i t y ,  and  n u m e r i c a l  s i m u l a t i o n  c o r r e s p o n d s  t o  
ca l cu l a t i ons  made w i t h  EAD, a  2D Eu le r ian  non v iscous  code f r o m  t he  Cent re  d'Etudes 
de L i m e i l  Va len ton  (C.E.A.). 

I n  t h e  case  w h e n  t h e  shock w a v e  p ropaga tes  f r o m  t h e  heavy gas  t o  t h e  l i g h t  
one, t h e  l i n e a r  t heo ry  p r e d i c t s  t h a t  t h e  i n t e r f a c e  f r o n t  m u s t  r e v e r s e  ( c r o s s i n g  o f  
t he  t i m e  a x i s  f i g . l ) .  The  r e s u l t s  p resen ted  i n  r e f .  3  show t h a t  when  t h e  i n t e r f a c e  i s  
i n i t i a l l y  n e g a t i v e l y  bu lged  ( a0  = - 1 3  m m )  i t s  r e v e r s a l  i s  observed  b u t  w i t h  a  de lay 
w h i c h  i s  m o r e  i m p o r t a n t  i n  t h e  C02/He case.  V i s c o s i t y  e f f e c t s  ac t ,  i n  t h i s  case, a t  
l a t e r  t i m e  b u t  i n  t h e  same  sense  as t h e  v o r t i c i t y  e f f e c t s  and b o t h  cause t h e  
r eve r sa l .  When t h e  i n t e r f a c e  i s  i n i t i a l l y  p o s i t i v e l y  bu lged (a0  = + 1 1 m m ) ,  v o r t i c i  t y  



e f f e c t s  t end  t o  decrease t he  bu lge  i n  t he  beg inn ing  as p r e d i c t e d  by t he  l i n e a r  theory,  
bu t  l a t e r ,  boundary l a y e r  e f f e c t s  comp le te l y  p reven t  t h e  i n t e r f a c e  r eve r sa l .  

W i t h  an i n i t i a l l y  plane in te r face ,  l a rge  sca le  de fo rma t i on  o f  t he  m i x i n g  zone w i l l  
be o n l y  due t o  t h e  bounda ry  l a y e r  e f f e c t s .  T h e s e  a r e  t h e  c o n d i t i o n s  o f  t h e  
e x p e r i m e n t s  d e s c r i b e d  h e r e a f t e r  f o r  t h e  d e t e r m i n a t i o n  o f  t h e  t h i c k n e s s  o f  t h e  
m i x i n g  zone and t he  tempera tu re  and dens i t y  p r o f i l e s  w i t h i n .  

I l l .  EVOLUTION OF T H E  MIXING ZONE TH ICKNESS 

A .  P r e s e n t  m e a s u r e m e n t s  

Measurements  o f  t h e  i n f r a r e d  e m i s s i o n  ( cen te red  a t  4 .3 .  p m )  o f  shock hea ted  
C02  p r o v i d e  t h e  t i m e  e v o l u t i o n  o f  t h e  q u a n t i t y  p ( C 0 2 )  Ev3(T) w h e r e  Ev3(T)  i s  t h e  
average  s p e c i f i c  energy  co r respond ing  t o  t h e  t h i r d  mode  o f  v i b r a t i o n  o f  t h e  C02  
mo lecu le  and p (C02 )  t h e  dens i t y  o f  C02. The  o p t i c a l  s e t  up i s  such  t h a t  t h e  i n f r a r e d  
d e t e c t o r  r eco rds  t h e  e m i s s i o n  o f  a  s m a l l  vo l ume  o f  f l u i d  a t  t h e  c e n t e r  o f  t he  shock 
tube4. A t y p i c a l  s igna l  f r o m  2 de tec to r s  l ook i ng  a t  p o s i t i o n s  on t h e  shock tube 15 c m  
apar t  i s  shown  on f i g u r e  2 .  The  r i s e  i n d i c a t e s  t h e  passage o f  t h e  m i x i n g  zone C02 /A r  
i n  f r o n t  o f  t he  de tec to r .  The  p l a t eau  corresponds t o  t he  em iss i on  f r o m  pure  C02 w i t h  
pe r t uba t i ons  due t o  boundary l a y e r  e f f e c t s  and r a r e f a c t i o n  waves .  The  f i n a l  decay i s  
caused by  t h e  a r r i v a l  o f  t h e  d r i v e r  gas (H2). P l a t i n u m  hea t  t r a n s f e r  gauges mounted  
f l u s h  a t  t h e  w a l l s  a r e  u s e d  t o  r e c o r d  t h e  p r o p a g a t i o n  o f  t h e  shock  w a v e s .  U s i n g  
seve ra l  w a l l  gauges and i n f r a r e d  d e t e c t o r s  ( t w o  o r  t h r e e )  p e r  shock  t ube  r u n  and 
comb in i ng  t h e  measu remen ts  f r o m  seve ra l  r u n s  a t  t h e  same c o n d i t i o n s  enable us t o  
c o n s t r u c t  (X, t) d i a g r a m s  o f  t h e  shock  w a v e s  and m i x i n g  zone t r a j e c t o r i e s  such  as  
t h e  ones s h o w n  i n  f i g u r e s  3 and 4. T h e  r i s e  t i m e  o f  t h e  s i g n a l s  f r o m  t h e  i n f r a r e d  
d e t e c t o r s  p r o v i d e s  t h e  t h i c k n e s s  h i s t o r y  o f  t h e  m i x i n g  zone. F i g u r e s  5 and 6 show 
t h e  e v o l u t i o n  o f  t h e  m i x i n g  zone t h i c k n e s s  L f o r  t h e  2 p a i r s  o f  gases and d i f f e r e n t  
i n i t i a l  p r e s s u r e s  and f o r  d i f f e r e n t  i n c i d e n t  shock  Mach numbe rs .  E r r o r  b a r s  on t h e  
t h i c k n e s s  have  been e s t i m a t e d  t o  k 2 m m .  T h e  (X,  t )  d i a g r a m s  ( f i g u r e s  3 and 4) 
show  t h e  t r a n s m i t t e d  shock i n  t h e  r a r e  gas, t h e  r e f l e c t e d  shock f r o m  t h e  end w a l l  
and t h e  waves  r e s u l t i n g  f r o m  i t s  i n t e r a c t i o n  w i t h  t h e  m i x i n g  zone. X = 0 corresponds 
t o  t he  i n i  t i a l  pos i t i on  o f  t he  My la r  membrane. 

The m i x i n g  zone t r a j e c t o r y  i s  p l o t t e d  f r o m  a d is tance  o f  20 c m  f r o m  t he  i n i t i a l  
p o s i t i o n  o f  t h e  s e p a r a t i n g  membrane  (he re  1.5 p m  My la r ) .  We can  n o t i c e  t h a t  t h e  
l i n e s  connect  on ly  da ta  p o i n t s  f r o m  d i f f e r e n t  runs  and do no t  represen t  corresponding 
va r i a t i ons  o f  v e l o c i t y  dur ing  t h e  same t e s t .  

Beyond 3 0 - 5 0  cm, t h e  m i x i n g  zone v e l o c i t y  i s  f a i r l y  c o n s t a n t  and h i ghe r  t han  
p r e d i c t e d  by  t h e  Rankine-Hugoniot  r e l a t i o n s  based on t h e  measu red  shock v e l o c i t y .  
T h i s  i s  a  w e l l  k n o w n  bounda ry  l a y e r  e f f e c t  i n  h i g h  Mach  n u m b e r  shock  t ube  
expe r imen t s  and w e  found  i t  m o r e  pronounced f o r  t h e  C02/He case. The  behav io r  o f  
t h e  C 0 2 / A r  m i x i n g  zone a f t e r  i t s  d e c e l e r a t i o n  b y  t h e  r e f l e c t e d  w a v e  r e v e a l s  t h e  
complex 3-d imensional  shock wave  i n t e r a c t i o n  w h i  t h  a  m i x i n g  zone i n  t he  presence of 
boundary l a y e r s  as i n d i c a t e d  i n  f i g u r e  7, w h e r e  t h e  passage o f  t h e  t w o  f e e t  o f  t h e  
shock i s  c l e a r l y  v i s i b l e  as w e l l  as  t h e  separa ted  zone induc ing  a decrease o f  t h e  hea t  
t r a n s f e r .  The  m i x i n g  zone i s  acce le ra t i ng  a f t e r  t h e  i n t e r a c t i o n ,  w h i c h  i s  con t r a r y  t o  
t h e  behav io r  observed  f o r  l o w  Mach numbe r  e x p e r i m e n t s  and non v i s cous  n u m e r i c a l  
s imulat ions.  



F i g u r e  5  s h o w s  t h a t  t h e  C 0 2 / A r  m i x i n g  zone i s  t h i n  a n d  t h i c k e n s  v e r y  s l o w l y  
a f t e r  4 0 0 ~ s  ( i . e .  beyond  4 0  c m  f r o m  t h e  i n i t i a l  p o s i t i o n ) ,  b u t  t h e  u n m e a s u r e d  i n i t i a l  
t h i c k e n i n g  r a t e  m u s t  h a v e  b e e n  l a r g e r .  T h e  r e f l e c t e d  s h o c k  c a u s e s  f i r s t  a  
c o m p r e s s i o n  a n d  a f t e r  a  v e r y  r a p i d  t h i c k e n i n g .  T h e  C 0 2 / H e  m i x i n g  z o n e  ( f i g u r e  6)  
t h i c k e n s  a t  a n  i m p o r t a n t  r a t e  u p  t o  t h e  c o m p r e s s i o n  b y  t h e  r e f l e c t e d  w a v e  a n d  
t h i c k e n s  a g a i n  v e r y  q u i c k l y  a f t e r w a r d s .  

B .  C o m p a r i s o n  w i t h  Z a i t s e v ' s  e x p e r i m e n t s  

Z a i t s e v ' s  e x p e r i m e n t s  w e r e  m a d e  w i t h  s i m i l a r  i n c i d e n t  shock  Mach n u m b e r s  ( 3  
v s  3 . 7  a n d  4 i n  o u r  e x p e r i m e n t s )  a n d  s h o c k  t u b e  c r o s s  s e c t i o n  (7 v s  8 .5  c m ) .  T h e i r  
s e p a r a t i n g  m e m b r a n e  : 2  y m  L a u s a n  o r  D a c r o n  m i g h t  h a v e  m e c h a n i c a l  p r o p e r t i e s  
c l o s e  t o  t h o s e  o f  o u r  1 . 5  p m  M y l a r  f i l m .  We h a v e  f o u n d  t h a t  t h i c k e r  (and  s t r o n g e r )  
m e m b r a n e s  l e a d  t o  t h i c k e r  m i x i n g  z o n e s  ( f i g u r e  8)  a n d  w e  e x p e c t  t h a t  o u r  
m e m b r a n e s  h a v e  a  l a r g e r  i n f l u e n c e  o n  t h e  m i x i n g  zone c o m p a r e d  t o  t h e  e x p e r i m e n t s  
o f  A n d r o n o v  e t  a1 l a n d  o f  c a l t e c h 5  w h e r e  f i l m s  w e r e  u s e d .  O u r  m e a s u r e m e n t  
t e c h n i q u e  a l s o  d i f f e r s  f r o m  t h e  s c h l i e r e n  p h o t o g r a p h s  o f  t h e  o t h e r  e x p e r i m e n t s .  A s  
s t a t e d  above  a n d  c o n f i r m e d  b y  o u r  o w n  p r e l i m i n a r y  p h o t o g r a p h s  t a k e n  c l o s e  t o  t h e  
i n i t i a l  m e m b r a n e  p o s i t i o n ,  t h e  t h i c k n e s s  o b t a i n e d  f r o m  IR e m i s s i o n  f r o m  t h e  c e n t e r  
o f  t h e  channe l  i s  3 0 %  s m a l l e r  t h a n  t h e  t h i c k n e s s  p h o t o g r a p h i c a l l y  o b t a i n e d .  A n o t h e r  
i m p o r t a n t  d i f f e r e n c e  b e t w e e n  Z a i t s e v ' s  e x p e r i m e n t s  and o u r s  i s  t h e  l e n g t h  o f  t h e  t e s t  
s e c t i o n  : 3 7  v s  1 2 7  and 1 5 2  c m  i n  o u r  c a s e .  
Z a i t s e v ' s  r e s u l t s  a r e  s u m m a r i z e d  i n  t w o  f o r m u l a s  f o r  t h e  t h i c k e n i n g  r a t e  (dL / d t )  o f  
t h e  m i x i n g  z o n e  b e f o r e  and a f t e r  t h e  r e f l e c t e d  s h o c k  a s  a  f u n c t i o n  o f  t h e  v e l o c i t y  
j u m p  and t h e  A t w o o d  n u m b e r  A t  ( c a l c u l a t e d  a f t e r  shock  c o m p r e s s i o n ) .  

- b e f o r e  r e f l e c t e d  shock  : 

f o r  A t  1 < 0  and w h e n  U1 i s  t h e  m e a s u r e d  m i x i n g  zone v e l o c i t y  
- a f t e r  r e f l e c t e d  shock  : 

f o r  A t 2  > 0  and  w h e n  AUR i s  t h e  c a l c u l a t e d  v e l o c i t y  j u m p  due t o  t h e  r e f l e c t e d  w a v e .  
T a b l e  1 g i v e s  t h e  r e l e v a n t  d a t a  f o r  o u r  e x p e r i m e n t s .  I n  t h i s  t a b l e ,  A t 0  i s  t h e  

i n i t i a l  A t w o o d  n u m b e r ,  M1 and  MT a r e  r e s p e c t i v e l y  t h e  i n c i d e n t  ( i n  C 0 2 )  a n d  
t r a n s m i t t e d  ( i n  He o r  A r )  s h o c k  M a c h  n u m b e r s ,  U  i s  t h e  c o n t a c t  s u r f a c e  v e l o c i t y  
o b t a i n e d  f r o m  t h e  R a n k i n e - H u g o n i o t  r e l a t i o n s .  N o t e  t h a t  t h e  e x p e r i m e n t s  p e r f o r m e d  
a t  l o w e r  M1 ( 3 . 7 )  h a v e  a b o u t  1 0 %  o f  a i r  b y  v o l u m e  m i x e d  w i t h  t h e  r a r e  g a s  w h i c h  
s i g n i f i c a n t l y  a l t e r e d  t h e  d e n s i t y  a n d  s p e e d  o f  s o u n d  o f  " h e l i u m " .  Non  d i m e n s i o n a l  
t h i c k e n i n g  r a t e s  ( 1  / U I )  (dLi / d t )  i n  t h e  i n i t i a l  phase  (up t o  2 0 0  y s  on f i g u r e s  5  and 
6 )  a n d  ( l  / U I )  ( d L l  / d t )  a r e  c o m p a r e d  w i t h  Z a i t s e v ' s  e s t i m a t e  : 0  0 2  + 0 . 0 7  I A t l l  
and ( l  / AUR) (dL2  / d t )  w i t h  t h e  o t h e r  e s t i m a t e ,  0 . 0 5  + 0 . 8 5  lAt21 

T h e  c o m p a r i s o n  s h o w s  t h a t  t h e  t h i c k e n i n g  r a t e  ( d L 1  / d t )  i s  l o w e r  t h a n  
p r e d i c t e d  b y  Z a i t s e v ' s  f o r m u l a  b u t  t h e  p o o r l y  m e a s u r e d  i n i t i a l  r a t e  ( d L i  / d t )  i s  
c l ose .The  t h i c k e n i n g  r a t e  a f t e r  r e f l e c t e d  w a v e  i n t e r a c t i o n  (dL2  / d t )  i s  a l s o  c l o s e  t o  
Z a i t s e v ' s  f o r m u l a  i n  3  c a s e s .  H o w e v e r  t h e  v a l u e  o b t a i n e d  f o r  h e l i u m  a t  2 0 0 0  Pa  b e i n g  
t o o  h igh .  



I V .  A V E R A G E  T E M P E R A T U R E  A N D  D E N S I T Y  P R O F I L E S  I N  THE 
M I X I N G  ZONE. 

Vie p r e s e n t  i n  t h i s  p a p e r  r e s u l t s  o b t a i n e d  w i th  a  C 0 2  l a s e r  a b s o r p t i o n  techn ique  
w h i c h  h a v e  a l r e a d y  been  p r e s e n t e d  i n  r e f .  4, b u t  w e  u s e  h e r e  a  n e w  d a t a  r e d u c t i o n  
p r o c e s s .  

T h e  m o s t  i m p o r t a n t  d i f f e r e n c e s  b e t w e e n  t h e  p r e s e n t  r e s u l t s  and t h o s e  g i v e n  on 
t h e  p a p e r  o f  r e f .  4, a r e  t h e  f o l l o w i n g  : Now,  w e  do n o t  a s s u m e  t h a t  t h e  p r o f i l e  o f  t h e  
l i n e  i s  L o r e n t z i a n  and c a l c u l a t i o n s  a r e  m a d e  w i t h  a  V o i g t  p r o f i l e  w h i c h  c o r r e s p o n d s  
b e t t e r  t o  t h e  p h y s i c a l  r e a l i t y  ; a l s o  w e  t a k e  i n t o  a c c o u n t  t h e  h o t  bands o f  C02 .  Thus ,  
a  m o r e  r i g o u r o u s  m e t h o d  h a s  b e e n  deve loped ,  a n d  w i l l  b e  p r e s e n t e d  i n  d e t a i l  i n  a  
f u t u r e  pape r .  

W i t h o u t  r e w r i t i n g  a l l  t h e  e q u a t i o n s ,  w e  r e m i n d  h e r e  t h e  p r i n c i p l e  o f  t h e  
m e a s u r e m e n t s .  T h e  a b s o r p t i o n  b y  t h e  t e s t  g a s  C 0 2  i n  t h e  m i x i n g  z o n e  o f  t w o  
c o n t i n u o u s  C 0 2  l a s e r  l i n e s ,  c o r r e s p o n d i n g  t o  t r a n s i t i o n  b e w e e n  t h e  v i b r a t i o n a l  l e v e l s  
0 0 "  1 - - >  1 0 e O  ( a b o u t  1 0 . 6  pm w a v e l e n g h t )  y i e l d s  a v e r a g e  p r o f i l e s  o f  d e n s i t y  
t e m p e r a t u r e  a n d  C 0 2  m a s s  c o n c e n t r a t i o n  i n  t h e  m i x i n g  z o n e .  T y p i c a l  p r o f i l e s  
o b t a i n e d  a t  a  d i s t a n c e  o f  940 m m  f r o m  t h e  i n i t i a l  p o s i t i o n  o f  t h e  i n t e r f a c e ,  
a p p r o x i m a t e l y  7 7 0  p s  a f t e r  s h o c k  a c c e l e r a t i o n  o f  t h e  C 0 2 / H e  i n t e r f a c e  ( 3 6  m m  
t h i c k )  a n d  1 0 2 0 p s  f o r  t h e  C 0 2 / A r  one (26 mm t h i c k ) ,  and  j u s t  b e f o r e  t h e  a r r i v a l  o f  
t h e  r e f l e c t e d  s h o c k ,  a r e  s h o w n  i n  f i g u r e s  9 t o  14, I n i t i a l  c o n d i t i o n s  a r e  t h o s e  
i n d i c a t e d  i n  T a b l e  1 c o l u m n  2 f o r  C 0 2 / A r  a n d  c o l u m n  4 f o r  C 0 2 / H e .  C a l c u l a t e d  
v a l u e s  i n  p u r e  gases a r e  p r e s e n t e d  i n  T a b l e  2 .  

E x p e r i m e n t a l  v a l u e s ,  o u t s i d e  t h e  m i x i n g  zone, a r e  i n  f a i r l y  good  a g r e e m e n t  
w i t h  c a l c u l a t i o n s  o b t a i n e d  w i t h  a  R a n k i n e - H u g o n i o t  o n e  d i m e n s i o n a l  m o d e l  T h e  
a s y m m e t r y  o f  t h e  C 0 2 / H e  d e n s i t y  p r o f i l e  ( c o m p a r e d  t o  t h e  C 0 2 / A r  one)  m i g h t  b e  
due t o  t h e  s p i k e  and bubb le  p a t t e r n  t y p i c a l  o f  t h e  i n t e r p e n e t r a t i o n  o f  gases w i t h  l a r g e  
d e n s i t y  d i f f e r e n c e s .  T h e s e  r e s u l t s  c a n  b e  c o m p a r e d  w i t h  n u m e r i c a l  s i m u l  a t i o n s .  We 
can  n o t e ,  f o r  e x a m p l e ,  t h a t  t h e  f a c t  t h a t  t h e  C 0 2 / H e  m i x i n g  zone i s  m o r e  t u r b u l e n t  
t h a n  t h e  C 0 2 / A r  one,  s h o w n  b y  l o c a l  e m i s s i o n  m e a s u r e m e n t s  i n  r e f .  6 ,  d o e s  n o t  
a p p e a r  c l e a r l y  w i t h  a b s o r p t i o n  m e a s u r e m e n t s  p r o b a b l y  b e c a u s e  t h e s e  l a s t  ones  a r e  
ave raged  a c r o s s  t h e  t u b e  s e c t i o n .  

E r r o r  b a r s  h a v e  been  e s t i m a t e d  t o  t 8% and  t h e  f i a b i l i t y  o f  o u r  r e s u l t s  a p p e a r  
c l e a r l y  on  each c o n c e n t r a t i o n  p r o f i l e  s i n c e  t h i s  q u a n t i t y  m u s t  be  i n c l u d e d  b e t w e e n  0 
and  1 0 0 % .  

V .  C O N C L U S I O N  

H i g h  M a c h  n u m b e r  s h o c k - i n t e r f a c e  i n t e r a c t i o n  e x p e r i m e n t s  l e a d  t o  t h r e e  
d i m e n s i o n a l  f l o w s  w h i c h  a r e  d i f f i c u l t  t o  d e s c r i b e  i n  t h e  f r a m e w o r k  o f  t h e  s i m p l e  
R a y l e i g h - T a y l o r  i n s t a b i l i t i e s .  T h e  r e s u l t s  do  n o t  a g r e e  a l s o  w i t h  s i m u l a t i o n s  u s i n g  
n o n  v i s c o u s  h y d r o d y n a m i c  c o d e s .  H o w e v e r  t h e y  a r e  i n  r o u g h  a g r e e m e n t  w i t h  
p r e v i o u s  h i g h  Mach n u m b e r  e x p e r i m e n t s .  

We w i l l  u s e  t h e  s a m e  m e t h o d s  t o  i n v e s t i g a t e  t h e  t u r b u l e n t  m i x i n g  z o n e  
b e h a v i o u r  f o r  o t h e r  v a l u e s  o f  t h e  A t w o o d  a n d  M a c h  n u m b e r s ,  a n d  w e  w i l l  c o m p l e t e  
t h e  p r e s e n t  d a t a  w i t h  S c h l i e r e n  f l o w  v i s u a l i s a t i o n s ,  w h i c h  w i l l  p r o v i d e  m o r e  
i n f o r m a t i o n  on t h e  t h r e e - d i m e n s i o n a l  n a t u r e  o f  t h i s  t u r b u l e n t  m i x i n g  i n  h i g h  Mach 
n u m b e r  shock t u b e  f l o w s .  
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T a b l e  l  : 

Gases  
Test section length 
(cm) 

Initial pressure (Pal 

M I 

M T 

U ( m / s )  

U1 ( m / s )  

At0 

At l 
( m / s )  

d t  

L d.h 
U1 d t  

PL1 ( m / s )  
d t  

L a1 
U1 d t  

0.02 + 0.07 IAtll 
( Z a i t s e v )  
A U R  ( m / s )  

At2 

f i ~ ( m / s )  
d l 

1 a2 
AUR d t  

0.05 + 0.85 I A t z I  
( Z a i t s e v )  

S u m m a r y  of v e l o c i t y  

a n d  t h i c k e n i n g  r a t e s  

m e a s u r e m e n t s .  

Cond~tlons 1 

C02 /Ar  
127 

l 5 0 0  

4.2 

4 

817  

1030 

- 0.0476 

- 0.48 
5 0 

0 .048 

7 . 7  

m 7 5  

0 .054  

1 0 4 0 - 2 0 0  - 840 

0 .67 

530 

Oh3 

0 .62  

Condltlons 2 

C02 /Ar  
152 

2000 

3.7 

3.7 

632  

970  

- 0.06 

0 . 4 2  
6 5  

0.067 

10 

0.010 

0 .049 

- 675  

0.59 

400 

0.59 

0 .55  

Condltlons 3 

C02/He 
127  

l  500 

4.2 

2.4 

1236 

1700 

- 0.833 

- 0.86 
7 0 

0.056 

38 

0.023 

0.08 

8 1 5 - 1 4 0 1 6 8 0 - 8 2 0  - 840 

0.92 

850  

1.012 

0.832 

Condltlons 4 

C02 /He  
152 

2000  

3 .7  

1.95 

9 1 4  

1240 

- 0.75 

- 0.795 
7 5 

0 .06  

5 0 

0.04 

0 .075  

1 1 5 - 5 6 0  - 5 5 5  

0 .8  6 

900  

1.62 

0.78 1 



Tab le  2 : Theor i t i ca l  v a l u e s  c o r r e s p o n d i n g  t o  r e s u l t s  of f i g u r e s  9 
to  1 4 .  

Figure 1 : Evolution of t he  ampli tude a  of 
t h e  mixing t o n e  f r o n t  deformation.  

 ine ear theory 
~ u m e r i c a l  simulations 

Figure 2 : Example of oscillographic 
emission records  fo r  C02 /Ar mixing t o n e  

t h i c k n e s s  d e t e r m i n a t i o n .  



Figure 3 : Experimental ( X ,  t )  diagram for Figure 4 : Experimental ( X ,  t) diagram for 
C02IHe mixing zone ( conditions 4). C02IAr mixing zone (conditions 2 ) .  

Figure 5 : C02/Ar mixing zone thickness .  Figure 6 : C02/He mixing zone thickness .  
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I I I 40 
' inc ident  shock ( i n  argon) with classical  signal 

0,O 0 , 2  0 ,4  0 ,6  0 ,8  1 ,0  
l Atl 

Figure 7 : Example of ")c" shock detected b y  Figure 8 : Evolution of the mixing tone 
wal l  heat  transfer gauges .  thickness  for  dif ferent  membranes.  

Figure 9 : Average Temperature profile in  Figure10 : Average Density profile in the 
the C02 /He mixing zone. C02/He mixing zone. 
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Figure1 l : Average  Temperature profile i n  Figure12 : Average Density profile in the  
the  C02 /Ar  mixing zone.  C 0 2 / A r  mixing zone.  

Figure l 4  : C02 Mass Concentration profile Figure l 3  : C02 Mass Concentration prof i le  
in  the  C02/Ar mixing zone .  in  the C02/He mixing zone.  
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PRELIMINARY DATA ON THE DYNAMICS OF TURBULENT SHOCKLETS 
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Substantial interest exists in the coherent structures produced 

by supersonic free shear layers. Coherent structures play an 

important role when nonequilibrium and nonlinear behavior is dominated 

by mass and momentum transfer effects. Some have argued that the mass 

and momentum transfer is produced by merging coherent structures. 
1 

Hence, if one knows how to manipulate the structures, the entrainment 

can be controlled.2 Our work focuses on the formation and evolution 

of coherent structures in the supersonic free shear layer using 

non-obtrusive optical diagnostics. We are specifically interested 

here in the turbulent shocklets which are thought to be associated 

with these structures. We present our first preliminary data on the 

shocklet profile, velocity, and production frequency; we also suggest 

some properties of the turbulence associated with these entities. 

The tube wind tunnel used is an elaboration of the configuration 

originally proposed by Ludwieg. A conventional shock tube is 

modified by inserting a layer-spilling asymmetric supersonic nozzle 

into the section upstream from the diaphragm (the high pressure 

section). When the diaphragm breaks, an expansion wave moves upstream 

into the high pressure section through the nozzle causing the local 

pressure, density and gas velocity to change with time and as a 

function of distance from the diaphragm's location. At a time 

determined by the ratio of the nozzle's throat area to its exit area, 

the nozzle is choked, i.e., the mass flow rate is frozen, and stable 

supersonic flow is established in the exit region. The steady period's 

duration is determined by the round-trip time for the head of the 

expansion wave to travel from the nozzle's throat to the high pressure 

section's upstream end. In the literature, one can find derivations 

of the formulas relating the nozzle's parameters to the initial 

conditions of the tube. With this kind of device, high Reynolds 

numbers (resulting from high stagnation pressures) can be maintained 

in the exit region under conditions of steady supersonic flow for more 

than 1 0  ms. 

The low pressure section of our Ludwieg tube has two parts: a 6 

in. diameter 5 ft. long cylindrical end piece and a 3 ft. long 



transition piece that changes from a 6 in. diameter circular cross 

section to a 3.6x3.6 in. square at the diaphragm. The transition 

piece has a hand operated plunger fcr rupturing the diaphragm. The 

high pressure section has five parts: a 6 ft. long 3.6x3.6 in. square 

test section with five optical ports on each face and corresponding 

pressure ports; a 3 ft. long transition piece for the change from a 

3.6x3.6 in. cross section to the 6 in. diameter cylindrical piece; and 

two pieces that are each quarter circle arcs of 2 ft. radius with 6 

in. diameter cross sections. The curved sections conveniently extend 

the overall length of the high pressure section and thereby increase 

the duration of the period of steady supersonic flow. The overall 

thickness is roughly 0.3 in. throughout. 

The starting processes are conventional. The integrity of the 

boundary layer which produces the free shear layer was confirmed by 

exhaustive pitot gauge studies. The nozzle's flow Mach number is 

calibrated by using wedges inserted in the flow and measuring the 

angles of the shock waves produced by the wedges. A 5 ft. long, 6 in. 

diameter cylindrical piece was added upstream of the circular arcs in 

order to increase the steady flow time. For each desired value of p4 

(the initial pressure in the high pressure section), we determined the 

value of p l  (the initial pressure in the low pressure section) for 

which smooth . e r  free of either expansion waves or shock waves) 

flow is achieved at the edge of the nozzle; this procedure defines the 

the operating ratio p4/p1 for the given value of pl (and therefore the 

Reynolds number) at which measurements will be made. By thereby 

avoiding back pressure effects, we have created flow environments 

which can be generalizable. 

The optical systems are suggested in Fig. l(a). An argon ion 

laser and a mecury-arc lamp are used as our light sources. We used 

three different diagnostic techniques. 

In line absorption measurements, the light from the mecury lamp 

is split into four parallel small beams; each is 1 mm in diameter, 

separated from its nearest neighbor by 1 mm along the downstream 

direction. This is defined as the X-direction, with the direction 

perpendicular to the flow and to the surface of the nozzle being 

defined as the y-direction. The absorbed light signals are collected 

by photomultiplier tubes. This line-averaged measurement gives us 

line-averaged density history. 



We also use crossed beam measurements. The same light source is 

employed; the four split beams are arranged so that they cross, two 

each, at right angles as indicated in Fig. l(a). That is, two beams 

are separated by 1 mm along X and parallel to the y-direction; the 

other two beams are parallel to the z-direction. The points of 

intersection are inside the free shear layer and a little bit off the 

x-axis. This technique can give us the point density fluctuation 

signals. 

The third optical diagnostic is the fluorescence measurement. 

The 2 W 488.0 nm blue light from the argon ion laser is expanded and 

then split into three small beams with the same size and separation 

used in the first and second techniques just described. The beams are 

sent through the free shear layer along the y direction and separated 

in the X direction. A small admixture of NO2 (roughly 3% in N2) 

provides a target for the laser light and is the source of the 

fluorescent light. The fluorescence signals from the three points 

inside the free shear layer are collected by photomultiplier tubes. 

The three signals come from three points with a separation of 1 mm 

along the x-axis on the y-axis or three points of separation of 1 mm 

along the x-axis and 1 mm off the x-axis. This kind of measurement 

allows a precise point density history. 

Static pressure ports along the test section use conventional 

Kistler gauges. Total pressure operating conditions are monitored and 

controlled using a Baratron pressure transducer system. The signals 

from the photomultiplier tubes are amplified and digitized with 

Nicolet ADC's. The system runs at room temperature. A thermocouple 

is fixed at the high pressure section so as to check the temperature 

drop when the high pressure section is filled with the NO2 and N2 

mixtures. Generally, our typical operating conditions are: Mach 

numbers between 1.6 and 2.5; unit Reynolds numbers between 106 and 10 
7 

/cm; typical pressures in the high pressure section between 33 psia 

and 80 psia and between 20 Torr and 110 Torr in the low pressure 

section. In this paper, we focus on one configuration at a Mach 

number of 2.0 and a Reynolds number (based on measurements 1 cm into 
6 the free shear layer) of 4x10 . 

Evidence for the existence of turbulent shocklets is found in all 

of our optical diagnostics. This supports our previous report on the 

evidence from shadowgraph photography and the correlation of shocklet 



strength with Reynolds n ~ m b e r . ~  In Fig. lib), we show typical results 

using the crossed beam set-up for point r.m.s. density fluctuations in 

the free shear layer. Here there is a signature in the density 

fluctuations at the shocklet front from the edge of the wedge, 1.7 cm 

and 2.7 cm respectively from the edge. In each case, the effective 

duration of the shocklet front is less than 0.005 msec. These data 

indicate that a very strong localized increase in density fluctuations 

takes place at the turbulent shocklet, on a scale much larger than the 

fluctuations either just before or just after the shocklet. 

Relatively speaking, there also does not seem to be much of a change 

in the intensity of the turbulent fluctuations from one side of the 

shocklet to the other. Fig. l(b) also shows that the duration or 

thickness of the shocklet is consistent with the expected values for a 

shock wave phenomenon. 

The same qualitative features are confirmed in the point density 

histories from fluorescence and the line-averaged blue light 

absorption. Samples of these data are shown in Fig. 2. Fig. 2(a) 

show fluorescence data from two measurements separated from each other 

by 1 mm along the x-axis and parallel to the centerline, 1 mm away 

from it in the y direction. Fig. 2(b) shows results from a similar 

configuration, using the line-averaged blue light absorption. In both 

cases, the standard signature for a shock wave is unmistakable. 

From these data, we have determined some of the dynamical 

properties of the shocklets. The local velocity of shoocklets in the 

region where we are making these measurements is 86*35 m/s; the 

shocklet production frequency is at least as high as 6 KHz providing a 

Strouhal number (based on the local mean flow velocity of 512.0m/s) of 

at least 0.12. We also notice that the prominence of the signal in 

the line-averaged data suggests a strongly two-dimensional character 

in these shocklets. 

The spectral properties in the turbulent fluctuations do not seem 

to be influenced by the turbulent shocklet. Typical examples of this 

are shown in Fig. 3. Fluorescence data from one Ludwieg tube firing, 

off axis measurements at consecutive stations 1 mm apart, show FFT 

spectra before and after the shocklet which are typically turbulent 

but apparently unchanged by the shocklet. This is confirmed by 

studies of velocity fluctuation measurements take from PHACO 

velocimetry6 on the line averaged data using the previously published 



analytical procedures as shown in Fig. 4(a). These FFT data along 

with the apparent insensitivity of the turbulent intensity to the 

shocklet seems to imply an important limitation in the impact of the 

turbulent shocklet on the strength of the turbulence. 

However, the shocklet does seem to have some influence on the 

structure of the turbulence. This is implied by the data in Fig. 

4(b); the turbulent correlation length scale seems to be changed by 

the shocklet. In Fig. 5 (taken from the same fluorescence data as 

Fig. 3) this is unambituously confirmed. The effect of the turbulent 

shocklet is that of causing a significant distortion in the 

characteristic length scale, by as much as a factor of two. 

Notice that this correlation scale would probably determine the 

extent to which a local turbulence can couple into a local chemical 

reaction. Thus, these preliminary results indicate that the turbulent 

shocklets: (1) do not change the turbulence; (2) might influence the 

relative impact of turbulent mixing processes (since the shocklets 

should effect the local mean flow while leaving the turbulent strength 

unchanged); and (3) might effect the progress of a nonequilibrium 

molecular process. 
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I .  JNTRODUCTION 

The interaction between supernova remnants (SNR) and interstellar clouds in the galaxy is known to 

play a major role in determining the structure of the interstellar medium (ISM). We know that the ISM is 

highly inhomogeneous, consisting of both diffuse atomic clouds (T-100K) and dense molecular clouds 

(T-1OK) surrounded by a low density warm ionized g a s ( ~ - l O ~ K )  and by a very hot corona1 gas 

(T-106K). Next to radiation directly from stars, supernova explosions represent the most important form 

of energy injection into the ISM; they determine the velocity of interstellar clouds, accelerate cosmic rays, 

and can compress clouds to gravitational instability, possibly spawning a new generation of star 

formation.1 The shock waves from supernova remnants can compress, accelerate, disrupt and render 

hydrodynamically unstable interstellar clouds, thereby ejecting mass back into the intercloud medium. 

Thus, while the interaction of the SNR blast wave with cloud inhomogeneities can clearly alter the 

appearance of the ISM, the cloud inhomogeneities can similarly have a profound effect on the structure of 

the SNR. 

Given the importance of the interaction of the supernova shocks with clouds for understanding the 

structure and the dynamics of the ISM as well as the potential importance of the interaction as a means of 

triggering new star formation, the problem has been studied both analytically and numerically over the past 

decade. Even when idealized as the interaction of a strong shock with a spherically syrnmemc cloud 

embedded in a less dense intercloud medium, the problem represents an extremely complex non-linear 

hydrodynamic flow encompassing a rich family of shock-shock interaction phenomena. The multi- 

dimensional nature of the evolution of the disrupted cloud is such as to make a detailed analytic calculation 

intractable. The first serious attempt to follow the interaction numerically was made by woodward2, who 

used a combined Eulerian-Lagrangian approach to follow the interaction of the shock from a spiral density 



wave with a galactic cloud. These results showed the st'art of both Rayleigh-Taylor and Kelvin Helmholtz 

type instabilities; however, the calculation was not carried out far enough to ascertain the final fate of the 

cloud. A subsequent attempt to investigate this problem by Nittman et a1.3 used a flux-corrected transport 

approach and was very unresolved. Recently, Tenorio-Tagle and Rozyczka4 attempted to follow the 

evolution with a second order accurate hydrodynamic scheme, but again the calculation was under- 

resolved and clearly showed the effects of strong numerical diffusion at the interface of the cloud boundary 

and the intercloud medium. This made it impossible to disentangle the mixing of cloud-intercloud matter 

due to physical instabilities from mixing due to numerical effects. All of the previous work on this 

important problem leave unanswered several questions of key importance: What is the ultimate fate of 

clouds that have been impacted by SNR shocks? What is the total momentum delivered to the cloud? 

How much mass is lost from the cloud? To what extent is the cloud disrupted? How do the results scale 

with cloud density, shock Mach number and cloud size? Is the cloud driven to gravitational instability or 

is the cloud destroyed? What is the effect of the interstellar magnetic field on the evolution? What are the 

observable consequences of the interaction? 

As we shall see, highly complex shock-shock interactions play a major role in determining the 

morphology of the cloud. Instabilities and shear flow motions are crucial to track accurately. These 

physical phenomena place an enormous constraint on the capabilities of most conventional numerical 

methods for solution in 2-D. Even high order accurate approaches such as P P M ~  with fned Eulerian grids 

would require at least 106 grid points to follow the evolution accurately enough to answer the questions 

posed above. Clearly, one has a great need to evolve solutions in 2-D with a great enough accuracy to deal 

with physical constraints and at the same time do so economicallv in both storage and time. 

11. METHODOLOGY 
To address these difficulties, we have used the local adaptive mesh refinement techniques with 

second order Godonov methods developed by Berger and Colella.6 This first important problem will be 

the forerunner of a broad-based program we are developing to use adaptive mesh refinement to study 

astrophysical gas dynamics. We employ a second order finite difference solution of the Euler equations on 

a square grid in a cylindrically symmetric geometry. The numerical integration of the Euler equations is 

accomplished using an operator split version of a second order Godunov method (Van Leer,7 Colella and 

Woodward8). The Godunov method conserves mass, momentum and total energy. We use a y law 

equation-of-state, with the cloud and intercloud medium potentially having differing y. The resulting 

method is second order accurate in space and time, and captures shocks and other discontinuities with 

minimal numerical overshoot and dissipation. 

The fluid interface is modeled using the S L I C ~  algorithm. In this approach the fraction f of the cell 

occupied by the cloud is determined for each grid cell through which the cloud interface passes. At the end 

of every timestep a simple picture of the interface consisting entirely of vertical and horizontal line 



segments is reconstructed from the volume fraction information. This picture is then used to determine 

how much of each fluid is convected out of the cell into adjacent cells at this time step and an update of the 

partial volumes associated with each cell is obtained. A possible difficulty of this approach is that in a 

region of expansion or compression, both fluids in a multi-fluid cell will be expanded or compressed 

equally, regardless of the difference in compressibility between them. To correct this difficulty, we use a 

scheme in which the equations of motion are rewritten to include extra evolution equations for the volume 

fraction, total energy of each fluid, and mass density of each fluid in multi-fluid cells. This takes into 

account the fraction of each fluid component in the cell in such a way as to ensure the correct relative 

expansion or compression of each fluid component. 

From the point of view of being able to resolve detailed complex physical structures with reasonable 

amounts of supercomputer time and memory, the most important feature of our code is that it employs a 

dynamic regriddng strategy known as Adaptive Mesh Refinement ( A M R ) ~  to dynamically refine the 

solution in regions of interest or excessive error. This is effected by placing a fmer grid over the region in 

question with the grid spacing reduced by some even factor (typically 4). The boundary of the refined grid 

is always chosen to coincide with cell edges of the coarser grid. Multiple levels of grid refinement are 

possible with the maximum number of nested grids supplied as a parameter in the calculation. Typically 

our calculations employ two nested grids over the initial coarse (level 1) grids. In our present work, we 

determine those regions which require refinement by estimating the local truncation error in the density and 

refining those regions where the error is greater than some initially specified amount. In addition, we 

require the maximum level of refinement in the neighborhood of all cells containing cloud material. 

Special care is taken'to ensure the correct fluxes across boundaries between and fine grids. This dynamic 

adaptive gridding approach is a crucial factor in our ability to economically resolve important features in 

the cloud shock interaction. 

An important feature of our method is that the mesh is locally refined in space-time by ~=AXI-~IAXI 

on all grids, where AX1 is the grid spacing on level 1. This implies that the explicit difference scheme 

remains stable on all grids. In our approach, refined regions appear and disappear in time as they are 

needed. Given that high resolution second order Godunov schemes are necessary to resolve key features 

of the interaction, but may still be expensive, AMR concentrates the computational effort in regions where 

it is most needed without sacrificing accuracy anywhere else. This is in contrast to moving grid 

approaches. Here one is pulling grid-lines into one region at the expense of sacrificing accuracy 

elsewhere, giving a fixed cost for the most accurate solution. Grid moving methods have inherent 

difficulties. There are problems maintaining smooth grids; regularity terms and penalty functions for grid 

reguluization can be complicated and expensive, and one must initially guess at the adequate number of 

grid points necessary to resolve features that may appear. On contrast, AMR obtains a fixed accuracy at 

minimum cost. Grid points are added or removed as is necessary to maintain a desired accuracy. 



111. CLOUD SIZE SCALES 

As the SNR expands through the ISM, it drives a shock into any cloud it encounters. Assuming that 

these are strong shocks, the pressure behind the blast wave and the pressure behind the transmitted cloud 

shock are comparable, and one finds that (McKee and Cowie)lO 

VS = ( p i / ~ c ) ' / ~  vb , (1) 
where vs and vb are the cloud shock and blast wave velocities and pc and pi the cloud and intercloud 

densities, respectively. Following ~ c ~ e e l ,  we define characteristic timescales for the cloud-shock 

interaction. Let X p Jpi  be the density and assume that X >> 1. Assume that the cloud is a sphere 

with radius a at a distance R from the supernova explosion. The blast wave in the Sedov-Taylor phase 

will expand as ~ ~ = t ~ / ~ .  We can define the cloud crushing time, 

the intercloud crossing time, 

and the age of the SNR, 

The cloud is destroyed by thermal evaporation or  by hydrodynamic instabilities in a time of order 

td - x1E k,, which is comparable to the time for drag forces to bring the cloud to rest in the intercloud 

medium. 

In this paper, we will consider only clouds that can be characterized as "small", so that the SNR does 

not evolve significantly during the time for the cloud to be crushed: and we find that 

Indeed, we shall focus on the case in which the cloud is "very small", so that t >> td, and a << 0.4lUx. In 

either case, we have a << R so that the blast wave may be treated as a planar shock. In the opposite limit 

of a shock interaction with a large cloud the SNR blast wave will undergo substantial weakening over the 

time it takes to cross the cloud. We expect substantial disruption for the small clouds, but only impulsive 

effects for large clouds. 



I V .  RESULTS 

Since there are no intrinsic scales in the problem, it is parameterized by the Mach number of the SNR 

blast wave M and the density ratio 2. Our calculations assumed 2-D axisymmetry for an inviscid fluid 

with no magnetic field. Two cases were considered for the cloud: y =l . l  and y = 513. The intercloud gas 

was assumed to have y = 513. Several calculations have been made for Mach numbers in the range 10-103 

and density ratios 10- 102. 

It is useful to follow the morphological evolution of the cloud through several cloud crushing times 

to obtain a sense of the different stages of development. We present the time-development of the 

isodensity contours of the cloud for the case y (cloud) = y (intercloud) = 513, ~ = 1 0 ,  M=10. At t=0.84kc 

(Fig. l), the transmitted shock is compressing the cloud from the front, secondary shocks have enveloped 

the sides of the cloud as the blast wave passes over the cloud, and a reflected bow shock moves upstream 

into the intercloud medium. The reflected shock becomes a standing bow shock and eventually a weak 

acoustic wave carrying away a small amount of energy from the supernova shock (Spitzer, 1982). At 

t=1.05kc (Fig. 2) the blast wave behind the cloud reflects off the axis giving rise to a Mach reflected shock 

back into the cloud. After t=1.26kC (Fig. 3), behind the cloud, a double Mach reflection with the 

appearance of two mple point interactions occurs. This classic oblique shock interactionl2,13 shows 

evidence of a strong supersonic vortex ring far behind the cloud. The vortex ring may have interesting 

observational consequences for SNR (see below), but plays no role in the continued dynamical evolution 

of the cloud. The reflected shock and the transmitted shock undergo a strong interaction at t=1.68~,  (Fig. 

4) resulting in a initial flattening of the cloud. We also note the beginning of a strong shear flow. The 

vorticity is efficiently produced by strong components of VpXVP at the interface. Substantial flattening 

of the cloud is observed at t=2.1kc from the strong shocks which have squeezed it like a vise. The 

pressure maximum on the nose of the cloud exceeds the pressure minimum on the sides and the cloud 

begins to expand laterally3 (Fig. 5). We note the growth of Richtmyer-~eshkovl3 instabilities on the 

cloud nose which grow more slowly than the classic Rayleigh Taylor modes. At t=2.5&, we see evidence 

of Kelvin Helrnholtz instabilities, on the sides of the cloud; weak shocks stiIl residing in the cloud interior 

dissipate their energy (Fig. 6). At 3.78k, a prominent shear layer exists through the cloud. This shear is 

caused by a combination of the effects of the downstream reflected shock keeping high pressure in the 

center of the cloud relative to the sides, the effects of the cloud moving through the ICM, and the 

development of Kelvin-Helmholtz instabilities. The shear produces copious vortex rings along the shear 

flow layer and leads to substantial Kelvin Helmholtz instabilities which break up the arms (Fig. 7). The 

cloud consists of a distorted unstable axially flattened core component and a severely disrupted halo of 

cloud material. Over 70% of the original cloud mass is in small fragments which, in the absence of 

cooling, should merge with the intercloud medium. The unstable break up  is dominated by large scale 

differential shear. Finally, at t=9.7kC the cloud is essentially destroyed. The cloud consists of multitudes 

of small fragments distributed along a halo structure with an aspect ratio of about 6, with no evidence of a 

core component (Fig. 8). 



Let us consider the characterization of the evolution of the interstellar cloud in more detail. In 
Table 1 ,  we display the results of adiabatic calculations for three models where y =l  .67 in both the cloud 

and ICh? for all cases. The calculations are done for two models of M=10 and 100 for density contrast 

X = l 0  and one model M=100 and density contrast 100. The first entry in the table is the time nonalized 

to the intercloud crossing time. The second entry gives the time normalized to the cloud crushing time and 

the drag time, td = x1R k,. The next column is the sound speed behind the cloud shock normalized to the 

blast wave velocity. It can be shown that the initial cloud shock can accelerate the gas up to 3/4 v, for non- 

radiative shocks, so the next entry is a measure of the fraction of the velocity currently in the cloud to its 

maximum possible velocity; in the frame of the shocked intercloud gas, this is a measure of cloud 

deceleration. The next column is a characterization of the cloud's aspect ratio in the radial and axial 

direction weighted by its half mass distribution. Here r l p  is the radial half-mass distance and Z1n is the 

axial half-mass distance. The last column gives the radial iln and axial iln dispersion velocities of the 

cloud to quantify the amount of stretching the cloud undergoes as it is subjected to shearing. These 

velocities are computed by using the half mass distance distributions at the two final times in the 

calculation. 

Several conclusions can be drawn from these results. Comparing the results at the same normalized 

"final" time t=4.2kC for clouds of the same density ~ = 1 0 ,  but subjected to blast waves of different Mach 

number 10 and 100, we note that both clouds have decelerated to about 0.15 of their initial velocities. 

Thus, these clouds have almost stopped, leading to a small pressure bfferential between the front of the 

cloud surface and the sides so that there is little force driving further radial expansion; hence the clouds 

have a radial dispersion velocity iln = 0. The strong shear flow in the cloud is still dominant, however, 

and both clouds are supersonically shearing apart at about the same axial dispersion velocity iln of 3 times 

the cloud velocities. The physical extent of the stretching in both the radial and axial direction 
rl,(t) , Zl,(t> -- 
rin(o> zln(o> 

when compared to the characteristics cloud size initially is essentially the same. The remarkable agreement 

of these features of the clouds leads one to suspect that the cloud evolution may scale similarly with the 

Mach number of the SNR shock. In fact, if we look at the isodensity contours of both clouds at t=4.2&, 

we clearly see the evolution is similar (Fig. 9a,b). This Mach scaling can be clearly seen if we scale the 

time, velocity and pressure as t' = tlM, v' = vM and P' = P M ~ .  Substituting these scaled quantities into the 

Euler equations, we find that Euler equations are invariant under this transformation. Thus, we find that 

for fixed y and density, the morphological evolution is a function of t/t, only in the limit of large M. At 

t=3.78tcC (Fig. 7), the cloud is experiencing a large drag due to the lateral increase in its surface area 

associated with the highly flattened core component. This results in the large deceleration as the cloud is 

slowed to . l 6  of its maximum velocity. At the final time t=9.7tcC in the calculation, the cloud has 



essentially been destroyed (Fig. 8). We note that the cloud has decelerated to 0.07 of its original velocity 

and has essentially stopped expanding axially as well as radially. The final fate of this cloud consists of a 

quasi-static halo of fragments of which 50% of the mass resides in an axially elongated distribution 

stretched out 5-6 times its initial shape, and the rest of the mass resides in a multitude of fragments much 

less dispersed. If we consider the case with ~ = 1 0 0 ,  we note that the cloud has a large aspect ratio and 

appears to be substantially more radially compressed than the lower density cloud. This can be understood 

by considering that the shock passes over the cloud far more rapidly than the cloud shape can change, and 

a quasi-steady flow is established around the cloud with a pressure maximum at the front of the cloud and 

a pressure minimum on the sides. The gas passes through a sonic point point as it flows past the cloud. A 

rarefaction wave moves into the shocked cloud (Nittmann and ~ a l l e ~ )  producing velocities of the order of 

the sound speed so that the cloud expands laterally at the sound speed. It is easily shown that the sound 

so for the higher densities the cloud expands much more slowly and appears radially compressed. These 

clouds have less drag and so experience less deceleration than the less dense clouds. We also note that at 

t=4.3kc, the cloud is still axially supersonically shearing. As remarked above, the destruction time for the 

cloud td is comparible to the drag time % and our simulation confirms that the small clouds experience 
Vb 

substantial ablation after a few drag times. 

We have performed calculations for several similar models for y=l.l in the cloud.15 This softer 

equation-of-state is more representative of clouds that are radiative, although it should be pointed out that 

truly radiative clouds can get rid of their stored energy efficiently, and we would expect substantially more 

shock compression than the models considered here. We note that these "radiative" clouds move 
substantially more rapidly than their ~ 1 . 6 7  counterparts. These clouds are significantly more radially 

compressed, and thus experience far less drag than the ~ 1 . 6 7  clouds. This can again be understood by 

consideration of the sound speed in these clouds. We find that the scaling of sound speed c with y is such 

that ~ ( ~ 1 . 1 )  << c(y=5/3), so that these "radiative" clouds expand laterally more slowly. We note that the 

high density "radiative" cloud is still experiencing large supersonic axial shearing. As with the previous 

models Mach scaling appears to be established. 

An outcome of these calculations that may be potentially very important for observations of SNR is 

the discovery of the copious production of vortex rings distributed along the strong shear flow layer (Fig. 

10). In this graph of iso-vortex contours at t=5.0kC we see formation of many points of high vorticity. 

Approximating the rotation of these vortices by rigid body rotation, we can relate the vorticity o in an 

individual vortex ring to the pressure differentia1 across the vortex AP ,  and we find that 



o = (8AP/p)l/ '  l/r. This appears to be an excellent approxin~ation m hen compared to our detailed 

calculations. Recent high resolution radio observations of the Cas A SNR(Tuffs16) have revealed several 

hundred intense compact radio emission peaks distributed throughout the remnant. We have demonstrated 

that strong shear flows associated with shock cloud interactions result in the production of many 

supersonic vortex rings. These vortex rings can be expected to wind up ambient magnetic fields present in 

the interstellar clouds until equipartition between the energy in the field and the vortex is achieved. It is 

quite possible that the resulting intense wound up magnetic field could account for the synchrotron 

emission of electrons, thus explaining the observations in Cas A. Chevalier17 (1976) postulated the 

presence of turbulent vortices, acting as magnetic scattering centers in SNR's to explain particle 

acceleration by a second-order Fermi mechanism. We conjecture that the radio hot spots may indeed be 

indirect observational evidence of the presence of vortex rings produced behind the shocked clouds. 

V .  CONCLUSIONS 
We have performed, for the first time, second order accurate high resolution local adaptive mesh 

refinement calculations of the interaction of a supernova shock with interstellar clouds. These extremely 

powerful hydrodynamic techniques have enabled us to calculate exceedingly complex flows much more 

rapidly and much more accurately and much further in time than previous work with standard fixed grid 

hydrodynamics. We have followed the evolution of interstellar clouds well into the regime of 

fragmentation. Our calculations have demonstrated high accuracy with 80,000 grid cells in the cloud that 

would only be achievable with fixed grid high order accurate hydrodynamic schemes with >1,000,000 

grid cells. We find: 

1) Small interstellar clouds are efficiently destroyed in a few cloud drag times by combined 

Rayleigh-Taylor and Kelvin Helrnholtz instabilities dominated by large scale shear flow. Clouds 

that have the same density but are enveloped by strong shocks of differing Mach number exhibit 

scaling khavior in their morphological evolution. 

2) Small clouds are highly fragmented. Cloud fragments will most likely feed their mass back into 

the ISM by thermal conduction. 

3) Small clouds fragment to such an extent that it is unlikely that fragments large enough to become 

gravitationally unstable and form stars will survive. This conclusion is based on the present 

adiabatic calculations and may not apply to radiative clouds or clouds which are not "small". 

4) Clouds evolve toward a elongated structures with aspect ratios of five to six consisting of 

multitudes of fragments. 

5 )  Our calculations indicate the copious production of supersonic vortex rings. Those rings with 

large aspect ratio may be subject to non-axisymmetric instabilities and break up into yet smaller 

vortex structures.18 "Fat" rings, with small aspect ratio, are lkely to remain intact. These vortex 

rings may be effective in winding up the ambient magnetic field in clouds, increasing the 

magnetic field strength and enhancing the synchrotron emission of cosmic ray electrons. This 

could explain the recent observations of numerous compact radio hot spots in Cas A. 



In the future, we will be using adaptive mesh refinement hydrodynamic techniques to investigate a 

broad range of astrophysical gas dynamical phenomena. 
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INSTABILITY OF SHOCK-ACCELERATED INTERFACE 
BETWEEN TWO MEDIA 

E. E. Meshkov 
Moscow 

Experimental results on shock tube studies of the instability of a 
shock-accelerated interface between two gases are presented in this 
review. Turbulent mixing appears after instability development when the 
interface is accelerated by a series of plane stationary waves. Nonlinear 
effects are described, which accompany the development of distortions, 
that are reflected and refracted at the shock wavelexpansion wave 
interface. A local cumulation phenomenon caused by shock reflection at 
the perturbed interface is described. 

INTRODUCTION 

Let us consider the following case: two gases of different densities 
are separated by a generally flat but slightly perturbed interface. The 
perturbations are sinusoidal. A plane stationary shock passes from one 
gas to the other through the interface. The interface experiences a pulsed 
acceleration. In this case the interface appears to be unstable. The 
initial distortion starts to grow and continues to grow with time. This 
pulse-initiated instability is independent of the shock direction; that is,. 

it is unstable to pulsed motion from a light gas to a heavy one (L -+ H) [l ,2] 
or from a heavy gas to a light one (H + L) [2]. If the interface is 
accelerated by a series of wave pulses, the initial perturbations may 
develop nonlinearly into turbulence with consequent turbulent mixing of 

the two gases [3]. 
Incident shock passage through the distorted interface appears to 

generate refracted and reflected secondary shock waves in both directions 
(L -. H) and (H 4 L). The evolution of the interface perturbations and 



secondary shock wave refraction and reflection is accompanied by other 
nonlinear effects. Breaks are formed at shock fronts. Behind the 
perturbed shock front, the lateral material flow may be accelerated 
sufficiently to form localized, laterally distributed, secondary shock 
waves [4,5]. During this period the initially perturbed shock shape may 
become more distorted and disturbance subharmonics may be 
simultaneously generated which, in turn, grow with time [6,7]. Along the 
distorted interface, vorticity generation sites may develop [6]. Instability 
development coincides with the cumulation of these localized sites. At 
these specific "hot" spots the pressure and temperature scales may 
substantially exceed average levels by more than an order of magnitude 
[8,9]. Experimental results illustrating these effects in gases are 
described in this report. 

These events have been studied in condensed media in the experiments 
described in [32,33]. In [34] the peculiarities of instability development 
[ l  ,2] in systems with many different densities were considered. 

2. INSTABILITY OF AN INTERFACE, ACCELERATED BY A SHOCK WAVE 

2.1 The experiments were conducted in an air shock tube. Its design 
is analogous to that described in 1151. The test section of the tube had a 

2 rectangular cross-section, 40 X 120 mm (Fig. l ) .  It was divided by a thin 
plastic film with area1 density (3 to 4) . IO-~ g/cm2. The sections 
upstream and downstream of the film were filled with different gases. 
The prescribed initial interface distortion was of the form Y = a, . cos K X, 
or in the form of mated circular arc segments at the interface examined. 
A flat stationary shock wave was propagated into the test section. 
Shadowgraph photos provided the flow visualization in the test section 

following the passage of the shock wave over the disturbed interface. 
2.2 Figures 2 a,b are graphic sketches prepared from the photos 

which display the phenomena of the developing interface disturbances. 
Air (po = 1.205 g lQ ,  y = 1.4) and refrigerant-1 2 (po = 5.1 g/Q, y = 1 . l  38) 

are the gases in these illustrations. Each of these photos corresponds to a 



AA s e c t i o n  

Gas 1 

Fig. 1 The arrangement of the shock tube measuring section in the 
experiments on the stability of the disturbed separation 
interface of two gases with different densities, accelerated by a 
shock wave. 
1,2 A thin film, separating the jointed blocks of the 

measuring section; 
3 An interface studied; 
4 A plane, stationary shock wave. 
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Fig. 3 The distribution of high (+) and low (-) pressure zones relative to an average level behind the wave fronts. (a) initial 
geometry; r is the interface studied, YB is the shock wave; (b) sketch of a photo of the initial flow phase in air -h refrigerant- 
12 test; (c) sketch of a photo of the initial flow phase in refrigerant-12 + air test. BP is the refraction wave. Arrows show 
the direction of wave and interface motion. 



there is a negligible influence at the interface from the lateral diverging 
waves. These lateral wave propagation processes are interconnected with 
the primary reflected and refracted shock-wave processes. 

In case H - L, the reflected expansion wave is perturbed in phase and 
the refracted shock wave in antiphase relative to the interface distortion 
(Fig. 3). The high and low pressure zones behind the perturbed expansion 
wave evolve in phase opposition relative to the distribution of 
perturbations behind the shock wave front. The high pressure zone 
appears where the expansion wave diverges locally and vice versa. The 
pressure gradient initiates and supports a lateral flow along the 
interface. The interface distortion undergoes phase cancellation, changes 
sign, and then grows monotonically. At the distortional curvature sites on 
the interface, vorticity is generated, local vortex concentration zones are 
formed and develop (Fig. 4). The higher the amplitude of the initial 
disturbance and the ratio of gas densities, the earlier the vortex zones 
appear and develop. The initial distortion influences the early period of 
vortex evolution. The shear, originating with the vanishing tangential flux 
at the wall-surface boundaries, also results in local vorticity generation. 

2.3 The instability reported in [1,2] is related to the more general 
phenomenon of Rayleig h-Taylor gravitational instability [l 71. In the case 
L - H with constant. acceleration, g, the small initial distortions of the 
contact interface grow exponentially in time. If the initial distortion is 
given in the form, y = ao cos KX, K = 2nlh (and a0 << h) ,  and if both media 
are ideal incompressible liquids with densities p1 and p2 ;  the following 
differential equation describes the disturbance amplitude growth [17]: 

where A is known as the Atwood Number. 
In case H -, L, under the same assumptions, the initial distortion 

oscillates with time. 
The following equation defines disturbance amplitude growth for 

impulse (6-function) acceleration [l]: 



Fig. 4 Photo frames of disturbed interface acceleration by a shock 
wave (M = 1.42). The initial boundary disturbance is in the form 
of adjoining circles. y, y', y" = incident, transmitted, and 
reflected shock wave; r is the initial interface location; I" is a 
film, separating gases;  n is the transverse wave; M is a Mach 
wave; B is vortex. 



where U is the stationary interface velocity resulting from the impulse 

acceleration. 
As the computations and experiments [1,2,7,10,12] showed, when the 

shock wave accelerates the interface (L - H), equation (2) describes the 
asymptotic disturbance growth, with reasonable accuracy, provided that 
parameter values from the region behind the wave front, define a0 and A. 
The distortion amplitudes a0 and a are measured from crest to trough. 

Dependence (2) may be used to estimate disturbance growth in case H - L, 
as well, but only under the same assumptions as those for case L - H. 
However, for case H - L, the disturbance amplitude, ao, is defined as an 

amplitude averaged before and after shock passage across the interface 

[=l. 
The following equation [7] expresses distortion growth velocity with 

impulsive interface acceleration, including the effects of viscosity (with 
the assumption that only one of the gases is viscous) 

Here, v is the kinematic viscosity of the viscous gas. It is obvious, that 
d a when t - m, viscosity stabilizes disturbance growth, completely, 

provided the degree of stabilization continues to increase with v growing 
27c 

and with decreasing. 
The two-dimensional  computat ions [7,10,12,13] and linear 

approximation computations [1,7] are needed to estimate interface 
distortion growth accurately. Here, we show the experimental and 
computational results for the pair of gases: helium (p, = 0.167 g/Q, y = 

1.63) - air (po = 1.205 g /&,  y = 1.4) (Fig. 5) and air - helium (Fig. 6). 
We show the numerical results and the experimental results combined 

graphically. Here, 1 denotes the linear approximation computation [7]; 2 
denotes the analytical computation according to [ l ] ;  3 denotes the two- 
dimensional computation [12]; 4 denotes the two-dimensional computation 
[7] by the "Sigma" method [18], which is, in the main, the technique 



Fig. 5 Dependence of the amplitude of helium-to-air (L 4 H) interface 
distortion on shock-wave acceleration. Points are the 
experiment, curves are the computations, shock wave 
propagating in a shock-tube channel at M = 1.51. 



Fig. 6 Dependence of the amplitude of  air-to-hel ium interface 
distortion (H + L) on shock-wave acceleration (M = 1.51). Points 
are the experiment, curves are the computations. 



4 M section 

Fig. 7 The schematic of the experiment with turbulent mixing at the interface of two gases (air to helium), accelerated by a shock 
wave. (1) A thin film, separating gases; (2) A plug with a flat face; (3) A shock wave. 
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described in [19]; while 5 denotes the two-dimensional computation [7] by 
"ZGAK" method [20]. 

In these figures (5 and 6), we present the results of the experiments in 
which the initial distortion scale (ao and h )  was prescribed to be three 
times the value assigned to the initial two-dimensional computation data. 
It is difficult, if not impossible, to assign a unique value to the 
experimental distortion amplitude, ao. This necessitated this decision on, 
at least, a consistent prescription relative to the computations. Values of 
h and a. were varied over a wide range during the experiments. The 
results showed that, within the assumed accuracy, these experiments 
demonstrated similarity in growth rate. That is, data for different h a n d  

a. coincide in growth with dimensionless similarity variables, a(t)lao and 
S(t) /h.  Where a(t) is the current disturbance amplitude, and S(t) is the 
current distance traveled by the interface. 

In case L -, H, the experimental results show a somewhat lower 
disturbance growth rate in comparison to the computations. The presence 
of the film, initially separating the gases may be the cause of it. This 
factor was not taken into account in the computations. Film mass is 
small, in comparison to characteristic gas masses included in the 
calculated motion. For this reason, it is assumed to have almost 
negligible influence on the character of distortion evolution. This 
assumption is supported by the results of direct calculations as well [7]. 
On the other hand, aside from the mass-inertial influence, the elasticity 
and strength of the film may influence the rate of interface disturbance 
growth. The proposed mechanism for this influence is as follows. During 
the initial stage, the disturbance amplitude growth increases film 
tension. This results in the creation of a tensile force which counters the 
amplitude increase. This tensile force acts to oppose film surface 
expansion. In this sense, it is analogous to the surface tension force. This 
force continues to act until the film is torn. The estimates [7] suggest 
that, in the foregoing situation, this factor may decrease the disturbance 
amplitude growth rate by about 15%. 

In case H - L (Fig. 6) the tensile influence of the film is not 
appreciable. It is believed that this is connected with the fact that in the 
initial stage the disturbance changes in sign. The film surface area does 
not increase, but instead decreases, suggesting that the film strength is 



not influential during this phase. Later, when the interface disturbance 
amplitude becomes equal to the initial one (after undergoing a change in 
the phase of the disturbance and a corresponding sign change), the film 
surface may be broken as a result of the formation of occasional small- 
scale distortions. The ruptured film cannot support a tensile stress and 
thereby has no further direct influence on the growth rate. Subsequently, 
however, remnants of the film may act as perturbation sources in the 
later evolution of the mixing zone velocity field. 

It should be noted that in the experiments and in the calculations, 
disturbance amplitude growth takes place according to linear theory (2) 
even when the amplitudes grow to be comparable with the wave length. 
This is well beyond the limit of applicability predicted by the linear 
theory. Simultaneously, the interface surface comparatively quickly 
acquires a nonsinusodial form, in contrast to the sinusoidal form 
predicted according to the linear theory. This means that, in addition to 
the basic harmonic growth, the interface exhibits formation and evolution 
of complementary, phase-shifted harmonic amplitudes, cos :X, with wave 
lengths m = h/, h/, and so on [7] .  

3. TURBULENT MIXING AT THE CONTACT INTERFACE, ACCELERATED BY 
SHOCK WAVES 

As a consequence of the late time nonlinear instability development, 
the flow in the vicinity of the interface becomes turbulent with resultant 
turbulent mixing (see, for example, [21]). When the interface is 
accelerated by a single shock, the prescribed initial distortion of the 
interface may grow in amplitude considerably (by a factor of 10-20), local 
vorticity concentrations are created, but the process as a whole has an 
ordered character. When the surface is accelerated by a series of 
stationary shock waves the distortion growth rate (in L - H case) 
approaches exponential behavior [ l  l ] .  Experimentally we found that if the 
series of stationary shock waves accelerates the flat interface between 
two gases, turbulent mixing of the contact gases takes place [3 ] .  



The experiments were conducted in the shock tube previously 
discussed. The test section end of the shock tube (Fig. 7) had transparent 
lateral walls and consisted of two matched gas volumes, separated by a 
thin film. The channel end was plugged by a stopper with a flat face. The 
closed volume was filled with helium in the test section with air in the 
upstream side of the film at atmospheric pressure. A flat stationary 
shock wave crossed the surface (H - L case) and accelerated it. After the 
reflection from the flat-plug face which acted as a rigid wall, the 
reflected shock wave passed through the contact surface again in a 
reversed direction (L - H). Then it reflected from the contact 
discontinuity at the L - H interface. After that it reflected from the wall 
once again, and so on. Thus, a series of stationary shocks of consequently 
decreasing amplitude crossed the film surface (in direction L - H) and it 
was impulsively broken up, a process which continues until motion ceases. 

Immediately after the start of motion, the interface begins to smear 
due to the small-scale disturbance growth. The small-scale disturbances 
have characteristic scales that are below the resolution limits of the 
photographic flow visualization technique (Fig. 8). The primary sources of 
these small-scale disturbances may be the variations in thickness of the 
film (+ 50% of the average thickness) and equally small-scale folds along 
the interface surface. Gradually the interface distortions smear and 
thicken until the interface zone becomes a region of turbulent mixing with 
nonuniform edges. The characteristic scale of zone edge distortions grow 
with time. The picture of mixing zone has a cellular structure, typical of 
the shadowgraph flow visualization of turbulent flow. The film, which 
initially separated the gases, breaks into tiny pieces. While originally 
flat, these pieces later turn into thickened clumps. When their form 
becomes more compact, their drag decreases. They acquire a velocity 
equal to the mass averaged gas velocity after the initial shock, and they 
are weakly dragged by the subsequent shock waves. Thus, the film clumps 
pass through the mixing zone and later are advected from this zone into 
the light gas region. First, a simple phenomenological model of turbulent 
mixing in Rayleigh-Taylor instability was developed in [22]. Later in 
[3,14,23] other variants of semi-empirical models were suggested to 
describe gravitational turbulent mixing as well as the acceleration of the 
interface by stationary shocks [3,14]. The model described in [l41 seems 



Fig. 8 The evolution of turbulent mixing zone at the interface of gases 
(air to helium), accelerated by a shock wave (M = 1.3), 3Tll is the 
turbulent mixing zone, y is a shock wave; C is a a rigid wall. 



to be a more satisfactorily complete and descriptive model for this 
process. 

In Fig. 9 the averaged data of nine tests and the calculated results are 
compared for the experimental arrangement described previously [14]. The 
absolute width of the mixing zone at a fixed time differs slightly from 
test to test due to the difference in the levels of intermittent distortions 
which appear at the moment of film breakage. Nevertheless, the rate of 
zone width growth, especially that at late times, appears to be practically 
equal in all tests. The computations 1141 agree well with the test results. 

Mixing zone width grows continuously in time,. Its growth accelerates 
when shocks pass through the zone. It is related to the disturbance 
evolution mechanism in the case of the L - H instability [l ,2]. Another 
essential mechanism may be present as well. In the mixing zone, density 
pulsations exist, that are the result of intrusions of more light or more 
heavy gas compared with the mean background level. When the shock wave 
passes through the gas with lighter intrusions, the latter are observed to 
be accelerated up to a velocity, which exceeds the mean background level 
1241. If the density intrusions are relatively heavy, the opposite situation 
appears. The heavier intrusions are left behind the mean background 
mixing region. Thus, when the shock wave passes through the mixing zone, 
heavier gas intrusions tend to collect in the region occupied formerly by 
the light gas while the lighter gas penetrates the region formerly 
occupied by the heavier gas. At the acceleration of such density 
intrusions by a shock wave, vortex rings are created at their edges [35]. 

4. NONLINEAR EFFECTS OF DISTORTIONS EVOLVING AT THE SHOCK AND 
EXPANSION WAVES 

During shock passage through the disturbed contact interface, 
disturbance generated shock waves and expansion waves are formed. In 
certain cases it is interesting to define the laws of this disturbance 
evolution. Usually the problems of stability and evolution of small 
distortions in gas dynamics are studied by the solution of (analytic or 



Fig. 9 X - t diagram of air-to-helium interface and of the mixing zone 
evolution. Here, points are the experiment, solid curves are the 
calculation [14]; dashed and dot-dashed lines are the shock wave 
and interface trajectories, respectively, in the computation 
without accounting for mixing. 



numerical) linearized equations. In such cases the initial disturbance is 
often given in form y = a, cos K X  and is solved as y = a(t) . cos K X ,  
where a(t) is a certain instantaneous amplitude value. Applicability of 
the linear approximation is usually determined by the relative smallness 
of the distortion dimension. In particular, it is usually applicable if a(t) 
has the length, 

However, in some cases the linear approximation appears to be invalid, 
even if relation (4) is satisfied. 

Immediately following, experimental results [4,5] are presented, 
which illustrate the nonlinear effects limiting applicability of the linear 
approximation. This process is most evident and is dramatically 
illustrated in the evolution of expansion wave distortions. In the linear 
approximation, strictly speaking, the initial disturbance amplitude A. = 

2 a 0  must be infinitesimally small. It does not change with time, i.e., 
~ ( t )  = A. = Constant. As the experiment shows, in the case of a small, but 
finite distortion of the expansion front, another situation appears. 

The experiment was arranged as shown in Fig. 1. The first closed 
volume of the shock tube (gas 1) was filled with carbon dioxide (po = 1.85 
g i Q ,  y = 1.30) and the second volume filled with air (po = 1-205 g/Q, y = 

1.40). Hence, this is a case of H - L. In Fig. 10 the photo of the expansion 
distortion pattern is presented. At the initial motion the disturbance 
amplitude of the reflected expansion wave is [ l  + (c - u)/D] times greater 
than the initial amplitude of interface disturbance. Here, D is the velocity 
of the incident shock wave, while U and c are the particle and sound 
speeds, respectively, behind the front in carbon dioxide. Each point of the 
wave front moves at the local sound velocity. Since the flow behind the 
incident plane shock wave is homogeneous, all points of the expansion 
front are shifted with the same velocity. It follows that evolution of the 
wave front form with time must proceed, in accordance with Huygens' 
classical principle of optics. As interpreted here, this means that each 
subsequent front location represents the envelope of spherical waves, 

originating from the points on the previous one.* This is well confirmed by 
the experiment. 





This evolution is characterized by a singular point, where the 
continuous curvature of the wave front is broken into two segments. It 
should be noted, that this singular behavior is not the result of excessive 
disturbance magnitude. Based on geometrical considerations one may 
show that such points must appear early or later for any finite distortion, 
no matter how small. The distortion amplitude does not change, until the 
singularity in the wave front appears. Following the appearance of these 
points, secondary waves P' originate in the flow behind the front. These 
are extensions of the primary front fields (see Fig. 10.1). In this situation 
the continuous wave front disintegrates into a group of intersecting arcs. 
The front P' is characterized by the fact, that it is formed at all points at 
different times. Discontinuities in the density spread along the front 
with a finite velocity. This is evident from Fig. 10.1. When the initial 
amplitude of the expansion wave distortion increases, the discontinuous 
front profile and origination of the secondary wave occurs earlier (see 
Fig. 10.2). Secondary compression waves are correspondingly formed in 
the flow behind the expansion front. 

In either case, when the singularity appears, the front wave 
disturbance amplitude, A, begins to decrease and asymptotically tends to 
zero. When time periods are sufficiently large, the form of the diverging 
wave profiles becomes cylindrically symmetrical and appears insensitive 
to influences of their initial form. Under this assumption of insensitivity, 
it is not difficult to show that the expansion wave-front disturbance 
amplitude changes according to A -- constant . t ' l  constant . S- ' ,  at 
t -+ -, where t is time, and S is the path of a wave. 

The shock wave disturbance evolution is accompanied not only by the 
wave front change, but also by the appearance of discontinuities in the 
curvature of the transverse shock wave fronts formed in the flow behind 
the primary front. A series of shadowgraph photos of the shock wave 
evolution on reflection in air against a rigid wavy wall, placed at the end 
shock tube test section, is shown in Fig. 11. In these experiments we 
varied the disturbance amplitude of the wavy wall at a fixed distortion 
wave length. 

In all the cases the reflected wave front form deviates from the 
initial sinusoidal form increasingly with time. In particular, the 
formation of discontinuities in the front curvature, seen in Fig. 11, 



Fig. 11 Disturbance evolution at the shock wave front, reflected from a rigid 
wavy wall. (a) aok = 0.2 (a, = 0.025 h); (b) aok = 0.4 (a, = 0.05 h); (c) aok = 0.8 
(a, = 0.01 h);  y is the reflected shock wave; H is the breakage point of a shock 
wave front; II is the transverse wave front; M is the Mach wave. 



illustrate this process. Simultaneously, discontinuities are formed at the 
fronts of the transverse waves in the flow behind the front of the 
reflected wave. Initially the density in the flow is smoothly distributed. 
The early smearing of the transverse waves is observed in the 
shadowgraph photos. Subsequently, the fronts sharpen with time and their 
photo visualizations consequently become more distinct and clearer. As 
the amplitude of the initial disturbance decreases, the formation of 
singularities in front curvature and deviations from sinusoidal form 
diminishes. Ultimately, one similar class of nearly sinusoidal 
perturbations survives in the field of continuously interacting Mach 
waves, M. 

In the foregoing situation, the small distortion evolution under the 
necessary small amplitude criterion (4), is not sufficient to establish 
applicability of the linear approximation. The criterion of small time 
must also be satisfied [5] 

where c, is characteristic sound velocity. It follows that care should be 
taken to define the limits for use of the asymptotic formulas 125-311, 
which are based on the linear approximation when computing a finite value 
of distortion. 

5. LOCAL CUMULATION PHENOMENON 

Transverse flow initiated in the plane of the distorted interface by 
streamwise shock passage through the interface, may produce significant 
nonuniformity in the local energy concentration. Experiments on shock 
wave reflections from rigid, concave: (a) cylindrical and (b) spherical 
walls [8,9], illustrate the scale of such concentrations. In case (a) the 
experiment was done in a shock tube within the measuring region of the 
rectangular test section. A plug whose inner surface had a concave 



cylindrical shape was placed at the end of the test section (Fig. 12a). The 
lateral walls of the test section were made of optical glass. We obtained 
the shadowgraph photos of the reflection of a flat, stationary shock wave 
from the concave wall as well as optical-slit resolution of the flow (X-t 
diagrams) in the horizontal plane of chamber symmetry. In Fig. 13 we 
present the photos of flow pattern variations with changes in wall 
concavity. The changes in wall concavity are characterized by the 
nondimensional parameter 11 =:, where h is the depth of the concavity and 
R is cavity radius of curvature (Fig. 12A). 

h h 
At small values of (e.g., F = 0.085), (Fig. 13A), the reflected wave y 

acquires a cylindrical shape in the area near the symmetry plane of the 
1 

shock tube channel. In this case the initial radius of this wave is - F R. 

This section cylindrically and symmetrically converges to the axis, 
1 

located at distance - ,R from the wall. The symmetrical convergence of 
the central area of the reflected wave is interrupted by the collapse of 
transverse compression wave II, which advances from the periphery to the 
symmetry plane. These transverse waves develop from the tangential 
flow, which originates during the shock wave reflection, at the inclined 
wall sections. 

As the compression waves advance, their fronts steepen and they 
coalesce into shock waves. At the collapse of the transverse waves on the 
symmetry axis, the front velocity of the reflected wave increases 
impulsively. Here, the wave configuration becomes that, which 
corresponds to an irregular reflection of the shock wave with an apparent 
formation of a central Mach wave, "M". 

h h 
When R is sufficiently high (e.g., R = 0.3), (Fig. 13B), from the very 

beginning the transverse waves are shocks. This can be seen from the 
sharp, discontinuous images of their fronts and by the characteristic 
envelope focus which originates at the reflected wave front. The 
intersection point of the reflected and transversal waves moves along line 
3 (as designated in Fig. 13B). This line marks separation between the 
regions of two- and three-fold compression. This line also is the 
tangential contact discontinuity, which separates regions of different 
entropy and density. 

h At = 0.53, (Fig. 13C), the distinguishing characteristics of the 
previous case are repeated, in general, but are displaced in intensity, 



AA- section 

Fig. 12 Experiment arrangement to study the shock-wave reflection from 
a) cylindrical 
b) spherical concave wall. 
1 - a plug in the channel end of a shock tube; 
2 - a front of a stationary shock wave. 



Fig. 13 The shadowgraph photos of the flow, appearing $1 the shock-wtve 
reflection from a cylindrifal concave wall with M = 1.27; (A) E = 0.085; (B) = 

h 
0.3; (C) E = 0.53; (D) = 0.89. y - a reflected wave front; y' - a central, 
cylindrically symmetrical region of a reflected wave; II - a transverse wave; M 
- Mach wave; 3 - entropy trace, tangential breakage; B - vortex zone, y" - a 
front of a shock wave, diverging from a higher pressure zone. 



time, and position. However, following Mach wave M formation in the 
central region, the flow character changes abruptly in comparison with 
the previous case. The lateral branches of reflected wave y collapse on 
the symmetry plane, the phase speed of their intersection is higher than 
the front velocity of the reflected wave. Subsequently, their trajectories 
diverge from the central region of the high pressure area (the dark zone) 
which is the locus of points reached during transverse wave collapse. The 
energy concentration is sharply localized to a finite, but small, central 
region. A comparatively small gas fraction acquires a rotational velocity, 
significantly larger than that of the surrounding gas. Consequently, 
vortex, B, appears. 

h In case = 0.89 (Fig. 13D) the lateral branches of the shock wave y 
collapse on the symmetry plane continuing until the transverse waves 
collapse. Hence, the higher pressure area is left far behind the reflected 
wave front. In this case the front velocity of wave y from the highest 
reflected pressure region appears to be the maximum of the several cases 
examined. .By means of flow tracing (X-t diagram) in the symmetry plane, 
we find an indication of the possible appearance of a shock wave, 
diverging from the high pressure region. 

The parameters of the flow after the incident shock wave and the 
state equation of medium (in this case it is an ideal gas with y = 1.4) are 
known. Hence, one may estimate the parameters of the state after the 
reflected wave front, diverging from the high pressure zone. In Fig. 14, 
we record the dependence of the relation of maximal attained temperature 

T m a ~  in the "hot" zone to the temperature behind the incident shock wave 
front T, at the a values for the cases considered (curve 1). In this case 
the attained temperatures are comparatively low; approximately 1.5 times 
the temperatures which appear at the reflection from the flat wall. 

This effect was more in evidence when the primary wave was 
reflected from a spherical concave wall. In Fig. 12B the test arrangement 
diagram is shown. The end of the test section of the cylindrical shock 
tube is closed off with a plug whose inner face has been given a spherical 
groove. In the plug, a narrow slit was cut. Its plane coincides with the 
tube axis. In the tube walls, two narrow windows of high optical-quality 
glass were placed. The slit plane in the plug was aligned with the 
windows. Thus, it was possible to obtain slit scanned-flow images along 



h 
Fig. 14 The dependence on the degree of wall cavity of temperature 

rise, Tmax, behind reflected shock to temperature behind incident 
shock, T1. Curves: 
1 - reflection from cylindrical wall; 
2 - reflection from spherical wall. 
Incident shock Mach No., M = 1.27. 



the tube axis. The quality of the coincident matching of the X-t diagram 
of the flow to the shadowgraph evidence, described previously, suggests 
the satisfactory level of comparison in the flow patterns deduced from 
the two independent diagnostic techniques applied. 

Curve 2 of Fig. 14 shows the computed maximum temperatures based 
on the measured experimental wave velocities and the thermodynamic 
state assumptions previously described. The curve indicates that, under 
these circumstances, temperatures may develop which are an order of 
magnitude or more higher than those generated behind a shock reflected 
from a plane wall. These substantially increased temperature levels 
indicate that the converging transverse waves are cylindrical. That is, it 
is only by the convergence of cylindrical waves on the axis of a spherical 
groove that temperature increases of this magnitude can be produced 
under these circumstances. 
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NUMERICAL SIMULATION OF TURBULENT MIXING I N  SHOCK-TUBE EXPERIMENTS 

K a r n i g  0. M i k a e l i a n  
Lawrence L ivermore N a t i o n a l  Labo ra to r y  

L i  vermore, Cal i f o r n i  a  

We have c a r r i e d  o u t  a  number o f  2D numer ica l  s i m u l a t i o n s  on an ALE 

code f o r  shock-tube exper iments i n  which a  shock crosses one o r  more 

c o n t a c t  d i s c o n t i n u i t i e s  and, a f t e r  t r a v e l i n g  th rough  a  homogeneous 

medium, r e f l e c t s  o f f  a  r i g i d  w a l l  a t  t h e  end o f  t h e  shock-tube and 

re-crosses t h e  c o n t a c t  d i s c o n t i n u i t y  ( F i g .  1 ) .  As i n d i c a t e d  i n  F i g .  1, 

we have cons idered t w o - f l u i d  and t h r e e - f l  u i d  exper iments:  t h e  f i r s t  

f l u i d ,  which c a r r i e s  t h e  o r i g i n a l  shock, i s  a i r ;  t h e  o t h e r  f l u i d s  a re  

hel ium, f r eon ,  SF6, o r  a i r  aga in .  Hel ium i s  l i g h t e r  than  a i r ,  w h i l e  

f reon and SF6 a re  heav ie r  than  a i r .  The i n t e r f a c e ( s 1  between t h e  

f l u i d s  serve as c o n t a c t  d i s c o n t i n u i  t i e s  and a r e  sub jec ted  t o  t h e  o r i g i n a l  

shock, t h e  re-shock, and subsequent rarefactions/compressions. F igu re  1  

a l s o  shows t h e  v e l o c i t y  h i s t o r i e s  o f  t h e  i n t e r f a c e  f o r  two cases: when 

t h e  t e s t  s e c t i o n  i s  60 cm l o n g  and f i l l e d  w i t h  he l ium,  and when i t  i s  

30 cm l o n g  and f i l l e d  w i t h  f r eon .  When t h e  incoming shock has Ms=l .2, 

i t  takes a  l i t t l e  ove r  1  ms and 2 ms f o r  t h e  re-shock i n  t h e  60 cm he l i um  

and t h e  30 cm f reon  cases, r e s p e c t i v e l y .  Subsequent r e v e r b e r a t i o n s  o f  

t h e  shock a r e  weaker and a c t  t o  s low down t h e  i n t e r f a c e  a t  l a t e r  t imes.  

We have c a r r i e d  o u t  numer ica l  s i m u l a t i o n s  f o r  f i v e  types of 

exper iments as i n d i c a t e d  i n  F ig .  1  . S i  n g l  e-scal e l s i  n g l  e- i  n t e r f a c e  

exper iments a re  o f  t h e  c l a s s i c a l  t ype  cons idered t h e o r e t i c a l  l y  by 
2 R i  chtmyerl and exper imenta l  l y  by  Meshkov. P e r t u r b a t i o n s  o f  ampl i tude 

q and wavelength X  evo lve  accord ing  t o  d n l d t  = q ( 0 ) ( 2 ~ / X ) A A ~  where A  i s  

t h e  Atwood number and AV i s  t h e  jump v e l o c i t y  o f  t h e  i n t e r f a c e .  

P e r t u r b a t i o n s  grow f o r  bo th  p o s i t i v e  A and nega t i ve  A  as cons idered by 

R i  chtmyer and Meshkov, r e s p e c t i v e l y .  F i g u r e  2  shows t h e  a i  r l h e l  ium 

case. As expected, when A<O t h e  ampl i tude  goes th rough  ze ro  (second 

frame i n  F i g .  2) and grows w i t h  t h e  o p p o s i t e  phase. The r e f l e c t e d  shock, 

i n d i c a t e d  by  t h e  arrow, sees a  p o s i t i v e  A  and inc reases  t h e  growth 

r a t e  w i t h o u t  changing phase. To cover  mu1 t i p l e  shocks, we extended 

R ich tmyer ' s  fo rmu la  by  adding i ( O )  t o  i t ,  so t h a t  a f t e r  each shock t he  

amp l i tude  evo lves acco rd i ng  t o  (Ref.  3) 



Shock 

Single-scale1Single-interface 

Alr 
Double-scale1Slngle-interface 

Alrlhelium (60 cm) Airlfreon (30 cm) 

F igu re  1  

Several  i n t e r e s t i n g  cases a r i s e  i n  two-shock systems, as d iscussed i n  

Ref.  3 ,  p a r t i c u l a r l y  when ptest gas>pair as i n  t h e  a i r / f r e o n  

case. The p e r t u r b a t i o n s  go through ze ro  and reve rse  phase when t h e  

o r i g i n a l  shock r e l f e c t s  o f f  a  r i g i d  end-wall t o  re-cross t h e  i n t e r f a c e  



(Av2>Avl). However i f  t h e  s t r e n g t h  o f  t h e  shock can be reduced (Av,<Avl), 

t hen  t h e  ampl i  tude can be " f rozen-ou t "  by  p r o p e r  shock - t im ing .  The t i m e  

when r l  goes th rough  ze ro ,  o r  t h e  shock - t im ing  necessary  t o  f r e e z e  Q, 

depend on t h e  s t r e n g t h  o f  t h e  shocks v i a  Avl and Av2, b u t  a r e  independent  

o f  t h e  o r i g i n a l  a m p l i t u d e  w i t h  which t h e  exper imen t  s t a r t s .  Th is  

independence from i n i t i a l  amp1 i tude  makes t h e  exper iments  

much e a s i e r  t o  c a r r y  o u t ,  b u t  t h e y  have n o t  been pe r fo rmed  y e t .  

t l m e  = 0.0 time = 0.25 t ]me = 0. 7 

0 < 1 . O  2 S . I 0  L 

t lw = 1.1 time = 1.5 t i m e  = 1.9 

2 2  6 * I 0  

F i g u r e  2 

The second t y p e  o f  exper iments  we s i  mu1 a t e d  have doubl  e-scal  e  

p e r t u r b a t i o n s  a t  a  s i n g l e  i n t e r f a c e .  A l l  o f  o u r  s i m u l a t i o n s  a r e  r e p o r t e d  



i n  Ref. 4 and here  we summarize ou r  r e s u l t s  ve r y  b r i e f l y .  We see t h a t  i n  

t he  problem o f  compe t i t i on  between bubbles and sp ikes  o f  d i f f e r e n t  s i zes ,  

a  bubble  t h a t  i s  t w i c e  as l a r g e  as o t h e r  bubbles bo th  i n  wavelength and 

amp l i tude  moves s l i g h t l y  ahead o f  t h e  sma l l e r  bubbles,  b u t  t h e  l a t e  t ime  

e v o l u t i o n  o f  a  bubble  t h a t  i s  t w i c e  as l a r g e  as o t h e r s  i n  wavelength o n l y  

i s  s i m i l a r  t o  t h e  e v o l u t i o n  o f  t h e  sma l l e r  bubbles.  

The t h i r d  t ype  o f  exper iment we s imu la ted  was a  t h r e e - f l u i d  exper iment 

w i t h  s i ng l e - sca le  p e r t u r b a t i o n s ,  an example o f  which i s  shown i n  F i g .  3. 

A Mach 1.2 shock moves f rom a i r  i n t o  a  4 cm t h i c k  l a y e r  o f  f r e o n  and 

a f t e r  emerging f rom t h e  lower  (per tu rbed)  s i d e  o f  f reon i t  en te r s  another  

l a y e r  o f  a i r ,  60 cm long .  The p e r t u r b a t i o n s  change phase soon a f t e r  t h e  

shock leaves t h e  f r e o n  (second frame i n  F i g .  3 ) .  About 2.8 ms a f t e r  t h e  

f irst shock t h e  f r e o n  l a y e r  i s  re-shocked and t h e  p e r t u r b a t i o n s  grow 

f a s t e r .  The case where t h e r e  a r e  no l a r g e  sca le  p e r t u r b a t i o n s  b u t  o n l y  

smal l  amp l i tude  random p e r t u r b a t i o n s  i s  shown i n  F i g .  4. Th is  f o u r t h  

t ype  o f  exper iments has been r e c e n t l y  c a r r i e d  o u t  by N.C. Stearman and 

t h e  r e s u l t s  a r e  i n  good q u a l i t a t i v e  agreement w i t h  o u r  s imu la t i ons  

r e p o r t e d  i n  Ref .  4. The p e r t u r b a t i o n s  develop f i r s t  on t h e  upper su r f ace  

o f  f r eon ,  which i s  shocked f i r s t ,  b u t  a f t e r  re-shock t h e  p e r t u r b a t i o n s  on 

bo th  i n t e r f a c e s  a r e  comparable. 

The f i f t h  t ype  o f  s imu la t i ons  i n v o l v e  random p e r t u r b a t i o n s  a t  a  

s i n g l e  i n t e r f a c e .  The r e s u l t s  o f  severa l  c a l c u l a t i o n s  a r e  r e p o r t e d  i n  

Ref. 4 f o r  a i r l h e l i u m  and a i r l S F 6 .  The emphasis was on 

a) s e n s i t i v i t y  t o  i n i t i a l  c o n d i t i o n s  and b)  t ime -evo lu t i on  o f  t h e  mix 

l a y e r  o r  o f  t h e  " t u r b u l e n t  m i x i n g  zone" as d e f i n e d  i n  t h e  exper iments o f  
5 Andronov e t  a l .  and Zai t sev  e t  a l .  6 From o u r  s i m u l a t i o n s  we can 

draw o n l y  q u a l i t a t i v e  conc lus ions  because many more zones a re  r e q u i r e d  t o  

r e s o l v e  smal l  s ca le  s t r u c t u r e s ,  and because t h e  code uses an a r t i f i c i a l  

v i  scos i  t y  f o r  numer ica l  s t a b i  l i ty. Typ i ca l  l y  100x250 zones were used i n  

t h e  s i m u l a t i o n s  and i n  t h e  few cases where t h e  mesh was r e f i n e d  by a  

f a c t o r  o f  2 t h e  m i x i n g  w i d t h  inc reased  b y  about 20%. Never the less ,  ou r  

c a l c u l a t i o n s  suggest t h a t  t h e  l a t e  t ime  e v o l u t i o n  o f  t h e  mix l a y e r  

depends weakly on i n i t i a l  c o n d i t i o n s .  I n  F i g .  5 we show t h e  i n t e r f a c e  i n  

t h e  a i r lSF I  case a t  t =3  ms by  which t ime  i t  has been reshocked. The 

frames l a b e l e d  A,  B, and C s t a r t e d  w i t h  i n i t i a l  random p e r t u r b a t i o n s  o f  
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F igu re  3 

0.05 cm, 0.10 cm, and 0.20 cm, w h i l e  frame D s t a r t e d  w i t h  mu1 t i - s c a l e  

p e r t u r b a t i o n s  which had l onge r  wavelengths b u t  t h e  same maximum ampl i tude  

o f  0 .20 cm. The t o t a l  w i d t h  o f  t h e  mixed r e g i o n  appears t o  be i n s e n s i t i v e  

t o  such v a r i a t i o n s  i n  i n i t i a l  c o n d i t i o n s .  Exper imenta l  r e s u l t s  on t h i  S 

i s sue  was repo r t ed  o n l y  a t  t h i s  workshop by  B. S t u r t e v a n t ,  and appear t o  

suppor t  t h i  S n o t i o n  o f  u n i v e r s a l i t y .  I n  a  r e l a t e d  process,  mix generated 

by t h e  Ray1 e i  gh-Taylor i n s t a b i  l i t y  ( cons tan t  a c c e l e r a t i o n ) ,  t h e r e  i S bo th  

numerical  and exper imenta l  evidence o f  u n i v e r s a l  i t y  p resen ted  i n  t he  work 
7 o f  Read and Youngs. Based upon t h e i r  r e s u l t ,  we suggested8 t h a t  

t h e  m i x i ng  w i d t h  i n t o  t he  heav ie r  f l u i d  evo lves as 
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i n  t h e  case o f  a  shock. I n  ou r  s i m u l a t i o n s  t h e  m i x i n g  w i d t h  grows n o t  

q u i t e  l i n e a r l y  i n  t ime  b u t  a t  a  s lower  r a t e .  We suspect t h a t  t h e  

a r t i f i c i a l  v i s c o s i t y  i n  t h e  code slows t h e  l a t e  t ime  growth,  b u t  we have 

no d i r e c t  suppor t  f o r  t h i s  view, except  t h e  s c a l i n g  argument t h a t  

independence from i n i t i a l  c o n d i t i o n s  d i r e c t l y  imp1 i e s  t h a t  h-Avt. I f  

we admit  dependence on an i n i t i a l  l e n g t h  sca le  h(O), then  of  course any 

f u n c t i o n a l  dependence on t ime  i S p o s s i b l e .  We hope f u t u r e  exper iments 

w i l l  t h row l i g h t  on t h i s  i s sue .  
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The l a s t  s i m u l a t i o n  t h a t  we performed was o f  an a c t u a l  exper iment 
9 c a r r i e d  o u t  by B. S t u r t e v a n t .  A Mach 1.3 shock passes f rom a i r  i n t o  SF6 

and r e f l e c t s  o f f  t h e  end-wall o f  a 10 cm l o n g  t e s t  s e c t i o n .  The i n i t i a l  

a i r l S F 6  i n t e r f a c e  i s  d i f f u s e  and con ta i ns  a bump because o f  g r a v i t y  waves 

s e t  up when a p l a t e  i s  wi thdrawn j u s t  be fo re  shock a r r i v a l .  The re-shock 

and subsequent rarefactionslcompressions s top  t h e  b u l k  mot ion  o f  t h e  two 

gases, b u t  m i x i ng  con t inues  a t  a r a t e  which i s  approx imate ly  l i n e a r  i n  

t ime .  As shown i n  F i g .  6, o u r  s imu la t i ons  agree q u i t e  w e l l  w i t h  t h e  

exper imenta l  r e s u l t s ,  even though we have s l i p  c o n d i t i o n s  on t h e  two s i de  

w a l l s  and cannot reproduce t h e  w a l l  boundary l a y e r  seen i n  t he  

exper imenta l  photographs. 

The s imu la t i ons  r e p o r t e d  here  and i n  Ref.  4 were conducted on t h e  

L ivermore Cray computers. The l onges t  runs  were t h e  problem j u s t  

d iscussed (MS=1.3 t o  t.5.7 ms) and another  a i r l h e l i u m  prob lem (MS=1.7 

t o  b 1 . 9  ms) . None o f  them took  more than 15 Cray-hours . I am g r a t e f u l  

t o  G. Burke f o r  suppor t  and encouragement, and t o  B. S t u r t e v a n t  f o r  

sha r i ng  h i s  exper imenta l  r e s u l t s .  Th i s  work was performed under t he  

auspices o f  t h e  U. S. Department o f  Energy by t h e  Lawrence Livermore 

Na t i ona l  Labora to ry  under c o n t r a c t  number W-7405-ENG-48. 
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Abstract 

This paper describes some of the basic features of and physical mechanisms controlling 

two types of supersonic flows: detonations and supersonic shear layers. Gas-phase detonations 

are supersonic flows in which a leading shock is driven through an energetic material by local 

energy release. The material behind the leading shock front of a detonation is highly disturbed 

and contains many interacting shocks, shears layers, and rection zones that produce cell-like 

patterns on the chamber containing the flow. Supersonic shear layers often are extremely 

irregular and noisy and show strong interactions between shocks and vortical structures. This 

paper first discusses the roll of shocks in suppressing mixing and vortex merging in shear 

flows, and then discusses the effects of shock interactions on pattern formation and vorticity 

generation behind propagating detonations. 

Numerical Mode1 

The detonation and shear-flow calculations described here were performed with numerical 

models that solve the time-dependent two-dimensional Euler equations using nonlinear, fully 

compressible Flux-Corrected Transport (FCT) algorithms [l]. FCT is an explicit, conservative, 

finite-volume method designed to ensure that all conserved quantities remain monotonic and 

positive. It has proven particularly effective in maintaining steep gradients and generally 

accurate solutions in both supersonic and subsonic flow calculations. The particular direction 

and time-split version used here and a number of related calculations performed with it are 

described in some detail by Oran and Boris [2]. 

The FCT solutions are more accurately described as large-eddy simulations of the Navier- 

Stokes equations in which the subgrid turbulence model is the nonlinear high-frequency filter 

in FCT itself. This nonlinear filter, designed to maintain positivity and monotone flow profiles, 

does not effect large-scale structures but diffuses the smallest-scale structures that cannot be 

adequately described with the grid resolution chosen. Provided that the computational grid is 

fine enough to resolve the large-scale features of the flow, the residual numerical viscosity of the 

algorithm mimics the behavior of small-scale turbulent diffusion at high Reynolds number by 

smoothing small-scale structures on the order of a few computational cells without smoothing 

adjacent regions where there is no flow. There are no appreciable smoothing effects at scales 

greater than a few cells. The ability of the nonlinear filter to simulate the effects of physical 

viscosity, for example, was recently shown by Grinstein [3,4]. 



Supersonic Shear Layers 

The linear theory for a periodic shear flow with equal and opposed velocities shows that 

the Kelvin-Helmholtz instability at low velocities is stabilized when the Mach number becomes 

large enough. Though compressibility allows additional modes of flow that can change the 

stability properties, the speed of the flow becomes so fast that there is little interaction bekween 

the two streams. The usually destabilizing pressure drops associated with the Bernoulli-effect 

are cancelled by the pressure rises required to deflect each high-speed stream past transverse 

displacements of the other stream. However, it has now become important to try to determine 

how to mix the two high-speed streams in times compatible for chemical reactions to occur. 

To investigate this, numerical simulations are needed to extend the calculations beyond the 

linear theory, to represent the behavior of the coherent structures, and describe the effects of 

chemical reactions in the regions of mixing. 

A number of simulations of supersonic shear layers in a laboratory coordinate system 

have been performed to determine those properties of the system that most influence mixing 

and to investigate the structure of the shear layer itself [5]. Figure 1 compares the large-scale 

features of a subsonic and a supersonic mixing layer. Figure l a  is an experimentally generated 

shadowgraph of the mixing layer between two subsonic streams [61, in which the top stream 

is nitrogen flowing at 10 m/s and the bottom stream is a mixture of helium and argon flowing 

at 3.5 m/s. The shadowgraph highlights the interface between the two streams and shows 

well-defined, organized, and linearly growing large coherent structures in the flow. Figure l b  

is a numerical shadowgraph showing mixing contours and thus the regions of large gradients 

in the species densities. This was taken from a calculation of a underexpanded confined shear 

layer in which the upper air stream was moving at Mach 4.5 and the lower stream was moving 

at Mach 1.5 when they enter the system. Again, there are welldefined large structures, but 

they are neither as organized nor as coherent as those shown in the subsonic shear layer. In 

addition, there is not nearly as much mixing between the layers as occurs in a subsonic flow 

with a similar velocity ratio. 

Figure 2 shows important feature of supersonic flows: the presence of shocks throughout 

the flow. In underexpanded or overexpanded flows, the shear layer is initially deflected from 

the centerline and sets up another shear layer across which the pressures are equal. In addition, 

there are reflected shock waves and rarefaction waves that influence the mixing layer and 

are important in triggering instabilities that lead to mixing. However, in these flows, there 

are high-pressure regions with shocks actually separating the relatively low-pressure vortices. 

From this observation, it appears that the shocks play a major role in the structure of the flow. 

The high-pressure regions appear to form an effective barrier between the vortices, possibly 

inhibiting merging and the growth of the shear layer. 

A Localized Supersonic Shear Layer 

Numerical simulations of laboratory shear flows are difficult because of the inflow-outflow 

boundary conditions that characterize most real systems and because of the very extensive 



calculations needed to accumulate flow and mixing statistics over long enough times. To 

circumvent this problem, periodic boundary conditions in the streamwise direction are an 

often-used numerical idealization in shear-layer mixing calculations. These conditions localize 

the shear-layer development to the computational domain, but they do not exactly correspond 

to laboratory flows. The uncertainty of how to treat inflow and outflow boundaries is replaced 

by the question of how to interpret periodic calculations in terms of experimentally realizeable 

fluid dynamic systems. 

Some of the problems with inflow and outflow boundary conditions are mitigated in 

supersonic flow calculations, often to be replaced by other numerical difficulties involved with 

adequately resolving multiple shock interactions and shock-vortex interactions. However, the 

vortices in a supersonic shear-flow calculation in a laboratory frame of reference form and 

move quickly out of the computational domain. To study their interactions with shocks and 

with each other, it would be most useful to focus on a small, localized region of the flow. 

In order to isolate the mechanism of shear-layer suppression observed in previous simu- 

lation~ of supersonic shear layers, we have performed a series of calculations in the geometry 

shown in Figure 3, in which two uniform parallel streams of equal and opposite velocity are 

separated by a thin plate with a slot in the center [71. The fluid above and below the plates 

interact in the region of the slot, and the velocity of the fluid varies from subsonic to super- 

sonic. This geometry was chosen because the region of interaction is localized to the vicinity 

of the slot which does not move in space. The geometry is similar to periodic flows, but the 

simulations themselves are spatially evolving because they have inflow and outflow boundary 

conditions at the edges of the computational domain. 

The simulations showed three flow regimes that occurred as the free-stream velocities 

were varied in the Mach-number range 0.6 to 2.4. In the low Mach-number regime, the 

flow in the slot initially behaves very much like a periodic temporal simulation, but then 

evolves into a nearly stationary potential flow. In the high Mach-number regime, a supersonic 

shear layer results with the formation of strong shocks. Very little mixing occurs between the 

two streams because the shocks to inhibit vortex formation and growth. In an intermediate 

transition regime, there are two shocks in the slot whose strength and position vary in time. 

The two shocks form a roughly antisymmetric configuration bounding a high-pressure region 

containing a time-varying amount of circulation. In this case, there is more mixing between 

the layers than in the fast supersonic case or the subsonic case. 

Figure 4 shows the evolution of the vorticity during the first 20,000 steps for a flow in 

the low Mach-number regime (Mach number 0.6 and velocity 200 m/$. The flow initially 

behaves like a temporally evolving simulation with periodic boundary conditions. Four small 

vortices form in the slot, two of these move towards the center of the system and two become 

attached to the edges of the slot. Eventually the two vortices in the center merge to form one 

large vortex and small asyrnmetries appear in the flow. By step 12,000, the large vortex has 

moved from the center and by step 20,000, the vortex has been blown out of the system leaving 

essentially a potential flow. Pressure contours (not shown) show that weak shocks form in the 



vicinity of the plate, even at inflow speeds as low as of 200 m/s. This same general flow 

evolution and final state is seen up to speeds of approximately 400 m/s, although the shocks 

near the plates become stronger as the velocity increases. 

Figure 5 shows vorticity and pressure contours for the case where the free-stream velocity 

is 800 mls, corresponding to a Mach number of 2.4. At these supersonic flow velocities, the 

streams do not appear to interact strongly even though essentially all the vorticity in the slot 

initially stays there during the course of the calculation. The flow speed is so high that each 

stream cannot change direction enough to turn around the edge of the slot, as occurred in the 

lower-speed cases. The streams are somewhat deflected because of low-pressure regions that 

form near the plate edges, but this displacement causes a strong shock to form in the oncoming 

stream from the other direction. The pressure increase of this shock prevents the deflection 

from growing enough for a potential flow to form. 

Thus the dynamics of the flow itself continually act to restore the shear layer. As in 

unsteady flows at lower velocities, when a vorticity layer thins there is a natural tendency 

for the layer to roll up. This motion here would lift the thickening knot of vorticity into the 

supersonic stream. However, this displaced vortex layer now collides with the fast flow above 

it and forms a strong shock. The high-pressure region corresponding to this shock drives the 

shear layer back toward its equilibrium position. Even far from the slot edge, the velocity 

associated with the vortical structures is not high enough to overcome the restoring forces 

generated by the flow. The vortical structures that do form are driven back into line by the 

high-pressure associated with the strong shocks. Thus the vorticity in the slot stays there with 

the net effect that the shear layer bounces up and down slightly. The resulting flow does 

not seem to approach a steady state, but very little mixing is observed because the vorticity 

cannot separate into coherent structures. Then the shocks rapidly weaken and vorticity moves 

downstream. This process, in which high-pressure regions keep vortices from moving in the 

transverse direction, is one mechanism by which vortex merging is inhibited. 

The Role of Turbulence in Detonations 

A detonation is a shock wave driven by local energy release. The energy can come from 

exotheromic chemical reactions in the material itself, or it can come from, for example, laser- 

energy deposition. Generally, the front of a detonation is not a single planar shock wave, 

but instead a system of dynamically evolving and interacting incident shocks, Mach stems, 

and transverse shocks. The region immediately behind the incident shocks and Mach stems is 

extremely noisy and looks very turbulent. Only in the most ideal cases is it very ordered and 

regular. Recently the role of turbulence in detonations has become a subject of some discussion. 

Turbulence could be important in 1) the shock-to-detonation transition, 2) the deflagration- 

to-detonation transition, and 3) detonation propagation itself. How and if turbulence can 

affect detonations is potentially important for understanding detonation phenomena and the 

potential role of detonations in reacting shear layers such as those discussed above. Here we 

briefly discuss each of these and leave a more detailed discussion to a future paper [8]. 



The fundamental physical mechanisms in detonation propagation are convection and en- 

ergy release from chemical reactions. In addition to these, molecular and thermal diffusion are 

also fundamental mechanisms in flame propagation. In a deflagration-to-detonation transition, 

the characteristic energy release rates and flow velocities are fast enough that the diffusion pro- 

cesses must become negligible. This transition can occur through a number of mechanisms. 

One mechanism is very similar to that described above in a shock-to-detonation transition: 

hot spots can form behind a flame front and these spots generate pressure waves that result 

in an increase in flame velocity, eventually leading to detonation. The pressure waves could 

directly accelerate the flame by increasing the pressure behind the front. They can indirectly 

cause the flame front to become distorted, so that its surface area is increased, more energy is 

released, and the flame front seems to move faster. These mechanisms are the result of pressure 

disturbances generated by a noisy or turbulent flow behind the flame and these disturbances 

directly or indirectly accelerate the flame front. 

The final issue is the effect of turbulence generated by a propagating detonation. The 

question here is where is the turbulence and what can its effects be. In the regions behind 

the leading shock fronts, there is a spectrum of pressure fluctuations in both the fully reacted 

material and the reaction zones. A major effect of such perturbations is to accelerate the 

initiation process. They provide a mechanism of reinitiation of the triple points by causing hot 

spots in either the reaction zones behind the Mach stem or incident shock or by speeding up 

the reactions in any unreacted gas pockets cut off by transverse waves. 

A source of some of these fluctuations could be Kelvin-Helmholtz instabilites at slip lines 

behind the shock fronts. The major effect here would not necessarily be convective mixing, 

which is normally associated with such shear-layer instabilities, but the noise generated by the 

compressible turbulent flow. It is not yet clear, however, how important these fluctuations are 

relative to fluctuations generated by the chemical-acoustic processes in nonequilibrium flows. 
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Figure 1. Comparison of an experimental shadowgraph of a subsonic mixing layer [61 and a 
numerical calculation of the mixing ratio in a supersonic mixing layer [5]. 



Figure 2. Calculated density contours for an (a) underexpanded confined and (b) an equal 
pressure unconfined supersonic shear layer [S]. 
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Figure 3. Schematic of the computational region of the localized shear layer simulation. 
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Figure 4. Computed vorticity contours for the subsonc localized shear layer. 
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ENO (essentially non-oscillatory) schemes can provide uniformly high order accuracy right 

up to discontinuities while keeping sharp, essentially non-oscillatory shock transitions. Recently 

we obtained an efficient implementation of ENO schemes based on fluxes and TVD Runge-Kutta 

time discretizations. The resulting code is very simple to program for multi-dimensions. ENO 

schemes are especially suitable for computing problems with BOTH discontinuities AND fine 

structures in smooth regions, such as shock interaction with turbulence, for which results for 

one dimensional and two dimensional Euler equations are presented. We observe much better 

resolution by using third order ENO schemes than by using second order TVD schemes for such 

problems. 

Efficient Implementation of ENO Schemes 

The solutions to systems of hyperbolic conservation laws of the type 

d 

U* + fi(u),, = 0 (or = g(u, X, t ) ,  a forcing term) ( l . la)  
i=l  

u(x, 0) = uO(x) (1.lb) 

where U =(ul,. . . X = (X', . . . ,xd),  and for real = ((1,. . . , t d ) ,  the combination 

C:=, [is is assumed to have m real eigenvalues and a complete set of eigenvectors, may de- 

velop discontinuities (shocks, contact discontinui ties, etc.) regardless of the smoothness of the 

initial condition. Examples of (1.1) include Euler equations of gas dynamics. ENO schemes, 

originally constructed by Harten, Osher, Engquist and Chakravarthy [l-41, use a local adaptive 
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2Research supported by NSF Grant No. DMS88-10150 



stencil to obtain information automatically from regions of snloothness when the solution devel- 

ops discontinuities. As a result, approximations using these methods can obtain uniformly high 

order accuracy right up to discontinuities, while keeping a sharp essentially non-oscillatory shock 

transition. The original ENO schemes in [l-41 used a cell-average framework which involved a 

reconstruction procedure to recover accurate point values from cell averages, and a Lax-FVendroff 

procedure (replacing time derivatives by space derivatives, using the P.D.E.) for the time dis- 

cretization. This can become a bit complicated for multi-dimensional problems [l]. For ease 

of implementation we constructed [7, 81 ENO schemes applying the adaptive stencil idea to the 

numerical fluxes and using a TVD Runge-Kutta type high order time discretization. These ENO 

schemes skip the reconstruction step and the Lax-Wendroff time discretization procedure, hence 

the resulting code is simple for multi-space dimensional problems. 

Let us describe our scheme first in scalar, one dimensional case (d = m = 1 in (1.1)). The 

scheme, in its method-of-lines form, is 

where the numerical flux fj+ approximates h(xj+ +)  to a high order, with h(x) defined by 

We first obtain the primitive function of h(x): 

then construct polynomials interpolating {Hj++} in an ENO fashion, i.e. by obtaining a locally 

"smoothest" stencil starting from one or two points, then adding one point to the stencil at each 

stage by comparing two divided differences and choosing the one which is smaller in absolute 

value. h+ is then taken as the derivative of this interpolating polynomial evaluated at xj+ +. 

"Upwinding" is achieved by the initial choice in the stencil-choosing process, and it is also crucial 

for the evident stability of these methods. We also need an entropy fix in any "expansion shock 

cell". For details, see [7, 81. 



The time discretization of (1.2) is implemented via a class of TVD Runge-Iiutta type methods 

[7].  For example, the third order case is 

This class of Runge-Kutta methods was shown to have the property that the total variation of 

the spatial part is not increased during the time discretization under a suitable restriction on g. 
For multi-dimensions the right-hand-side of (1.2) is applied to each of the terms f i (u) , i  in 

( l . l a ) ,  keeping all other variables fixed. The Runge-Kutta methods such as (1.6) can still be 

applied. 

For nonlinear systems, we simply apply the algorithms in each local characteristic field. We 

take an l-dimensional system to exemplify this process. Let AjS be some "average" Jacobian 

at X,+ i . Examples include A,+ i = E I or, in the case of Euler equations of gas 
u=i (uj+uj+~)  

X (Roe) . dynamics A,++ = - au / U = U  ino., where uj++ is the Roe average of u j  and uj+, 161. We then use 
it+ 

the eigenvalues of A,++, project to the local characteristic fields: and finally apply our scalar 

algorithms in each of these fields. See [S] for more details. 

2. Numerical Tests - Shock Interaction with Turbulence 

Example 1. We start with one dimensional Euler equations of gas dynamics for a polytropic gas, 

i.e. (1.1) with d = 1, m = 3, and 

where 

We use y = 1.4, and an initial condition 

p = 3.857143; q = 2.629369; P = 10.333333 when X < -4 

p = l + ~ s i n 5 x ;  q=O;  P = 1  when X > -4 (2.2) 

If E = 0, this is a pure Mach = 3 shock moving to the right. 

For a detailed linearized analysis see [5]. This linearized analysis, predicts fine structures for 

the density profile because of the different propagation speeds of entropy and acoustic waves. For 



E snlall (say E = 0.05) we observe results close to linearized analysis. For E = 0.2 we can observe 

nonlinear effects such as additional small shocks in the density profile. 

This is a good test problem because both shocks and fine structures in smooth regions exist. 

Traditional high order methods will develop oscillations near shocks, and TVD methods, while 

nonlinearly stable, will lose resolution for the fine structures because of the degeneracy to first 

order accuracy at smooth critical points. 

In Figure 1-4, the solid lines are numerical solutions of third order ENO scheme (henceforth 

shortened to ENO-3) with 1600 grid points. This can be regarded as a converged solution. From 

Figure 1, we see that ENO-3 with 400 points almost gives a converged solution, while TVD-2 (a 

second order MUSCL type TVD scheme) with 800 points just has roughly the same resolution 

as ENO-3 with 200 points. On the other hand, the improvement of ENO-3 over TVD-2 is not so 

significant for the velocity and pressure profiles (Figure 2), because they both lack any detailed 

structure. 

To further exemplify the advantage of higher order methods, we increase the spatial order of 

our ENO scheme and compare density and entropy profiles with 300 grid points using ENO-3,4, 

5, 6. We clearly observe better resolution by going to higher spatial orders (Figure 3). In Figure 

3 the time discretization is third order (1.6) with At decreased for high spatial orders. When 

we use higher order time discretizations as well we observe further improvements in resolution 

(pictures not included). 

We finally test the effect of physical viscosities by solving the Navier-Stokes equation, i.e. 

(1.1)-(2.1) with a right-hand-side 

We used Pr = 1, M = 3 and gradually increased the Reynolds number Re. Clearly we observe 

(Figure 4) convergence to Euler's result as the physical viscosity goes to zero (Re -t m). To verify 

the theory (rigorously proven by Kreiss) that for wave lengths > c .  -& the problem is viscosity 

dominated and otherwise essentially inviscid, we re-ran our result with a different frequency for 

the sine wave. We do observe the correctness of the above theory with c 3 in our scaling. The 

pictures are omitted. 

Example 2. Next we come to two dimensional Euler equations, i.e. (1.1) with d = 2, m = 4, 

and (we use f , g ,x ,y  instead offl,f2,x1,x2): 

U =  (P,M,,M,,E)~, f(u) = ~ , u + ( o , P , o , ~ , P ) ~  
(2.4a) 

g(u) = qy U + (O,O, P, qypIT 



The test problem we choose is a moving shock interacting with compressible turbulence [g, 

101. At t = 0, a Mach 8 shock at X = -1.0 is moving into a state with PR = 1, p~ = 1 

and g, = -G sin B, cos(xkR cos BR + ykn sin On), qy = 2 cos BR cos(zkR cos BR + ykR sin B R )  PR 

where kR = 27r, BR = f ,  and CR = E. We display the results at t = 0.20 in Figure 5. Notice 

that in [g, 101 similar results were obtained using a shock-fitting rather than a shock capturing 

method. This is actually a two dimensional analogue of Example 1 - a combination of shocks and 

h e  structures in smooth regions. Hence i t  is again a good test problem for the high order ENO 

schemes. The successful computation of this example shows that ENO schemes have excellent 

potential for shock-turbulence computations. 

Acknowledgements: We thank David Gottlieb, Ami Harten, Lawrence Sirovich and Thomas Zang 

for many helpful discussions and suggestions. 
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Figure 4 :  ENO-3 with 400 points for Navier-Stokes equation. 
The solid line is for the solution of Euler's equation. 
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Abstract 

We review our theoretical and numerical results on the initiation of turbulence by shocks. 

Problems which have been addressed include turbulent cooling of laser and electric discharge 

channels in a gas, shock-flame interactions, and shock propagation through inhomogeneous 

fluids. The central issue is the identification of a nonlinear mechanism underlying the production 

of turbulence in an inviscid medium by flows that are initially irrotational with local density and 

pressure gradients aligned. The basis for our theory is the observation that vorticity is generated 

when the local pressure and density distributions are misaligned. The theory is nonlinear and 

supersedes linear treatments of shock-flame and shock-bubble interactions. In the case of hot, 

gaseous channels, no appropriate theory had existed beforehand. As an example, we present 

numerical simulations and analytic models which have given useful descriptions of evolving, 

hot, gaseous channels. This work has led to a successful method of suppressing turbulence in 

channels produced by lasers. 

I. Introduction 

Experimental data on a variety of transient, compressible flows in inhomogeneous gases have 

shown that long wavelength disturbances occur at the boundaries of fluid structures near which 

shocks have been produced or through which shocks have propagated. As time passes, these 

disturbances can evolve into one or more vortex structures, and smaller scale disturbances and 

turbulent motion become superposed on the structures. In addition, mixing with the ambient gas 

can occur on time scales that are much shorter than nonturbulent diffusive processes would allow. 

This further supports the interpretation that the motion has become turbulent. Examples of such 

phenomena include the turbulent cooling of lightning, laser, and laboratory discharge channels 

in a gas [l, 21, shock-flame interactions [3], and shock propagation through inhomogeneous, 

compressible fluids [4]. 

In all of the above cases, the central question has concerned how turbulent flows can be 

produced by flows that are initially irrotational with local density and pressure gradients aligned. 

Prior to our work, linear stability theory formed the basis for most theoretical analysis. For 

interactions of a planar shock with a flame or bubble, an analogy to the impulsive Rayleigh- 

Taylor or "Richtmyer-Meshkov" instability [5 ,  6, 71 provided some insights, although other 

methods had been attempted [4]. In the classical Richtmyer-Meshkov problem, a planar shock 

strikes a rippled interface separating materials of different density. For the present case, the 

upstream surface of the bubble corresponds to one-half wavelength of the rippled interface. 

Now consider a hot, roughly cylindrical volume of gas heated by a laser pulse or a transient 

electric discharge and eventually expanding to pressure equilibrium. Gas of progressively lower 

density is thus accelerating radially against the denser ambient gas. This observation led to an 



unsuccessful analogy with the classical, linear (not impulsive) Rayleigll-Taylor instability [S, 91. 

The Rayleigh-Taylor problem involves two fluids of different density ~vhich are in contact at a 

perturbed interface. Instability occurs when the lighter fluid accelerates the heavier fluid in a 

direction normal to the interface. Textbook treatments usually assume that the acceleration is 

constant over a long period of time. 

These approaches have several flaws. First, bubbles devia.te significantly from the rippled 

interface of the Richtmyer-Meshkov problem. In the case of the gaseous channels, the accel- 

eration stage is of finite duration and is followed by a deceleration stage, so that the classical 

Rayleigh-Taylor picture does not apply. In addition, the physical situations do not involve in- 

finitesimal perturbations, either spatial or temporal, with which linear stability theory begins. 

These shortcomings imply that a fully nonlinear picture based on the inviscid equation for the 

evolution of the vorticity W is necessary: 

Here v is the fluid velocity, P is the pressure, and p is the mass density. When the local 

pressure and density distributions are geon~etrically misaligned, the baroclinic source term S = 

(Vp  X VP)Ip2 is nonzero and the generation of vorticity occurs. 

The spatial scale of the vorticity distribution is that of the asymmetry between the density 

and pressure in the flow field, and sizable residual vorticity remains after the driving asymmetry 

disappears [10]. The subsequent evolution of the fluid to a turbulent state, in which many spatial 

scales are excited, will not depend on S unless further asymmetries or shock interactions occur. 

The theory described below thus treats the initiation of turbulence by compressible phenomena. 

This is an essential part of analyzing the resulting turbulent state in a realistic system. 

Direct analytic integration of Eq.(l) in two dimensions with some simplifying assumptions 

has yielded useful analytic expressions for the residual circulation or vortex strength for each 

of the phenomena that have been studied [l, 10, 11, 12, 131. Several categories of vorticity- 

generating phenomena have emerged during the course of our work on nonmagnetized fluids: 

(1) irregular reflections of shock waves from surfaces or nonlinear interactions among shocks, 

(2) gas expansion into or wave propagation through a region of nonuniform mass density (e.g., 

shock-bubble interactions), and 

(3) expansion of a heated irregular volume of gas, produced, for example, by asymmetric energy 

deposition. 

To demonstrate the stages of initiation and development of a turbulent state in a realistic, 

compressible fluid, the next section presents experimental data on turbulent laser or discharge 

channels in a gas. This falls under the third category, although features of the other categories 

are present. Section I11 describes our theoretical approach based on Eq.(l) in greater detail for 

the example of hot, gaseous channels. Section IV then presents numerical simulations used to 

calibrate and verify the analytic results. 



11. Hot ,  Turbuleilt Channels  in  a Gas 

Figure 1 shows a series of Schlieren photograplls of electric discharges of duration 3ps 

and length 20 cm in air (published previously in references 1 and 2). The numbers 13elow each 

photograph give the time elapsed (in ps) between firing the discharge and talcing the photograph. 

Each photograph corresponds to a separate discharge. By S ps, a hot, smooth channel with a 

radius of 1.4 cm has formed, and the accompanying sllocli wave appears as a sharp line at 

the channel boundary. By 30 ps, the shoclc is easily identifiable and propagates out of the 

field of view at a time sornelvhat greater than 100 p. At approsimateIy 100 /LS, the interior 

temperature of the channel is N. 5000 I<, the gas density is 1018 cm-3, and the electron 

density is 1014 The channel remains stable up to that time. By 250 ps, however, 

density fluctuations are evident at the boundary. The photograph at 900 ps sllows that these 

distortions become more pronounced as more cool air mises into the channel. The average radius 

has increased to 2 cm, indicating an increase of -- 100% in the volume of the channel due 

to entrainment of the surrounding air. As the time from discharge inithtion increases, smaller 

scale (turbulent) structure appears and by 10 ms the channel has 13egui to disappear. 

Fig. 1. Series of separate, nominally identical electric discharges in air. The energy 

deposition before expansion occurred was W 40 J/cm3. 

The sequence of events is similar for CO2 laser channels in nitrogen [2]. Both discharge and 

laser channels expand diffusively after reaching pressure equilibrium, followillg the equation 

where R is the average radius of'the cross section at time t ,  pressure equilibration occurs at time 

r ,  ancl a is thc rffcctivr cliffilsivity. R)r  the elcctric clisch;lrges, a 500 cm2/s, and for the lnscr 



channels, a - 250 cm2/s. ' lhe liinenlat~c viscosity tor air at room temperature is U z 0.3 cmZ/s. 

This disparity between observations and the nonturbulent diffusivity supports the iilterpretation 

that turbulence is present and entrains ambieilt gas into the channels. 

111. Theoretical Approach [l01 

To develop a theoretical expression for the effective diffusivity in a hot turbulent channel, 

one must first estimate the residual vortex strength produced during the expansion of the chan- 

nel to pressure equilibrium. This requires integration of Eq.(l) for evolving pressure and density 

distributions which are appropriate to the channel expansion. Such models depend on assump- 

tions about the type of geometrical asymmetry responsible for the generation of vorticity. We 

have investigated four classes of asymmetry for this problem and others that are closedly re- 

lated: (1) curvature of the axis along which energy is deposited, as in Fig. 1, (2) deviations from 

azimuthal (circular) symmetry in the transverse plane, (3) nonuniform energy deposition (i.e., 

"hot spots") within a roughly circular envelope in the transverse plane, and (4) noncollinear 

energy deposition by two successive pulses. 

To model the evolving density and pressure distributions for the various asymmetry classes, 

we use the geometrical properties of the density and pressure during and after expansion to 

pressure equilibrium. The expansion produces a pressure field (shock wave) which has circular 

symmetry or rapidly approaches it, as verified by numerical simulation [10]. The density field 

retains the geometrical asymmetry of the initial state, although the various physical proportions 

are altered and the distribution has expanded. Smooth energy deposition with an elliptical cross 

section, for example, results in an approximately circular shock wave and a elliptical region of 

reduced density. 

Fig. 2. This schematic shows the upper half of our model flow field for energy depo- 

sition with elliptical contours. The solid line shows the envelope of the mass density 

distribution while the dashed line shows the shape of the model velocity field and 

pressure distributions. (Published previously in [ l])  

For this case, Fig. 2 shows that our model uses a time dependent radial flow field and 



pressure distribution (dashed line) wit11 an expanding elliptical density distribution (solid line). 

The expanding flow first accelerates to some ma.ximum speed and then decelerates to zero at 

pressure equilibrium. Integration of Eq.(l) under these assun~ptions has shown that the residual 

flow field can then be represented in terms of one or more pairs of vortices of strength f K ,  where 

In Eq.(3), U is a characteristic velocity of expansion to pressure equilibrium; the ambient density 

is p,; the density at the center of the channel at time t = T is po; and the form factor 0 5 f 5 1 

measures the degree of asymmetry in energy deposition. 

As indicated earlier, Eq.(3) describes the initiation of turbulent motion by creating vorticity 

on the length scale of the asymmetry between the density and pressure fields. The experimental 

result of Eq.(2), however, is consistent with expansion in a homogeneous turbulent field con- 

taining a range of length scales. For the cooling of laser and electric discharge channels, we 

have derived effective turbulent diffusivities in good agreement with experiment by assuming 

the following: 

(1) A compressible fluid in an unstable state for which the rotational flow is confined to the 

large scales at early times will evolve into a turbulent state containing a broad spectrum of 

momentum scales, of which the smallest are determined by dissipative phenomena, such as that 

due to viscosity. 

(2) A coupling exists between the large scale motion and disturbances on the smallest scales, at 

which dissipation takes place. 

(3) The large scale motion determines the rate at which energy is dissipated, in accordance with 

the simple picture of Kolmogorov and Obukhov (e.g., [14]). 

Given these assumptions, the effective diffusivity is [l11 

Equations (3) and (4) along with supporting numerical simulations have provided estimates of 

the experimental turbulent diffusivity that are accurate to within factors of 50% or better. 

IV. Numerical  Si~llulations of a Laser Channel  

The most interesting and difficult case was that of a laser pulse with an approximately 

circular envelope [15]. If the initial energy deposition were truly uniform over the pulse, the 

form factor f would be zero, since the pressure and density gradients would be aligned during 

channel expansion to pressure equilibrium. However, the data have given a 250 cm2/s. This 

led us to postulate the existence of "hot spots" within the envelope, for which we performed the 

numerical simulation shown in Fig. 3. 

For this calculation, we used the code FAST2D, which is based on the Flux-Corrected 

Transport (FCT) algorithm [l61 in conjunction with operator splitting. The grid was Cartesian 



with 100 X 100 scltlare cells. Figure 3 shows a ccntrnl region. c o l ~ s l s t ~ ~ ~ ~ g  oi 5 U  X 50 sclunre cells, 

where energy was deposited. The cell dimensions increased geoinetrically outside the uniforln 

central region, so tl1a.t the bou~lclary was far fronl the channel. .4 renornlalizatioll of the pressure 

after shock passage fro111 the region containing the pulse perinitted the use of large time steps 

and reduced the cost of the calculation in following the residual fluid motion [Is]. 

Fig. 3. Numerical simulation of air heated by a laser pulse travelling perpendicular 

to page and containing "hot spots". The first diagram shows contours of constant 

pressure just after the pulse has passed through the plane. The remaining diagrams 

show contours of constant mass density. 

All variables except the pressure and internal energy were initially constant and uniform. 

The diagram at t = 0 shows contours of constant pressure. While the envelope was circular, 

the pressure fluctuated weakly enough in the interior to be at most marginally detectable by 

laboratory burn patterns. The hot spots produced weak shocks, each of which interacted with 

the other shocks and swept through the density depressions at the positions of the other hot 

spots, generating vorticity according to Eq.(l). 

The remaining diagrams show contours of constant density at later times. Notice that the 



density retains the original asymmetries fouilcl in the initial pressure distributioll. B!- t = GOils, 

the shocks passed out of the region, leaving behind a vortex pair near each of the six outer hot 

spots. The outward motion and interactions of the vortex pairs then distorted the chanilel and 

increased its apparent dimensions. By t = 1.24 ms, the apparent envelope (as viewed from the 

side) included a significant amount of ambient gas and the average temperature had decreased on 

the timescale with which the vortex pairs propagated outward. This calculation indicated that 

a form factor of f 1 was appropriate in Eq.(3); the resulting value of K gave good agreement 

with experiment. 

The most exciting aspect of the above calculation was the prediction that turbulence could 

be significantly suppressed if nonuniformities in the cross section of the laser pulse were elim- 

inated. Subsequent experiments significantly reduced transverse variations by permitting only 

axial modes in the pulse. The resulting channel remained "stable" for several milliseconds, giv- 

ing an effective diffusivity of cr 3 cm2/s. This reduction in turbulent mixing by two orders 

of magnitude confirmed our predictions [2] and demonstrated the practical utility of the theory 

outlined above. 

We have outlined a theoretical approach for determining the initiation of turbulent motion 

by asymmetric energy deposition within a compressible fluid and by shock interactions with fluids 

having nonuniform density distributions. Our examples have come from the former category, 

which is less well known to the fluid dynamics community. The latter work has dealt the 

interactions of a shock with a flame or bubble, a research area which has experienced a surge in 

interest over the last few years (e.g., [17]). 

In the case of hot, gaseous channels, numerical simulations and experimental data have 

confirmed our theory for the initiation of turbulent motion and our estimates of the associated 

turbulent diffusivity in laboratory experiments. The theory also permits the identification of 

key factors for suppressing turbulence, a potentially valuable capability. 

While we were able to obtain useful estimates of the experimental turbulent diffusivities, 

accurate modeling of the evolution to a turbulent state in a compressible fluid is necessary if 

better estimates are to be obtained. This calls for detailed analysis of the turbulent spectrum 

in a compressible fluid, both experimentally and theoretically. Each will require a significant 

effort. Our work represents an essential first step, providing the "initial conditions" from which 

the fully turbulent state forms. 

The authors thank R. B. Dahlburg for a thorough reading and suggestions for improving 

the manuscript. In addition, we acknowledge J. P. Dahlburg, J. H. Gardner, R. Lohner, and 

E. S. Oran for helpful discussions and contributions to the overall research effort. The Defense 

Advanced Research Projects Agency supported the calculations on hot, gaseous channels, and 

the Office of Naval Research supported projects on shock interactions with flames and bubbles. 
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ABSTRACT 

Compressible flow calculations are reported using periodic boundary conditions, with r.m.s. 
Mach number of order unity, In the turbulent regime, the temporal evolution of the Mach 
number is mild, the flow retaining some of its compressible character for long times, with strong 
small-scale vortices visible in the two-dimensional case, forming in the vicinity of shocks. In 
the non-acoustic regime, large scales are dominated by shear motions, and small scales by 
shocks, with substantial inequipartition. The inertial range spectral index in dimension two 
for the compressible component of the velocity is close to -2, reminiscent of observations in 
several molecular clouds which are the site of star formation. One clear feature of three- 
dimensionality is the marked appearance of regions of low density. 

L INTRODUCTION 

Although incompressible flows have been studied in quite a wealth of details, such is 
not the case in the compressible regime. Pioneer studies, both in the analytical and the 
numerical framework were performed, for example by Lighthill, Richmyer and von Neumann, 
and often restricted to one space dimension. There is now a resurgence of interest for 
such problems among which one can cite: i) technological and industrial developments, in 
particular the hypersonic pIane and the space shuttle; ii) the accrued possibilities of present- 
day computers, in particular through either a gain in available semi-fast memory by two orders 
of magnitude, or through the development of semi-easily programmable highly parallelised 
computers; iii) recent ground-based and spatial observations of several astrophysical objects 
indicating that they are in a regime of homogeneous compressible turbulence. Prevalent 
among them are the molecular clouds, observed for example in ammonia or carbon-dioxyde 
lines in the galactic plane, and which are the site of star formation. Recent ameliorations in 
observational techniques, in particular in the radio wavelength part of the spectrum because of 
very large base interferometry, allow a detailed study of these clouds with a spatial dynamical 

t The National Center for Atmospheric Research is sponsored by the National Science 
Foundation. 



range of more than 103. Scaling laws clearly appear (Larson, 1981; Myers, 1983; Perrault, 
1987) both for the velocity and for the density versus scale, with inertial indices compatible 
with a Kolmogorov law, although somewhat steeper, and also compatible between themselves 
with virial equilibrium between potential and kinetic energy at all scales. They read (Falgarone 

and Perrault, 1986) : 

LT, = 0.4 kms-l ( R / ~ P C ) O . ~  and M = ~, , , (R/LPC)~.~  (1) 

where U" is the velocity dispersion measured in km/s, R is the scale measured in parsecs, 

where p is the density and where sm means solar mass. Such laws need to be interpreted in a 
turbulent context, because of the huge Reynolds numbers involved in these astrophysical flows 
(see Scalo, 1985; Passot et al., 1988). 

Previous analytical works of compressible flows have been mostly restricted to the acoustic 
regime. Particular attention has been paid to the far-field emission of sound, as well as to 
the production of vorticity in boundary layers, due to vortex shedding induced by large-scale 
acoustic waves (see for example Howe, 1984). Analytical works concerning the interaction of 
turbulence and sound for small Mach numbers have been reviewed elsewhere (see for example 
Passot and Pouquet, 1987). They mostly deal with phenomenological evaluations of the various 
characteristic times of competing phenomena, of their ordering, and of the subsequent regimes 
that arise, leading to various predictions of the possible energy spectra for both the acoustic 
part and the solenoidal part of the velocity written as U = uc + us , as proposed for example 
in Moyal (1952). Another approach consists in applying some closure scheme to the primitive 
equations. The earliest works dealt with the Quasi-Normal Approximation (QNA) on the 
equations with self-gravity (Chandrasekhar, 1951; Sasao, 1973). Weiss (1976) applied the 
eddy-damped markovian QNA to a model of subsonic flow, and more recently Hartke et 
al. (1988) used the Direct Interaction Approximation on a model of compressible convection 
(see also Marion, 1988). In the latter cases, one finds that the compressible velocity mode is 

dominated at all scales by the vortical part of the velocity field. However, this may be due in fact 
to the underlying hypothesis in deriving the model used before applying the closure scheme. 
In numerical simulations in the two-dimensional case as well as in the three-dimensional one 
the longitudinal modes are dominant in the small scales, due to shocks, as soon as one leaves 
the acoustic regime. Two-scale analysis of large scale instabilities due to small-scale helicity 
(Moiseev et al, 1983) indicate the possibility in the barotropic case of an inverse cascade leading 
to the development of large scale coherent structures in compressible flows. The analysis, using 
white-noise forcing, has not as yet been extended to the non-isentropic case, for which the 
conservation of helicity probably does not hold, except in regions where the Ertel potential is 

zero (Gaffet, 1985). 

We describe here the main results of a numerical study of homogeneous flows in the 
supersonic regime for fully developed turbulence in two- and three-dimensional geometry. 
We shall in this paper concentrate on the differences in behavior between the two-dimensional 



and the three-dimensional cases for homogeneous flows using random initial conditions and 
periodic boundary conditions. 

2. THE NUMERICAL METHOD 

The method we use is that of collocation: space-derivatives are computed in Fourier space, 
and non-linear products of variables in configuration space. Such methods, widely used in the 
turbulence context for incompressible flows, are not necessarily the first choice for compressible 
ones when shocks are bound to develop, and Gibbs phenomena will appear. However, provided 
the flow remains smooth through a proper choice of the diffusion parameters, in fact the 
spectral method will retain its polynomial high degree of spatial accuracy. For that purpose, 
shocks will have to be spread on roughly five points. Other methods exist to simulate such 
flows, which often use the Euler equation and some sort of artificial viscosity to smooth out 
the flow. Another source of concern when simulating compressible flows is the low values 
reached by the density, particularly when the flow is self-gravitating. One possible way out is 
to use a coefficient of diffusion of mass, but no such term will be used here. Aliasing may 

also develop, as described for example in Alecian and Uora t  (1988), but these errors can 
be prevented by adequate resolution, with spectra several orders of magnitude smaller in the 
small scales than they are in the energyantaining scales. 

The equations, in adimensionalised form, are: 

atp + v (pu) = 0, 
1 

a,pu + V . (puu) = -(7 - l)V(pe) + - v 2 u  + -V 
Re 3 

1 
atE + V . (Eu + (7 - l)peu) = -V (T - U) + 1 

V ~ T ,  
Re (7 - 1)PrReiW 

where three dimensionless parameters appear: the Mach number M = Uo/Co, the Reynolds 
number Re = poU&/p and the Prandtl number Pr = pCp/k where C, is the constant-pressure 
specific heat and k is the coefficient of thermal conductivity. In the above equations, e = CUT 
is the internal energy where C, is the constant-volume specific heat, and E = pe + u2/2 is the 
total energy. Finally, q is the viscous stress tensor, defined as TV = q V . ~ 6 ~  + p(4ui + dui) , 
where bii is the Kronecker symbol and where 77 = p/2 ,  with the choice of a zero volumetric 
viscosity coefficient. These equations conserve mass, momentum, and total energy (for the 
barotropic case, see Lkorat et al., 1984). 

A purely explicit temporal scheme was used in the two-dimensional simulations, and a 
partially implicit scheme in the three-dimensional case, because of the low values of the 

minimum of the density, which can be 1 0 - ~  that of the mean density. In that case, the 
dissipation term would become prohibitive to compute explicitely, and we use a splitting 
method (Passot, 1987). 



3. TEMPORAL EVOLUTION 

For an incompressible flow, the two-dimensional case differs strongly from the three- 
dimensional one, because of the supplementary conservation law of vorticity, rendering the 
energy dissipation extremely weak. However, as soon as shocks can form, this represents the 
dominant mode of energy dissipation whatever the spatial dimension, and one can thus expect 
a similar temporal behavior for the kinetic energy and related quantities. In all that follow, 
the unit time is the eddy turnover time of the large scales, which is of the same order than the 
shock-formation time. In figure 1, we show the time evolution of the rms Mach number, for a 
3D (solid line) and 2D (dashed line) flow at a Reynolds number of 120. The 2D-3D distinction 
may therefore not be so stringent in the compressible case, compared to the incompressible 
one. 

For a wide range of initial ratio of compressive to solenoidal energies EC/ES including 
when it is unity, the flow rapidly evolves towards a state where the large scales are dominated 
by the solenoidal part of the velocity component, and the small scales by the shocks provided 
the rms Mach number is above a critical value of 0.3 which does not seem to depend strongly 
on dimension: even for flows at or around Mach one, coupling between sound and vortices 
differs in intensity at different scales. 

We performed one run at a Reynolds number of 60 for a time long compared to the 
eddy turnover time, and comparable to the sound crossing time of the computational box. 
In figure 2, we show the evolution of the ratio of compressible to kinetic energy (% value) 
for this run. The oscillations, clearly visible in the 2D case at Reynolds numbers of 200, are 
here also quite marked, and their period correspond to the acoustic time of the large scales. 
On average, in 3D as in 2D, this ratio tends to settle around 10%. We show in Figure 3 
the temporal evolution of the characteristic wavenumbers of the solenoidal (solid line) and 
compressive (dashed line) part of the energy spectrum; their increase (slight in the former 
case) corresponds to the energy transfer to small scales and to shock formation, the following 
decrease being due to the finite value of the dissipation. Not far from the acoustic regime, 
it has been determined numerically (Feireisen et al., 1981; Zang, private communication) that 

C 

the skewness factor which measures in a non-dimensionalised way the triple moments of the 
velocity field, remains close to its incompressible value. Finally, in Figure 4, we give the time 
variation of the three directional components of the kinetic energy where we can note that 
isotropy is reached in a few eddy turn-over times. 

4. CHARACTERISTIC STRUCTURES 

What follows is only a brief account of the structures that develop in the flow. When 
performing cuts within the flow, these structures are quite similar to their 2D counterparts. 
For example, in figure 5, we show a cut in the density field for a run in which initially 
the turbulent Mach number is 2.2 , (with a local maximum of 4.9 ), and the characteristic 
wavenumber is 1.5, where the minimum wavenumber k,b is taken equal to unity. The cut 



Figure 1: Temporal evolution of the Mach number 
. Figure 2: ~ i ~ ~ t i ~  in ita compress,ve mode 

T T 

Figure 3: Time evolution of integral wave number^ Figure 4:  The three components of the kinetic energy 



Figure 5: Horizontal cut  of the density field Figure 6: Same  as fig.5 for the horizontal velocity 

Figure 7: Densi ty  when above 20% of  i ts  m a x i m u m  Figure 8: Same  as f ig .7 for  a 50% threshold 



Figure 9 :  D e n ~ i t y  fluctuations as a function of time 

is performed at t = 1.9 at altitude z = 80, with z,, = 128 (in units of grid increments) 
corresponding to the total length of the box. In the course of the computation, density 
reaches extrema values of respectively 7.6 and 0.14 . At the time at which the cut is shown, 
the Mach number is 1.5 and the temperature is 1.27 its initial value. The corresponding 
horizontal velocity field is shown in figure 6. Similar features develop for flows with various 
initial conditions. Comparing the evolution with the 2D case, it seems that the formation of 
shocks here is a smoother process in three dimensions. 

A clear feature of the 3D case, not present in the 2D one, is the possibility of having 
regions of low density (1% of the mean value) in some regions of the flow. For example, 
for a run in which initially the Mach number is equal to unity, and the ratio of the typical 
wavenumber to kmi, is now 3.8 , sharp density contrasts (ratio of maximum to minimum density 
within the whole volume) develop, up to 100 , with the minimum density reaching a value 
of .07 its mean, and with relative density fluctuations bplp  -- 0.6 . In the two-dimensional 
case, at similar Reynolds numbers, the minimum density is more like 10% the mean and the 
density contrast remains close to 4 . This may alter in a significant way the collapse of a cloud 
under its own gravity, where it should be noted that for evident reasons the two-dimensional 
geometry is the one most commonly investigated numerically. These regions of low density 
are presumably associated with strong shocks, but this point will require further investigation. 
We finally show typical perspective plots of the density; in this run, the initial Mach number is 
unity, the integral wavenumber is 2 , the ratio of compressible to total kinetic energy is 50% , 
and the Reynolds number is 105 . In Figure 7, the density is plotted at time t = 1.2 when 
it is above 20% of its maximum, and in figure 8 when it is above 50% of its maximum. This 
roughly indicates the location of shocks. 



Figure 10: Energy spectra at t = l  

In figure 9 is shown the temporal evolution of the density fluctuations for the run already 

mentionned in figures 2 to 4. As time evolves, one enters the acoustic regime (the faster, 
the lower the Reynolds number) but determination of spectral indices would be meaningless 
because at those times the Reynolds number is barely above unity. We show in figure 10 the 
compressible (dashed line) and solenoidal (solid line) spectra for a run computed on a lB3 
grid at t = 1.9 mentionned before (same run as fig. 5). The total kinetic energy is represented 
by the dotted line. The flow is not sufficiently resolved, as the high wavenumber tail shows, but 
this numerical error, possibly due to time differencing, remains within reasonable bounds, with 
a relative energy six order of magnitudes below the large-scale energy. Spectra are quite steep, 
but this in no way represents a determination of possible inertial ranges for that problem, it only 
represents a lack of sufficient resolution. We expect that the compressible part of the energy 
spectrum will undergo a -2 power law, because it is dominated by pseudo-discontinuities in 
the flow. On the other hand, the solenoidal part is expected to follow a law steeper than the 
-513 Kolmogorov range, and presumably for strongly compressible flows will also follow a -2 

law. This would allow for an equipartition between the compressible and solenoidal modes 

to develop, as predicted by Kraichnan (1953) on the basis of a statistical argument. For the 
moment, we can only say that the lack of equipartition between the two components of the 
velocity field is as pronounced as in the two-dimensional case, at a given Reynolds number. 

To help determine what possible power-law ranges develop, one can use an hyper-viscosity 
to artificially lengthen the domain of wavenumbers in which the non-linear transfer prevails 
over dissipation. One may also look at steady-state solutions, for which time-averaging may 
provide a sufficient smoothing effect. 



5. DISCUSSION 

This paper presents preliminary results of numerical experiments on three-dimensional 
compressible homogeneous isotropic turbulent flows. The 2D and 3D cases do not differ 
substantially, and certainly not as much as in the incompressible case. This in fact is an en- 

couraging factor to pursue detailed analysis of various configurations using the two-dimensional 
approximation. However, the one striking difference concerns the development of regions of 
low density in the vicinity of shocks. 

h r t h e r  study is needed, to scan parameter space. One aspect we investigate at the present 
is the possible influence of oligotropy defined as a = W .  Vs, where w is the vorticjty and S the 
entropy (note that the Ertel's potential vortex can be defined from the oligotropy as E = a l p ,  

and is a Lagrangian invariant). Indeed, kinetic helicity < W .U > is conserved locally in space 
where the oligotropy is zero (Gaffet, 1985), and may induce large-scale instabilities (Moiseev 

et al., 1983). Since regions of initial zero oligotropy remain so, this property is bound to play 
a role in the dynamical evolution of the flow. 

One 2D feature not revealed in 3D is the production of strong localised vortices when 
two strong shocks collide. Such features were only observed in the 2D case at resolutions 
higher than those presented here, so we cannot conclude at the present time. It certainly 

represents one of the points that could be investigated with different numerical methods that 
modelise in some way the small scales, possibly using for example some parametrisation, 
through either artificial viscosity, or hyper-viscosity. For spectral methods, one could extend 

the hyperviscosity analysed in Passot and Pouquet (1988) for the 2D case, that preserves 
positivity of the dissipation at all grid points. One could also use the transport coefficients 
derived from closure methods (Chollet and Lesieur, 1981) which provide in a unifying way 

a time-dependent and velocitydependent parametrisation of small scales; however, the large 
number in the compressible case of transport coefficients representing the eddy-diffusivities 

due to the various coupling between the compressive and vortex part of the spectra may prove 
prohibitive, unless some simplifying assumptions are introduced. 
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SHOCK ENHANCEMENT OF A TURBULENT FLOW 

Doug Rotman 

Lawrence Livermore National Laboratory 

Livermore, CA. 94550 

I n t r o d u c t i o n  

Presented here are calculations describing the enhancement of turbulence 

caused by the passing of a shock wave. This field is of interest to those 

investigating the Richtmyer-Meshkov instability, supersonic combustion, fusion 
and many others. Experiments involving shocks and turbulence (Sturtevant, et. 
al. 1980, Smits and Muck 1987, Trolier and Duffy 1984) show that the 

turbulence level following a shock wave can be as much as 3 times higher then 
that before the shock. Predictions from linear theory (McKenzie and Westphal 
1968 and Anyiwo and Bushnell 1982) show very similar shock enhancements. 
Recent calculations involving nonlinear effects (Kumar et. al. 1987 and Viecelli 

1988) show promise in explaining how this enhancement is obtained. This study 

will use a shock tube type calculation domain to investigate the effect of a shock 
wave on pre-existing turbulence 

Calculations 

The computational domain involves a square box with a grid of size 100 X 
100. Within this, a pre-existing random (turbulent) flow pattern is placed, as 
shown in figure 1. This flow was obtained by choosing random numbers from a 
Gaussian random number generator and imposing those on a secondary 
staggered grid within the box. Assigning those numbers as stream functions, a 

divergence free velocity field was obtained by using spatial derivatives of the 
stream functions. From experiments it is known that shock waves tend to 
decrease the scales of turbulence, thus to obtain larger scale initial turbulence a 
diffusive operator was applied to the velocity field to finally give the field as 
shown in figure l .  



The numerical scheme used for all the calculations is a second order Godunov 
scheme solving the two dimensional Eulers equations of motion using a gamma 
law gas equation of state (Colella and Glaz 1985). Two  systems have been 
investigated: one of low initial turbulence and the other of high initial turbulence 

levels. In each case the imposed shock wave had a pressure ratio of 4.9 and a 

density ratio of 2.78. The shock was imposed by setting three of the domain 
boundaries as reflecting while the last having an inflow condition. This results 

in a shock moving from the far wall towards the inflow boundary. Contours of 
the shock wave appear in figure 2. 

R e s u l t s  

The  first case investigated is the low turbulence level, one of 0.04%. This 
represents the ratio of the energy of the turbulence divided by the energy of the 

incoming flow. The fluctuating velocity field is seen in figure 3. Here we see the 
shock moving into the initial large scale turbulence and leaving behind a 

turbulent field of much smaller scale. T h e  calculated turbulent kinetic energy 
(one half the square of the fluctuating velocity) is 5.2 times higher behind the 
shock as  before it on a per unit volume basis or  1.9 times higher on a per unit 
mass basis. Figure 4 presents the pressure contour for  this system. It shows 

that the turbulence is weak enough that it does not influence the shock wave 
and thus it stays straight. 

The  second case investigated is the high turbulence level, one of 2.0%. Figure 5 
shows the fluctuating velocity field and again we see  the smaller scale behind 
the shock, but the difference is not as  obvious. In this case the turbulent kinetic 
energy is only 4.5 times higher per unit volume or  1.6 times higher per unit 

mass. But in figure 6 we see that the turbulence level is now becoming high 

enough so that the flow is starting to affect the shape of the shock wave. The 
shock now appears to form curves as  i t  moves through the turbulence. 



D i s c u s s i o n  

The decrease in the turbulence scale size following a shock is similar to the 

shock tube results of Sturtevant, although the experiments are done at a lower 

pressure ratio. These smaller scales then result in higher fluctuations in velocity 
and thus higher turbulent kinetic energy. Using arguments involving the 

conservation of angular momentum, Viecelli shows that in the limit of zero 
viscosity and zero initial turbulence this enhancement of turbulent kinetic 

energy goes as the square of the density compression ratio. Furthermore, going 
to higher and higher initial turbulent kinetic energies, the enhancement becomes 
a smaller and smaller fraction of the density compression ratio. Results shown 

here present exactly these trends. In addition to conservation of angular 

momentum, the reduction in turbulence scales could be caused by the breakup 

of individual eddies. When a shock interacts with an eddy, an initially round 

eddy will deform to an ellipse shaped eddy. It is possible that a weak eddy 

could then split into two individual eddies, thus creating smaller scales of 

turbulence .  

Examined in this study are only two cases of a long list of possible flows 

systems. Future work will investigate the effect of pressure ratio, density ratio, 
and initial turbulent field on the enhancement of the turbulence. Also, the 
division of energy between the rotational, acoustic and entropy modes will be 

considered to see how each of these are affected. 
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NOVA MIX EXPERIMENTS 

V. C. Rupert, J. D. Kilkenny, P. G. Skokowski 

Lawrence Livermore National Laboratory 

P.O. Box 808, Livermore, CA 94550 

The NOVA mix experiments are designed to study mix between two dissimilar materials subjected to 

strong (M -50) shocks and variable accelerations in a direction normal to their common boundary. The 

main purpose of the experiments is to provide a data base with which predictive models can be compared 

and normalized. Together with shock tube experiments(*), which explore a different regime, the current 

NOVA tests investigate the shock induced source terms in our model(2) and the evolution of both 

Rayleigh-Taylor stable and unstable interfaces. 

In these experiments, a laser pulse of 

1/3 pm wavelength and 1 ns duration is used Motion / 1- + Interface of interest 

to generate a radiation source which is more l ~ater ia l2  

uniform that the original laser beams. This Structured washer mount 
source heats the front surface of a material of Au washer 

density p l, which ablates and expands back 

towards the source. Momentum conservation 

causes a shock to propagate through the 

material away from the source and through Kot to scale 

the interface of the ablator with a material of 

density p2. The evolution of the interface 
Fig. 1 Nominal Nova mix sample and mounting scheme. 

between the two materials is studied to 

determine the extent and composition of the 

mixed region. On some experiments a 

tamper has been used to hold the sample in place. This results in an additional interface through which 

mix can occur. To date the experiments have been geared towards diagnosing only the ablator interface, 

although simulations do provide a prediction of the mix through the tamper boundary as well. 

The sample used in these experiments is shown in Figure 1. Selection of the materials is based on: 

the requirement for high mix (p1 # p2) or low mix (p1 - p2); 

their spectral signature, for diagnostic purposes; and 

the ease of fabrication. 

Current samples use a polypropylene sulfide ablator (PPS), with molybdenum (MO) or Parylene C 

(PyC) for the second material, and Parylene N (PyN) for tamper. Although the most recent shots have not 



included the tamper, the data presented herein were obtained with tamped samples as shown in Figure 1. 

Nominal dimensions of these samples are 50 to 60 p m  thick PPS, 1.5 to 2 pm thick MO or 15 pm thick 

PyC and 3 pm PyN. The nominal target diameter (at the interface) is of the order of 200 pm. 

The ideal experiment would have the 

materials moving only in a direction normal 

to the original interface. Figure 2 shows the 

trajectories of various parts of the target for a 

NOVA shot at 7 kJ. Ablation of the front 

part of the PPS layer sends a shock through 

the sample. When the shock breaks out at the 

back of the tamper, the later expands into the 

surrounding vacuum. The concomitant 

rarefaction wave propagating back through 

the sample produces a small additional 

acceleration of the PPS/Mo interface in the 

same direction as the shock impulse. Figure 

3a shows the density distribution through the 

sample 7ns after the start of the laser pulse, 

and Figure 3b shows its variation in time 

across the PPS/Mo interface. The latter 

shows a change in densities prior to shock 

arrival (at - 1 ns) due to a slight preheat of 

the materials 

Position - mm 

Fig. 3a Density distribution along 
the sample at 7ns - dashed lines 
show the locations of the different 
materials. 

Solid lines = interfaces 

PyN tamper 

Time - ns 

Fig. 2 Trajectories of various parts 
of a high mix sample. 

0 1 2 3 4 5  
Time - ns 

Fig. 3b Density variation across 
the PPSIMo interface. 



Mix calculations using the k~ model(2.3) implemented in our hydrodynamic code imply that most of 

the mix occurs just after shock passage both at the Rayleigh Taylor unstable (PPS/Mo) and stable 

(MoPyN) interfaces. While the mass of mixed material changes insignificantly thereafter, the width of the 

mixed layer increases as the materials expand (Figure 2). At times of the order of 6ns, the width is 

sufficient to be observable with diagnostics of 10 to 20 pm resolution. 

Point projection spectroscopy (Figure 4) is used to image the sample and unambiguously determine 

the extent of the different materials in the instrument's line of sight. The system is currently configured to 

probe the 2 to 3.2 keV range which encompasses the sulphur k edge (in PPS), the Molybdenum L1 to LIII 

edges, and the Chlorine K edge (in PyC). The tamper (PyN) is not highlighted in this energy range. 

Figure 4 shows an image which would be obtained for an unmixed sample. 

Tor, view 

Ctystal 

Point backlighter 

Direction of motion 

i 
axis 

Side view 
Absorption features of 

sample materials --v, 
Point backlighter 
(one or two fibers) 

Z axis 

Crystal 
Laser beam I 100 PS Sample 

Note: the two materials 
are probed at slightly 
different positions 

Fig. 4 Point projection spectroscopy principle. 



If the sample did indeed move only in a direction normal to the original interfaces, any overlap of the 

material spectral features (lines or edges) would indicate mix, and the mixed region width could be 

determined. In practice, as soon as the sample moves out of it's mounting washer, lateral expansion 

occurs and two dimensional effects need to be accounted for. 

Figure 5 shows a 2 dimensional 

calculation of a low mix target with no mix 

model invoked. A l -D  calculation of the 

same configuration shows that 10-20 pm of 

mix could be expected at 7ns between the 

PPS (p  - 1.36) and the PyC (p  - 1.29), or 

the PyC and PyN (p  = 1.26). Figure 5 

clearly shows the lateral expansion of the 

target (original diameter 200 pm), the jetting .0 
tendency of the ablator around the rest of the 

target, and the lag of the target edges due to 
. - - -  

the restraining effect of the large diameter 

tamper. Note that the part of the tamper 

shielded by the gold washer remains cold and -1.5 -2.0 -2.5 3.0 -3.5 -4.0 -4.5 

dense so that the tamper just appears to Position along sample axis - cm 

stretch around the expanding PPS and PyC. 

This figure also shows that the bulk of the 
Fig. 5 Two dimensional calculation of a 
low mix type target. - .  - 

material interfaces remains fairly planar and 

normal to the initial target axis. The same 

general behavior is observed for high mix 

targets, although the jetting of the ablator around the MO is more pronounced. These computations 

indicate that the apparent mix (overlap of spectroscopic features), due to the non planarity of the (unmixed) 

interfaces, should be within instrumental error for the current experiments, since, in the outer regions, the 

densities drop rapidly, and the overlap widths in the direction of observation are small. One dimensional 

calculations incorporating mix models should adequately describe the observed mix width. Two 

dimensional calculations such as those shown in Figure 5 are fraught with difficulties, even in the absence 

of mix, and are expensive in both computer memory usage and time. They cannot be used for parameter 

studies inherent in experimental design or repeated for each realization of the experiments. They have been 

used mainly to study the mounting schemes which, experimentally, appeared the best (minimum target 

curvature), and provide guidelines to the correlation of experiments and one dimensional calculations with 

mix. 



Experiments have been conducted for two classes of targets. The "low mix targets" use materials 

with closely matched densities. Since the mix process depends on the Atwood number, little mix should 

occur for these samples. Figures 6a and b show the experimental data, and a simulated radiograph from a 

l-D calculation for a low mix shot at 8 kJ. Both simulated and experimental data clearly show a sulphur 

edge shifting to higher energy in the heated PPS on the ablative side (bottom of picture), and the 1s-3p line 

of sulphur like chlorine, followed by the chlorine edge. The overlap of the sulphur and chlorine features 

translate to 14 Km in the simulated data. The experimental overlap of 40 pm is consistent with this value 

when motion blurring (200 ps snapshot) and instrumental resolution are taken into account. 

Since the simulated radiograph 100pm 

was obtained from a l -D calculation, it 

does not display the shadow of the 

mount. In fact it is possible to "see", 

inside the washer, the hot ablating 

PPS. Note that the opacity data used 

to obtain Figure 6b represents an 

average ion at the density and 

temperature of the material at the given 

position, so all the fine details of the Shadow of Au 
washer mount 

experimental spectrum are not 

recorded. - hv 
The oval shapes seen in Figure 6 

(and 7) are due to the reduced chord Fig. 6a Experimental radiograph - low mix shot 

length at the edge of the target (Figure 

4 side view). 

Results for the low mix shot 

contrast sharply with those for a high 

mix shot shown on Figures 7a and 7b. E 
N 

Here an overlap of the order of 150 
pm is obtained experimentally and 

matched by one of the mix models. 

Several heated (Ne like) sulphur lines 

are clearly visible, in particular the l s- 

2p line at 2.3 kev. Closer to the 3.49 

mixed region the cooler (Si or P like) 

l S-3p sulphur line at 2.449 keV 

Fig. 6b Simulated radiograph - low mix shot 



Spacial fiducial 

Shadow of Au 
washer mount 

L,, 

Fig. 7a. Experimental radiograph - high mix shot 

Fig. 7b. Simulated radiograph - high mix shot 



dominates the spectrum, while the dominant line for the Molybdenum is the 2p-3d Zr like line at 2.55 keV. 

The experiment had been designed specifically to maintain the sulphur sufficiently cold within the mixed 

region to avoid overlap of the 1s-4p S line and the 2p-4d MO line: such an overlap, which invalidated the 

diagnostic me thd ,  had been observed in experiments with a thin ablator for exly time snapshots. 

It is interesting to note that on the experimental radiograph the region of minimum backlighter 

transmission lies entirely within the mixed layer, and the ablator, as evidenced by the S 1s-3p line, estends 

beyond it. Computationally such a behavior is difficult to simulate as, in general, the high opacity of the 

MO overwhelms the density distribution, which shows a peak in the PPS region, and leads to the 

minimum transmission region extending outward of the mix region throughout the MO. Only one set of 

parameters in the mix model, out of many, resulted in a material distribution as shown in Figure 7b, which 

resembles the experimental data. 

Under some broad assumptions about opacities, the area1 mass of the different materials versus axial 

position can be extracted from the experimental data as shown in Figure 8. 

These data can then be compared with 
Areal density 

calculated density distributions. Note that the 2.5 of sulfinated 

mix calculations are one dimensional, and, to 
plastic1Mo mgm/cm**2 A - - - ! S ; f i ; z t e d  

compare with the experimental data, some 2.0 

constant "effective sample diameter" at 

snapshot time is implicitly assumed. The two 1.51 Molybdeum 
/ \ l  

dimensional calculations show that such an 1 .o 
assumption is not strictly correct; moreover, 

the narrow range around the nominal 

unmixed interface where 2-D calculations 

show material overlap within the instrument 200 300 400 500 600 700 

line of sight (no mix) is not simulated by the 

l -D calculations. Hence at this time, only 

qualitative comparisons of the density 

distribution can be made between experiment 

and calculations. The total material overlap is 

not dependent on the various assumptions 

underlying either the experimental data 

reduction or the l - D  calculations, and 

quantitative comparisons are possible. 

Comparison of Figure 7 and 9a show 

Axial position pm \ Limit on 
4 * 

Mix region detectability 
150pm of sulf inated 

plastic is 5% 

Fig. 8 High mix package estimate of experimen!al 
mass distribution 
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Fig. 9a Simulated density distribution - Fig. 9b Simulated density distribution - 
high mix package high mix package 

that some appropriate choice of model parameters gives the correct mix width and also reproduces fairly 

well the axial mass distribution. Figure 9b shows poor results obtained from a different set of model 

parameters. 

Calculations, such as those shown on Figure 9, show that the experiments are indeed providing data 

useful for normalizing our mix models. Many of the model parameters used to analyze NOVA data are 

identical to those used for the shock tube results.l.2 More data from both sets of experiments are needed 

to uniquely define all the model parameters. 

Development of the experimental techniques at NOVA have reached fruition, and we are ready to start 

a comprehensive experimental series where a single target configuration will be tested at various times with 

double backlighters. 
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RAYLEIGH TAYLOR INSTABILITY OBSERVATIONS OF SHOCK ACCELERATED GASES 

N C Stearman 
Atomic Weapons Establishment, Foulness, 

Essex, SS3 9XE, United Kingdom 

The initial aim of this work was to reproduce the work of Meshkov et a1 (1) 
by using a shock tube of 8x2 inch cross section to produce high acceleration 
gradients in gases initially at atmospheric pressure and thus observe the growth of 
Rayleigh Taylor instabilities. The work has since diversified and has to date 
included two interface geometries and also isolated bubble studies. In both cases 
the interaction of refrigerant 12 (freon), density 5.36 gm/litre, with both air, 
1.2 p/l, and helium, 0.18 gm/l, has been observed using shadowqraphy (fig 1) and 
compared with l-D and 2-D computer simulations. 

SPARK fl OBSERVATION SECTION 
SOURC ORIGINALLY PERSPEX, 

COMPRESSION CHAMBER LATER OPTICAL QUALITY 

EXPANSION 
CHAMBER 
\ 

I 

h I 

BURSTING CAMERA 
FIGURE 1. DIAPHRAGM 

PLANE GEOMETRY 

Gas separation in the first case was achieved by the use of a thin membrane 
produced by pouring a solution of basically nitrocellulose on to a water surface and 
allowing the solvents to evaporate. The thickness of the resulting membrane may be 
ascertained from the colours reflected, (as with oil on water). Most of the 
membranes used reflected no colour at all indicating that the thickness is less than 
half a wavelength of visible light, ie approximately 0.2 microns. 

Photographs obtained from three tests of each of air/freon/air and 
air/freon/helium are shown in figs 4a,b. Flat topped air shocks of approximately 
U./6 bar overpressure, (fig 2), were incident on the layer. Two dimensional 
numerical simulations of the situations are shown in figs 5a, b and a correspondence 
is clearly visible in many distinctive features. 
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FIGURE 2. 

SUBMICRON FILM 

In order to be able to compare such chaotic behaviour it is necessary to 
study the general effect rather than specific features. Therefore the maximum width 
of the mix region predicted and observed was compared. At early times the visual 
estimates of the width of the mixed regions in the experiments may be affected by 
edge effects. Figure 6 shows the results of 1 dimensional Lagrangian calculations. 
With no mixing the solid lines show the positions of the interfaces. Also shown are 
the observed mix widths from the tests. Figure 7 shows the limits of the mixed 
region predicted by a two dimensional calculation using a technique described by 
Youngs (2) with a perturbed interface such that: 

n2 
perturbation, 5 (y) = S E an cos nfij 

n=n W 

where y = vertical height 
n, = 2 n, = 20 

W = width of computational region = 10 cm 
an = random number chosen from [-1,+1] 
s = scaling factor chosen so [ < g 2 > ] 0 . 5 =  a = 0.2 m 

These are the conditions that applied for figs 5a,b. Calculations for 
air/freon/helium were also performed. 

Comparison of the code simulations and the experimental results reveals a 
consistent under-estimation of mix growth. A t  late time the ratio of observed to 
calculated mixed region width is about 1.4. The size of the mix features is less 
than the internal width of the shock tube and this allows growth in 3-D, thus it 
might be supposed that the extra degree of freedom promotes more thorough mixing. 
The results show good general agreement nonetheless. 

BUBBLE EXPERIMENTS 

The bubble experiments were of a broadly similar nature, (fig 3), and again 
shadowgraphs and numerical simulations of the conditions were compared, (figs 8 and 
9). Shock overpressures in these experiments were around 0.3 bar. The bubbles 
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were blown in a solution of Expandol, a fire fighting foam, as this was found to 
produce long lived bubbles and did not allow diffusion of freon. As may be seen from 
fig 8 the bubbles were attached to the generating stem at the time of shock impact 
but this appeared to have little bearing on subsequent development. They are also 
not truly spherical. The heavy gas inside the bubble causes it to adopt a raindrop 
shape but the bottom half was close to hemispherical. 

This problem was particularly acute with freon in helium and continuous 
bubble generation was tried to alleviate the problem. This met with some success 
but the bubbles were still small and thick walled. The results from these 
experiments are distinctly different, as expected from computer simulations, fig 9, 
but are questionable and show the need for refinement of technique. They are not to 
date suitable for quantitative analysis. Experiments using freon bubbles in air 
were also described by Haas (3). The aim of the present experimental programme is 
to investigate late time effects and high density ratios. 

Comparison between observation and 2-D calculation should ideally involve 
the position of the centre of mass. This is not determinable from shadowgraphs and 
so the position of the leading edge of the bubble has been used for comparison as 
this is a readily identifiable feature. In order to allow for slightly different 
shock strengths and bubble diameters dimensionless parameters have been used. (fig 
10). 

Note that the predicted locus in fig 10 refers to a 15.0mm diameter bubble, 
(slightly less than the mean experimental value of 16.2mn), because the prediction 
was from a single calculation performed in advance of the tests. 

Good agreement is seen and the tendency for the experimental data to lie 
above the predicted locus may be accounted for by the constraining nature of the 
shock tube. The bubbles are of a similar size to the tube width, (34mm dia cf 51mm 
tube width), and so may restrict the flow and thus become accelerated quicker. 

AIR OR 
HELIUM 

'% 

FURTHER WORK 

W--/ DOES NOT REFLECT FROM 
END AND INTERFERE WITH 
TEST 

Further experiments whereby a measure of the gas density may be determined 
at a given point have commenced. These utilise bromine as a colouring agent in the 
freon. The mixing is then observed by high speed cine photography. With uniform 
back lighting this technique lends itself to densitometry analysis and thus contours 
of average volumetric mix ratios along the z-axis may be determined. 

Bromine gas has a higher density (7.59gm/l), than freon 12 but is only used 



FIGURE 4a Air/Freon/Air Interactions 

2.07 2.27 2.47 2.67 ms after shock 
2.37 2.97 3.57 4.17 arrival at first 
2.37 2.67 4.67 4.97 membrane 



FIGURE 4b ~ i r / ~ r e o n / t l e l i u m  I n t e r a c t i o n s  

2.07 2.36 2.56 4.57 rns a f t e r  shock 
2.07 2.37 2.67 2.98 a r r i v a l  a t  f i r s t  

2.06 2.56 3.06 3.56 membrane 



FIGURE 5. INTERACTION PREDICTED BY 2D CODE 

in concentrations of a few per cent. Early tests with the double interface 
experiments have shown that, unless they are made so thick that they do not break up 
on shock impact, the membranes allow the small bromine molecules to pass through 



TIME, ms 

FIGURE 6a. I-D LAGRANGIAN CALCULATION AND 

OBSERVED MIX WIDTHS 

TIME, ms 

FIGURE 7a. 2-D NUMERICAL SIMULATION 

them. Diffusion also prevents any bubble experiments with bromine tracing. Tests 

replacing the membranes with aluminium foils less than one micron thick have shown 
that diffusion through the foil is not a problem and makes the proposition feasible. 



FIGURE S Freon Bubble in Air and Helium 

Air -0.80 0.70 1.00 1.70 ms after shock 
-0.53 0.97 1.97 2.97 arrival at leading 
-0.05 0.75 1.16 1.36 edge of bubble 



FIGURE 9. 2D CALCULATIONS OF BUBBLE BEHAVIOUR 



ro = INITIAL RADIUS OF BUBBLE 
to = TIME SHOCK HITS FRONT SURFACE OF BUBBLE 
U = VELOCITIES OF AIR BEHIND THE SHOCK FRONT 
X = DISTANCE MOVED BY FRONT OF BUBBLE 
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FIGURE 10. COMPARISON OF PREDICTED AND OBSERVED DISPLACEMENT 
OF FREON BUBBLE IN AIR 

Handling the foils is most difficult as they are far more brittle than the 
nitrocellulose membranes. 

Future experiments replacing shadowgraphy by holography to study various 
instability interactions are to take place in Nov 88. Both absolute and 
differential interferometric techniques will be employed. 
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EXPERIMENTAL RESEARCH OF GRAVITATIONAL INSTABILITY AND 
TURBULIZATION OF FLOW AT THE NOBLE GASES INTERFACE 

A. M. Vasilenko, 0 .  V. Buryakov, V. F. Kuropatenko, 
V. I. Olkhovskaya, V. P. Ratnikov, V. G. Jakovlev 

INTRODUCTION 

A special type of turbulence - gravitational turbulence appears at the 
interface of media having different densities under nonstationary motion 
because of Taylor instability [l]. This phenomenon takes place, for 
example, when nonstationary shockwaves pass through nonhomogeneous 

media. 
Theoretical description of the development of small interface 

perturbations is of no difficulty but in the process of experimental work 
it came out [2-41, that the growth of finite perturbations, comparable 
with the wave length, leads to the distortion of their initial form and 
complicates the analytical examination of this problem 151. 

Gravitational turbulent mixing theoretical research made by Belyenkii 
and Fradkin [6] and some other authors [7-91 is of semi-empirical 
character. In some works [ l  0-1 31 gravitational instability numerical 
research on the ground of Euler nonstationary equations with two spatial 
variables was carried out. 

Experimentally this problem is also poorly investigated. There are few 
works [14-161 devoted to this question. 

The aim of this work is the experimental research of turbulization 
process of interface perturbations for gases having different densities 
under the influence of the strong decelerating shockwave under the 
condition of essential compressibility of initial substance. 

The noble gases choice was made in terms of the equality of their 
adiabatic compressibility. This sufficiently simplifies the experimental 
analysis. 



I .  EXPERIMENTAL METHOD 

1 . l  The Description of the Experiment 

The experiments were carried out in the electromagnetic shock tube 
which is shown in Fig. 1 . l .  Shock tube frame is made of textolite plates in 
the form of compartments of different length and purpose. This allows 
change to not only the total tube length, but also the compartment's 
position. 

Shock tube channel with the cross section of 100 X 100 mm2 was 
partitioned off at the joints by two nitrocellulose diaphragms, 0.4 mm 
thick, into three compartments filled with various noble gases, as shown 
in Fig. 1.1. 

Such a system of gas layers was subjected to the action of 
decelerating shockwave. As a result, this caused the state of 
gravitational instability at the second interface, between Krypton and 
Helium, in accordance with Taylor criterion [ l ] .  Acceleration at the 
interface was created by unloading wave defining the flow deceleration. 
The use of noble gases permitted retention of the initial gas density ratio 
after the rupture disintegration at the stable interface. The first 
interface was stable and served for shock-wave intensification in order 
to create necessary conditions for rapid nitrocellulose diaphragm 
destruction. These conditions were considered to be satisfied in case the 
temperature of one of the gases at the interface exceeded nitrocellulose 
flash temperature. 

At the second interface, sinusoidal perturbations were artificially set 
on lateral sides of the sectional aluminurn frame then the nitrocellulose 
diaphragm was fixed between the sinusoidally preformed frame sections. 
The profile on the frame is formed by conjugate circle arcs, which is a 
quite satisfactory approximation to the sinusoidal profile. To avoid 
significant distortion of set perturbation form on the frame, because of 
film tension, it was fixed to fifteen nichrome wires 0.12 mm thick, 
stretched along the profile generator. 

In experiments the development of three initial perturbations was 
examined, namely: a, = l mm, h = 25 mm, uo = 1 mm, h = 50 mm, a0 = 2.5 





mm, h = 50 mm. (ao  - initial amplitude, h - wave length). Recording of 
the perturbations development was carried out by means of a shadow 
device IAB-451 optically coordinated with two SFR cameras operating in 
the mode of stop-motion photography and photochronography. 

1.2 Main Characteristics of the Electromagnetic Shock Tube 

Shock-wave generation was obtained as a result of the discharge of a 
capacitor bank consisting of 90 capacitors of IS-6.65-20 type. Total 
inductance of the electromagnetic shock tube circuit equals 223 nH. The 
electromagnetic shock tube is equipped with a short-circuiting discharger 
P, (see Fig. 1 . l ) .  This permits formation of single pulses of the discharge 
current. 

The distinctive feature of the given electromagnetic shock tube [17- 

191 is a vacuum compartment (5 in Fig. 1.1) which forms the flow behind 
the front of a rather long shock wave. The front is not distorted by the 
secondary shock wave. The secondary shock wave appears in the 
electromagnetic shock tube when forming a single discharge current 
impulse because of oscillation of a vacuum region formed when the flow 
layer separates from the shock tube "bottom" under the influence of the 
intrinsic discharge magnetic f ield. The f low, forming in the 
electromagnetic shock tube, is analogous under such conditions to the 
flow forming in the automodel problem about the short-term shock upon a 
free gas surface [20]. The flow forming is characterized by the limiting 
value of shock wave deceleration for the given conditions of experiments. 

The vacuum compartment is separated from the shock-tube channel by 
two thin mylar diaphragms destroyed at the discharge current initial 
stage. 

The first diaphragm had five thin strips of an aluminum foil; each was 
2 mm wide and 10 mm thick. They were needed for the electric breakdown 
between electromagnetic shock-tube accelerating electrodes. 

1.3 Calculations for the flow in the electromagnetic shock tube were 
carried out in accordance with the program "VOLNA" (WAVE) which is 
intended for mathematic modeling of one-dimensional unsteady motions of 
compressible ideal media [21]. 



Physical model realized in the program VOLNA is based on partial 
differential equations which are a consequence of laws of conservation of 
mass, momentum, and energy in the Lagrangian coordinate system. 

In a common case a domain, where the solution must be found, consists 
of several regions, each characterized by its own equation of state, by its 
own speed, and by its thermodynamic parameters set at the initial 
moment of time. Regions are separated from each other by interfaces or 
vacuum gaps. Boundary conditions are pistons where either speed or 
initial pressure is set. Nonuniform differential method is used for 
numerically integrating of set of equations for a given physical model. 
This method permits tracing the following elements and features: 
1. Smooth solutions. 
2. Strong, weak and contact ruptures. 
3. Phase transformation front - strong or weak rupture on the surface at 

which the matter phase state changes. 
4. Arbitrary rupture disintegration. 
5. Strong rupture emergence out of the initially smooth solution. 
6. Interaction of strong rupture with initially smooth solution. 

To determine the flow parameters at the strong rupture front, the 
Hugoniot relation is solved in common with the equation for the changing 
values of velocity along the rupture surface. The equation is of the 
following form: 

where: 

Where [P], U represent sudden changes of pressure and velocity on the 
surface of strong rupture; C is the sound speed; W is the mass velocity of 
the strong rupture surface; a is the problem symmetry index; r is a spatial 
coordinate; t is the time. Values with the mark "-" denote the state 



"before", and values with the mark "+" denote the state behind the rupture 
surface. 

For the velocity of the shock wave, W, this equation will have the 
following form: 

Nonuniform differential method realized in WOLNA program uses a 
regular difference grid for the regions of integrating with smooth 
solutions and "blurred" features, and also uses a feature refining the grid 
which is superposed on the regular grid. 

Difference schemes included in the nonuniform differential method are 
obvious and have the first order of approximation in time, and the second 
order in space on the uniform grid. 

In a given case, the impulse of pressure is set on the left gas boundary 
which corresponds to the beginning of the shock tube. The impulse form is 
defined by the first semiperiod of the current discharge. 

where: 
P* = parameter which corresponds to effective pressure of the magnetic 

piston; 
T = 75 ms - the period of the bankery discharge; 
z = 78 ms - parameter which characterizes the electric discharge 

attenuation. 
In the calculations according to the WOLNA program, P* was selected 

proceeding from the condition of reaching the coordinate X = 1993 mm by 
the shock wave front at z = 522 ps. We could observe this front in the 
experiments with helium atmosphere. 

P* was obtained as a result of few calculations for various P which, 
following interpolation, equaled 140.2 bar. 



It is worth mentioning that the flow description with due regard for 
the secondary shock wave is possible in case of substituting the condition 
of stopping this boundary (V = 0) for the boundary condition on the left gas 
boundary after terminating the action of the impulse of pressure. 

At this moment the secondary shock wave is being formed considering 
that it corresponded to the left gas boundary which collided with the 
vacuum compartment "bottom." 

Usually, such a procedure was not used because, in this experiment, 
the process of interaction of the secondary shock wave with the interface 
was not studied. 

The calculations of flow for the description of the gases gravitational 
instability experiments were carried out in accordance with the specific 
scheme of gas disposal in the shock-tube channel (see Table 1 .l). 

TABLE 1 .l 

Interface 
N Gas Y p glcm3 Coordinate 

mm 

1 Helium 1.63 1.6 I O - ~  1087 
2 Krypton 1.689 3.364 ' 1327 
3 Helium 1.63 1.6 1 o - ~  2500 

In the Table: y - Poisson adiabatic index, 
p - gas density. 

Gas parameters were determined according to table data [22] and were 
computed at the experimental conditions. Average atmospheric pressure 
of gases was 0.984 bar. 

Confidence of the results of calculations of the flow in the 
electromagnetic shock tube is shown in X, t-diagram, Fig. 1.2, where the 
comparison of the trajectory of the shock-wave front movement with 
experimental results was carried out. Standard deviation of experimental 
points from the computed curve was equal to 1.2%. This is in the range of 
the experimental data scattering. 



Fig. 1.2 X, t - diagram of the flow in the shock-tube channel in helium 
atmosphere,- - calculations, + - experiment. 



Fig. 1.3 He velocity profiles in the shock tube channel at different 
moments of time.1 - 80 psec, 2 - 283.9 psec, 3 - 522 psec, 4 - 946.6 psec. 



The current layer shift, caused by the discharge's magnetic field and 
determined by accelerating electrodes erosion, equals 140 mm. This 
satisfactorily agrees with the computed shift of 150.9 mm on the left gas 

boundary. 
Gas mass velocity profiles shown in Fig. 1.3 have linear form that 

demonstrates the approaching of flow to the regime which is close to 
automodel flow in the problem about short-term shock upon the free gas 
surface. 

2. EXPERIMENTAL RESULTS 

2.1 Preliminary analysis of physical conditions at the interface was 
carried out on the basis of the results of one-dimensional gas flow 
calculations in the electromagnetic shock tube. Just after the rupture 
disintegration, the pressure at the interface was P = 3.687 bar and the 
velocity of the shock wave falling upon the interface was W1 = 0.81 14 
mmlms. Initial mass velocity of gases was V. = 0.94 mmlps; gas density 

ratio was 13.75. Breaking distance connected with the unloading wave 
influence was determined by the formula 

h 

where: t - time with respect to the moment when the shock wave 

h 

reaches the interface; 

X -  distance passed by the interface with respect to the initial 
posit ion. 

Maximum value of the interface deceleration is g = 106 m/s2. By the 
end of the boundary observation, at the time t = 11 51 ps ,  gas pressure 
decreases to 2.07 bar, and velocity to 0.487 mmlps. 

2.2 The process of the development of the interface gravitational 
instability and gas turbulent mixing can be conditionally divided into 
three stages: regular, transitional and turbulent. The regular stage 
includes the stage of the exponential growth of perturbations in 
accordance with the linear theory (see [l]) and nonlinear stage, where 



deceleration of perturbations growth and the distortion of their form take 
place, but spatial structure of perturbations is not distorted. 

In the transitional stage the distortion of perturbations spatial 
structure takes place and the regions of flow vorticity arise. 

In the turbulent stage intensive initial substance mixing takes place. 
The experimental results have been analyzed in accordance with such a 
classification of the stages of the interface instability development. The 
shadow photographs of the experiments are presented in Fig. 2.1 - 2.3. 

2.3 The regular stage was revealed when comparing the experimental 
results with analytical solution which was obtained by one of the authors 
for the case of ideal fluids under condition of successive influence of 

shock and permanent accelerations upon the interface similar to how it 
happens in the experiment. The development from infinitesimally small 
perturbations is described by the following equations [23] 

with initial conditions: 

where A =  P 2 -  P1 
- Atwood number, 

P2+  P1 

p2, p, - heavy and light liquids densities, respectively; 

Solution has the following form: 

where 





C.. 
1 ., L36 
.L, C L 0 

.- 
C a 

5 
& e 

3 
A.' 





Fig. 2.4 The development of the perturbation amplitudes at the gas 
interface in the regular stage. 

o - a. = 1.0 mm, h = 50 mm; 
- a. = 1.0 mm, h = 25 mm; 

+ - a. = 2.5 mm, h = 50 mm; 
1,2,3, - linear impulse theory for perturbations o, r , + accordingly. 



Taking into account the change of the initial perturbation amplitude 
because of the gas compressibility [24] the solution has the following 
form: 

where: W, is the shock wave front velocity before incidence upon the 
interface. 

The gravitational instability development at the process initial stage 
reveals linear dependence of the perturbations amplitude on time up to the 
moment t 1 3 0  p s ,  which is characteristic of the interface shock 

acceleration [23] and is connected with small role of quasi-stationary 
acceleration at the initial stage. 

Comparison of experimental results with analytical solution (Eq. 2.4) 
gives every reason to consider that up to the amount t* - 130 p s  for 
perturbation with h = 50 mm and up to the moment t* = 30 p s  for 
perturbations with h = 25 mm, in the range of 10%-deflection satisfactory 
agreement of linear impulse theory with experiment is observed. It is 
worth mentioning that the perturbations amplitude is 5-6 times the 
initial one. Earlier divergence of the experiment with theory for the 
perturbations with h = 25 mm is explained by evident distortion of 
sinusoidal profile because of a less number of frame wires per 
perturbation wave length. As can be seen in the photos 2.1 and 2.2, the 
influence of these wires upon the process of instability development is 
not observed. Their indirect influence reveals itself in the distortion of 
more wide helium jets for the perturbation with aolh = 0.05 (see Fig. 2.3), 
which is caused, perhaps, by the nonsmooth character of the initial 
perturbation form. 

Thus, taking into account the satisfactory agreement of experimental 
results with analytical solution at the considerable period of development 

up to t* we can ascertain the satisfactory preparation of experiments. We 
also can assert that the use of the nitrofilm 0.4 p m  thick does not 

influence the instability development significantly relative to the process 



as a whole, because the systematic distortion of experimental results 
could have been expected, especially in the initial stage of this 
phenomenon because of additional film mass involved in the motion. 
Because of these arguments, any possible doubts concerning the 
experimental results confidence at later stages of the instability 
development have no grounds. 

2.4 Further development of perturbations leads to distortion of their 
sinusoidal profiles and to the forming of narrow krypton jets and wider 
helium jets. The profile distortion begins approximately with t*, that 
agrees with the value of W-', which characterizes the application limit of 
the linear theory. 

At this stage of the perturbation development it is revealed as the 
result of the asymmetry of gravitat ional instabil ity, which is 
characterized by a deeper penetration of krypton jets into helium in 
comparison with helium jets, penetrating into krypton. 

The nonlinear stage of the perturbation development is accompanied by 
the appearance of vortex regions at the top of krypton jets. The 
appearance of the vortex regions means the occurrence of a new factor, 
which did not take place earlier as well as the destruction of the initial 
spatial structure of perturbation and the transition to the flow 
turbulization. The flow turbulization in the perturbation zone is 
accompanied by increasing krypton jet instability that is revealed in their 
tortuosity. Increasing vortices lead to their closing up with the neighbor 
ones. That, in its turn, leads to the chaotic state of the flow and to 
formation of a zone with a complex flow picture on the part of helium. 
This gas mixing zone can be interpreted, probably, as the zone of the gas 
turbulent mixing. Full value of this mixing zone reaches 100 mm. 

By this time, while observing the interface in a direction, 
perpendicular relative to the generator of the sinusoidal profile, it was 
observed that there developed sufficiently significant distortions of 
perturbation zone front. This demonstrates the destruction of the initial 
two-dimensional perturbation structure. 

Penetration of helium into krypton evolves in the form of wide jets, 
which are analogous to bubbles in Lewis' experiments [2]. Periodical 
structures present do not disintigrate even at late times in observing this 



phenomena ( i  - 600 ps, S = 140 mm). However, the boundaries of helium 

jets are blurred by a low-scale turbulence which reaches a mean scale of 

= 40 mm at i = 500 ps .  Meanwhile, development of the low-scale 

turbulence displays evident signs of dependence upon an initial 
perturbation amplitude. When the initial amplitude rises, blurring of jet 
interface is decreased. 

The development of gas jet flow (krypton jets are especially 
significant), which proceeds from the laminar flow through the transient 
one to turbulent flow, is analogous to turbulization of free turbulent jets 
1251. It demonstrates the commonality of some features of gravitational 
and shearing turbulences, namely: chaotic state, periodic structure, 
component mixing, independence from initial conditions. 

One can see the nearly periodic regions where krypton jet boundaries 
are distorted. Chaotic state and gas mixing are observed in the region of 
turbulent flow on the boundary with helium. There appears a new feature, 
namely, a gravitational mixing anisotropy, which becomes apparent in the 
jet structure of the mixing zone. 

The process of transition to the turbulent stage of mixing is 
characterized by large variety of flows, which depend upon precisely fixed 
conditions of the experiment conducted. But the asymptotic turbulent 
stage, in consequence to its insensitivity to initial conditions, does not 
depend upon conditions of the experiment conducted. 

It is practically impossible to realize the asymptotic stage of mixing 
in the experiment because of finite dimensions of the installation and the 
short-term acceleration action. 

Therefore, for fulfilling the analysis of experimental results, it is 
necessary to take into account those or other theoretical considerations 
about the character of dependence of the studied process upon 
experimental conditions. 

Results of our experiments for researching the development of the 
mixing zone are analyzed on the assumption of a quadratic law of 

dependence of mixing zone width upon the time, which is described in the 
works [6,7].  In consequence to inconsistency of the deceleration value of 
the interface, this analysis was conducted on the assumption of 



proportionality of mixing zone width, L, to breaking distance, S, in the 
following relation: 

where: p is a constant; 

N is an interface gas density relation. 
The influence of initial perturbations of interface upon mixing zone 

dimensions was taken into consideration during processing experimental 

data in the coordinate plane (K, m) proceeding from the dependence, 

proposed in [8], 

where: L. is the initial turbulent mixing zone width; 
A 

L is the transient width of the mixing zone. 
The concept of mixing intensity is introduced for describing the 

process of the gravitational turbulent mixing: 

Data processing was conducted on the assumption, that the value of 
each uncontrolled perturbation of a flow is a random value in that sense, 
that the combined ensemble of flow perturbations, which have statistical 
influence on the experiment, are realized during each controlled 
experiment. 

Therefore data processing results, obtained in different experiments, 
were averaged and the average of them was adapted as the most probable 
outcome. 

Dependence of Ken f7-S (see Fig. 2.5 - 2.7) has a linear form not only 

for the combined data of each separate experiment, but for all 
experiments as a whole. At S 2 10 mm, this corresponds to measurements 

at i > 150 vs. The average correlation coefficient is q K ,  m = 0.996. 

The transition to the linear dependence is more clearly observed for 
the largest perturbations (aolh = 0.05). This is connected apparently with 



Fig. 2.5 The development of the gas mixing zone width versus braking 
distance in the turbulent stage.+ - experimental results with the initial 
perturbation a. = 1.0 mm, h = 25 mm; - - the results of processing 
experimental dates by the method of least squares. J = 0.26, L. = 6.7 mm. 



Fig. 2.6 The development of the gases mixing zone width versus 
braking distance in the turbulent stage.+ - experimental results with the 
initial perturbation a. = 1.0 mm, h = 50 mm; - - the result of processing 
experimental dates by the method of least squares. J = 0.28, L. = 4.05 
mm. 



Fig. 2.7 The development of the gases mixing zone width versus braking 
distance in the turbulent stage.+ - experimental results with the initial 
perturbation a. = 2.5 mm, h = 50 mm. - - the result of processing 
experimental dates by the method of least squares. J = 0.29, L, = 

11.6 mm. 



the decreasing significance of uncontrollable perturbations and increasing 
dominance of periodic distortions of the interface. 

When the initial sinusoidal perturbation amplitude is decreasing, the 
whole mixing zone width is also decreasing, but the intensity of mixing 
(see Table 2.1) remains constant. It is observed that the proportionality 
of the relative roughness of interface a o / h  with the effective initial 
mixing zone width L. demonstrates effectiveness of this method of 

experimental result processing. 
The "ignoring" of initial conditions in the given case is revealed in the 

relation that the value of J remains constant in spite of the fact that the 
whole acceleration, which is acted on the interface, depends appreciably 
on the character of the shock wave action: 

where: 6(t) - Dirac's function and 
h 

g - acceleration, which is created by the unloading wave 

TABLE 2.1 
Statistical processing results of experimental data 

Series of Number of 
Experiments Experiments aolh J A J  L, 

Data spread A J  is given with confidence probability P = 0.95. 

Mixing intensity constancy, at sufficiently large changes in initial 
perturbations of interface, can be interpreted as establishing the 
turbulent stage of mixing. The observation, that the periodic structure of 
initial perturbations have not been destroyed at the end, is connected 



apparently, with establishment of certain large-scale, periodic mixing 
features, which are characteristic of this phenomenon. 

An additional argument in favor of such a supposition is the agreement 
of mixing intensity data with the results of numerical computations, 
which simulate the development of turbulent mixing of fluids for the case 
of full width of the mixing zone [g], while using two-dimensional methods. 

Experimental data allow determination of the empirical constant of 
the gravitational turbulent mixing "P " in the dependence, as suggested in 

the work [7]. 

where: p = 0.32 f 0.010. 

The error of measuring the value of "P" has a confidence probability of 

0.95. 
It must be noted that in experiments conducted with fluids [14,16], one 

can observe a mixing intensity which is less by approximately a factor of 
two. Such a discrepancy of results cannot be completely explained by 
essential compressibility of the media based on data from experiments 
with gases. 

It is possible that forces of surface tension exert a certain influence 
upon the development process of turbulent mixing of liquid media that, in 
its turn, can result in capillary instability of jets, whereas this factor is 
fully excluded in experiments with gases. 
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INTRODUCTION 

A key feature of compressible turbulent mixing is the generation of 

vorticity via the vpx V(l/p) term. This source of vorticity is also present in 

incompressible flows involving the mixing of fluids of different density, for example 

Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental 

investigation of turbulent mixing at a plane boundary between two fluids, of 

densities p, and p, (p, > p,) due to Rayleigh-Taylor instability. The two fluids are 

near incompressible and mixing occurs when an approximately constant acceleration, g, 

is applied normal to the interface with direction from fluid 2 to fluid 1. Full 

details of the experimental programme are given in a set of three reports [1,2,3]. 

Some of the earlier experiments are also described by Read [4]. 

Previous experimental work [5-101 and much of the theoretical research has 

concentrated on studying the growth of the instability from a single wavelength 

perturbation rather than turbulent mixing. Notable exceptions are published in the 

Russian literature [ll-131. A related process, turbulent mixing induced by the 

passage of shock waves though an interface between fluids of different density is 

described by Andronov et a1 [14]. The major purpose of the experiments described 

here was to study the evolution of the instability from small random perturbations 

where it is found that large and larger structures appear as time proceeds. The 

acceleration of the interface was chosen to be high enough for surface tension and 

viscosity to have a small effect on the overall growth rate of the mixed region. A 

novel technique [4] was used to provide the desired acceleration. The two fluids 

were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of 

the denser fluid 1. One or more rocket motors were then used to drive the tank 

vertically downwards. The aim of the experimental programme is to provide data for 

the calibration of a turbulence model used to predict mixing in real situtions [19]. 

2. BASIC PICTURE OF THE MIXING PROCESS 

In the absence of viscosity, surface tension or other stabilising 

mechanisms, the growth in the amplitude, a, of a small perturbation of wavelength X 

is given by [15], 

2 ngA Pi ' P2 
where ni = - and A = (Atwood number) 

X Pi + p2 



Hence short wavelength small perturbations grow more rapidly than long 

wavelength small perturbations. When the amplitude of the perturbation becomes 

significant compared to its wavelength the rate at which the instability penetrates 

the denser fluid approaches a limiting value proportional to dgx see Lewis [5] and 

Layzer [16]. Short wavelength perturbations then grow more slowly than long 

wavelength perturbations. The result of this behaviour is that one expects small 

structures to appear first. As time proceeds larger and larger structures should 

dominate the flow. The dominant length scale, x,, increases by a process of bubble 

competition as proposed in [l61 and observed in [7]. 

According to (1) nx increases without limit as x + 0. In reality, 

mechanisms such as viscosity, surface tension or finite initial density gradient 

limit nx to a maximum value ( =  nm), corresponding to the most unstable wavelength 

xm. If viscosity alone is present [15], 

ngA ' l 2  
xm = 4n and nm = [<] 

where v = (p,  + ,u2)/(p, + p,) is the mean kinematic viscosity. 
If surface tension is the main stabilising mechanism, then [l51 

If instead of a sharp initial interface the density drops from p, to p, 

over a distance A then [l71 

Hence the growth of larger and larger structures is likely to begin with 

the appearance of perturbations with wavelength of order hm. These arguments suggest 

that the evolution of Rayleigh-Taylor instability at a plane boundary from a low 

initial perturbation should proceed as follows [18]:- 

Stage l: A perturbation of wavelength -lm appears. This should happen 

after a time of order 10 lm where lm = l/nm. 

Stage 2: The perturbation of wavelength xm  saturates and longer wavelength 
perturbations begin to grow more rapidly. Larger and larger structures evolve. 

Stage 3: 1, grows from about 10 xm to infinity. The stabilising mechanisms, 

viscosity surface tension etc now have little effect and growth by bubble competition 

suggests that the average properties of the mixed region should lose dependence on 

the initial conditions. For a given density ratio the mixing process is described by 

a similarity solution with length scale proportional to gt2. Two-dimensional 

numerical simulation, [l81 indicated penetration of fluid 1, 

with a -0.04, to 0.05 and h2/h, = (penetration of fluid 2)/(penetration of fluid 1) 

an increasing function of density ration p , / p , .  



Neuvazhaev and Yakovlev [l21 also described the turbulent mixing process by 

a similarity solution with length scale proportional to gt2. The width of the mixing 

zone was given by 

Whether or not loss of memory of initial conditions occurs, as assumed in 

(5) and (6), is of major importance. If it does the problem of making predictions in 

real applications is very greatly simplified. As already noted the dominant 

wavelength X, should increase with time. A necessary requirement for loss of memory 

of initial conditions to occur in stage 3 is that the structures of wavelength X, 

should have evolved from the interaction between smaller structures rather than from 

an initial perturbation of wavelength X,. Equations (5), (6) will not apply if large 

amplitude long wavelength perturbations are present initially. 

EXPERIMENTAL RESULTS 

The Apparatus Used 

The Rocket-Rig apparatus, Read [ 4 ] ,  is shown in figure 1. A rectangular 

tank contains the two fluids, with the lighter fluid 2 initially resting on top of 

the denser fluid 1. An unstable situation is created by driving the tank vertically 

downwards using one or two small rocket motors. The tank is attached by four PTFE 

bushes, two on either side of the tank, to a pair of guide rods. This ensures 

vertical motion. The accelerations achieved are high enough to make the effects of 

surface tension and viscosity small. 

Acceleration is measured by accelerometers attached to the tank. A 

distance scale is fixed to the rig in the plane of the front of the tank so that 

measurements of distance moved and instability growth may be obtained by photography. 

Photographs of the tank motion are obtained using two Vinten 35 mm framing cameras 
operating at a nominal 200 frames per second and with a frame exposure time of 

0.14 ms. The duration of each experiment is of order 100 ms. Backlighting was 

provided by a bank of diffused photoflood bulbs. 

The tanks used to contain the fluids are essentially glass walls within a 

metal framework of internal dimensions H X W X D, where H is the height of the tank, 

W is the width and D is the depth in the viewing direction. Four tank sizes have 

been used all of which have W = 150 mm:- 

(a) The I12Dl1 tank 150 X 150 X 25 mm 

(b) The 3D tank 150 X 150 X 150 mm 

(c) The long tank 250 X 150 X 25 mm 
(d) The pressurised tank 200 X 150 X 50 mm 

For tank (a) which has D << W the late stages of the mixing process were to 

some degree constrained to be two-dimensional. Tank (b) allowed three dimensional 

instabilities to develop without constraint. This was more difficult to use than the 



12D1t tank and because of the extra weight gave lower accelerations. The results 

obtained showed the two-dimensional tank (a) did not give a noticeable reduction in 

instability growth. The long tank(c) was used for tilted-rig experiments where a 

larger value of H was needed to observe the features at the sides of the tank. The 

pressurised tank (d) enabled compressed gas/liquid combinations to be used. 

Overpressures of up to 10 bar could be used. Then with fluid combinations such as 

SF,/pentane density ratios p , / p ,  of order 20 were achieved. The types of experiment 

performed, together with the definitions of the measured quantities are shown in 

figure 2. Results will be discussed in the following subsections. 

wRocket 

Figure 1: The Rocket-Rig apparatus 
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Figure 2: Types of experiment performed 

3.2 The Quadratic Growth Law 

The main purpose of the experimental programme was to perform experiments 

with no deliberately imposed initial perturbations ie to observe the growth of the 

instability from small random perturbations and investigate the validity of the 

quadratic growth law (5). 



Experiments have been performed at a wide range of density ratios by using 

liquid/liquid, liquid/air ( 1  bar) and liquid/compressed SF, (up to 1 0  bar) combinations 

Examples of the photographic records are shown in figures 3  to 6. 

Figure 3  shows an example of an experiment using NaI solutionfiexane in the 

3D tank with p,/p, = 2 . 8 .  The two fluids have very difficult refractive indices. 

hence the mixed region appears dark on the photographs. The first frame shows the 

difficulty in analysing the results obtained with the 3D tank. Very little mixing 

has occurred at this time. The apparent mix region is due to the fact that the 

camera is looking up at the interface from below. Parallax corrections, as described 

in [ l ]  are therefore necessary. Similar corrections are made for the pressurised 

tank [ 3 ] .  Parallax effects are considered small enough to neglect for the "2DN tank. 

This makes the results much easier to analyse. 

Figure 4 shows an experiment using NaI solution/water in the "2DU tank, 

with p,/p, = 1 . 8 9 .  In this case the fluids used are miscible. All other fluid 

combinations used were immiscible. Phenolphthalein and HC1 were added to the water 

and KOH was added to the NaI solution. The concentrations of KOH and HC1 were chosen 

so that the indicator (initially clear) would turn red when about 6% of fluid 1 was 

mixed with fluid 2 .  The red product was observed in the colour photographs, showing 

that significant mixing at a molecular level occurs. Unfortunately darkening of the 

photographs was due to refractive index fluctuations in the mixed region as well as 

the chemical reaction. Hence the film density could not be used to quantify the 

amount of molecular mixing. The alternative approaches of Linden and Redondo [ 2 1 ]  

should give quantitative estimates of molecular mixing in Rayleigh-Taylor flows, for 

the case p,/p, close to unity. 

Figure 3: Experiment 62, NaI solution/hexane, 3D tank, p,/p, = 2.8 
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Figure 4: Experiment 112, NaI solution/water, 2D tank, p,/~, = 1.89 

Figures 5 and 6 show results obtained with the pressurised tank. The 

fluids used are compressed SF, gas and pentane. The SF, pressure is adjusted to give 

p,/p2 = 8.5 (figure 5) and p,/p, = 29.1 (figure 6). The perturbation due to the 

meniscus present at t = 0 has some effect on the results. A thin film of liquid is 

seen to climb the front and back walls of the tank. The effect of the meniscus 

perturbation is greatest in the tank corners. For the higher density ratio 

experiment (figure 6) large bubbles formed in the tank corners. Similar, but more 

pronounced, effects to these were observed in the liquid/air experiments at 

relatively low acceleration of Emmons et a1 [ 7 ] .  These edge effect are ignored when 

h, and h, are estimated. Measurements are made in the darkest area in the central 

region of the tank, see figures 5(f) and 6(f). 

For the two compressed/SF, experiments shown in figures 5 and 6, the 

photographs show that show that the instability begins with the appearance of a 

perturbation of wavelength x -4 mm. The most unstable wavelength, accordincj to linear 

theory, which is dominated by surface tension in this case, is (3) 

K 
= 4.5 mm for experiment 105 
4.3 mm for experiment 114 

The value used for the surface tension of pentane, 13.7 mm-', does not 
allow for the presence of the compressed SF,. Nevertheless it is apparent that a 

perturbation with wavelength close to A m  appears first. Then as time proceeds the 

photographs clearly show the appearance of larger and larger bubbles. 



Figure 5: Experiment 105, Pentane/compressed SF,, p,/p, = 8.5 

Figure 6: Experiment 114, Pentane/compressed SF,, p,/p, = 29.1 
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The photographs show that the bubble penetration, h,, is more clearly 

defined than the spike penetration. Hence experiments have been analysed by plotting 

h, against ~gt'. The tank acceleration is approximately constant. However there is 

some variation with time. To correct for this the distance variable used is chosen 

to be proportional to ($ndt)2, ie the square of the number of exponential growth 

periods for a given wavelength. As n ff $ (neglect surface tension and viscosity) h, 
is plotted against 

In this integral g = g, - g,, where g, is the tank acceleration and go is 

the acceleration due to gravity. It is evaluated from the accelerometer record of g, 

versus t, scaled to give the distance moved by the tank measured on the photographs. 

For each experiment the data is fitted by the linear law 

h, = u(X - Xo) 
where the constant X. represents a time delay or an over-shoot. Tables 1 and 2 

record the values of a deduced. The values quoted for g are approximate mean values. 

For the compressed SF, experiments, table 2, estimates of h2/h, are also noted. 

A Experiment 62 q/p2 = 2 . 8 ,  a= 0 . 0 6 3  

0 Experiment 105 p/p = 8.5 a = 0 .072  
1 2  

+ Experiment 112 p,IP2 = 1 . 9 ,  a ~ 0 . 0 5 2  
50 

X Experiment 114 pip =29.1, a = 0 . 0 6 0  
1 2  

E 
E 
6 4 0 -  
0 .- 
C 

Z 

Q, - 
m 
m 
3 
m 
l1 20- ,- 
.c 

0  100 200 300 400  500 6  00 700 80 0  900 
X= Scaled acceleration distance, m m  

Figure 7: Bubble penetration versus scaled acceleration distance 

614 



Table 1: Growth Rate Summary 

Notes: (1) Calculated from the f ,  versus z profiles obtained by 
densitometer analysis. h, is measured to the point 
where f, = 0.95. 

The range of values for a is 0.050 to 0.077. Some of the lower values are 

affected by a limited set of data points or by a different definition of h, 

(experiments 93 and 94). It is likely that the highest values are influenced by 

additional perturbations. There does not appear to be any significant variation with 

density ratio. The values of a for the 3D tank are on average higher than those 

obtained with the 112DIf tank. However, there is overlap in the data and it is not 

clear that this difference is significant. On the basis of the data given here the 

value a = 0.06 is recommended for all density ratios. 

U 

0.065 
0.062 
0.063 
0.058 

0.060 
0.064 
0.061 

0.061 
0.057 
0.053 

-0.052 

0.069 

0.065 
-0.055 
0.063 
0.050' 
0.051' 

0.058 

0.073 
0.076 
0.077 

-0.066 
0.071 

0.070 
0.063 
0.0561 

Experiment 
Number 

2 6 
3 4 
4 0 
56 

2 3 
3 6 
4 2 

57 I 
6 1 
8 5 

112 

I 
5 2 

54 
6 6 
7 1 
9 3 
9 4 

50 

2 9 
3 9 
58 

3 3 
3 5 

6 0 
6 2 
7 2 

Two-dimensional tank 
alcohol/air 

Two-dimensional tank 
NaI solution/pentane 

Two-dimensional tank 
NaI solutionfiexane 

Two-dimensional tank 
NaI solution/water 

Two-dimensional tank 
NaCl solution/pentane 

Two-dimensional tank 
CaC1, solutionfiexane 

Two-dimensional tank 
water/pentane 

Three-dimensional tank 
alcohol/air 

Three-dimensional tank 
NaI solution/pentane 

Three-dimensional tank 
NaI solutionfiexane 

Report 
Reference 

1 
1 
1 
2 

1 
1 
1 

2 
2 
2 

3 

2 

- 
2 
2 
2 
3 
3 

l 

1 
1 
2 

1 
1 

2 
2 
2 

I 

p 1 - 
p 2 

600 

3.0 

2.8 

1.89 

1.75 

1.73 

1.6 

600 

3.0 

2.8 

Mean 
Acceleration 

g 

49 go 
44 go 
38 go 
48 9, 

51 9, 
49 go 
40 go 

39 go 
45 9, 
42 go 

39 go 

47 go 

47 go 
45 go 
44 go 
45 go 
43 go 

48 go 

23 go 
39 9, 
43 go 

27 go 
31 go 

28 go 
32 go 
48 go 



Table 2: Growth Rate Summary for the Compressed SF, Experiments, reference 131 

Experimental results are quoted in [13], for p,/p, = 3 and 20, and are 

expressed in the form of equation (6). At p,/p2, U: = 0.041. This gives similar 

growth rate to that quoted here. However, the value a: = 0.023 at p,/p, = 3 gives 

significantly less growth than reported here. The reason for this discrepancy is not 

understood. 

Examples of the plots of h, versus X are given in figure 7. Reasonably 

good linear correlations are obtained. For three of the four experiments shown the 

line passes close to the origin. However, for experiment 112 (miscible liquids) 

there is a delay in the onset of mixing, X. - 80 mm. For this experiment there was 

not a sharp interface at t = 0. The initial thickness was estimated, very 

approximately to be A = 3% mm. Then using equation (4) gives rm - 3.9 ms. NOW X. = 

80 mm corresponds to t = 26 ms. Hence the delay of 7 T~ ties in with linear theory. 

Figure 8 shows a plot of h,/h, versus p,/p2 for the compressed SF, 

experiments. The point h,/h, = 1.3 at p,/p, = 3 estimated for NaI solutionfiexane 

see [l], is added. There is considerable spread in the results, to some extent due to 

the uncertainty in defining h,. At p,/p, = 20, h2/h, is about 2. 

Consider the following argument for predicting the variation of h,/h, with 

density ratio. let R be the radius corresponding to the dominant bubble or spike 

size. R increases in proportion to the width of the mixed region. The bubble and 

Experiment 

Water/SF, 

9 1 

98 

9 9 

102 

103 

Pentane/SF, 
9 7 

101 

104 

105 

114 

U 

0.057 

0.055 

0.057 

0.050 

0.059 

0.060 

0.063 

0.068 

0.072 

0.060 

p 1 - 

p2 

13.6 

13.1 

13.5 

19.6 

31.3 

9.2 

10.7 

18.4 

8.5 

29.1 

h2 - 
h, 

1.8 

1.7 

>l. 7 

2.0 

>1.8 

1.8 

1.6 

1.9 

1.5 

2.3 

Mean 
acceleration 

g 

16 go 
16 go 
17 go 

17 go 
16 go 

17 go 
16 g, 
16 go 

15 go 
15 

Comments 

h,/h, was increasing at the 
end of the experiment 
Large corner bubbles present 
h,/h, was increasing at the 
end of the experiment. Large 
corner bubbles present. 

Long wavelength perturbation 
present. 

Large corner bubbles present. 



spike ve loc i t ies ,  V ,  = h, and V, = h, ,  may be estimated by equating buoyancy force t o  

drag, i e ,  

4 
-nR3 ( p ,  - p , )  g = C, . nR2 . p,  V, '  = C ,  . nR2 . p, V,, 
3 

whence 
h, I Vidt 

H 
- - - = E.1 

I n e r t i a l  e f f e c t s  a re  neglected a s  the  accelerat ions V , ,  V, a re  somewhat 

smaller than g. Then h2/h ,  = 4.5 a t  p,/p, = 20. This is f a r  grea te r  than the  

observed value of about 2 ,  and shows t h a t  the  argument above needs t o  be modified. 

The photographs indicate  t h a t  the  spikes a r e  more d i f fuse  than the bubbles. Possible 

reasons f o r  the low values of h2 /h i  are:- 

( a )  R f o r  the  spikes is  smaller than R fo r  the  bubbles. 

( b )  The spikes have entrained a large amount of the  lower densi ty f l u i d ,  

i e ,  the  e f f ec t ive  value of p, - p, i n  the buoyancy force term is  lower on 

the spike s ide  than on the  bubble s ide .  

o Pentane/SF, 

X Water/SF, 

NaI solution/pentane 

densi ty r a t i o  p,/p2 

Figure 8:  Variation of h,/h, with densi ty r a t i o  

3 . 3  Additional Experiments 

The main purpose of the  experimental programme was t o  measure a and h,/h, 

a t  a range of densi ty r a t i o s .  However, the  ~ocket -Rig  apparatus proved t o  be useful 

f o r  performing addit ional  types of experiment, three of which a r e  described here. 



If two fluids of very different refractive index are used the mixed region 

appears black on the photographs and no details of the structure within the mixture 

can be seen. As an alternative, a series of experiments [ 2 , 3 ]  has been performed 

using CaC1, solutionfiexane, in which the salt concentration was adjusted so that the 

two fluids had the same refractive index. Dye was added to the aqueous solution. 

Then if the refractive index match is perfect, there is no scattering of light due to 

refractive index flucations and the dyed fluid acts as a pure absorber of the 

backlight. Densitometer analysis of the photographic negatives may then be used to 

measure the amount of dyed fluid. The dye concentration was chosen to give a linear - 
variation of film density (d) with volume fraction f,. The variation of f,, f, 

averaged over a horizontal layer, with height could then be estimated 

where d = film density averaged over a horizontal layer 

- 
d,,, = value of for dyed fluid immediately below the mixed region. 

Zmu = value of 2 for undyed fluid immediately above the mixed region. 

Photographs for one of these experiments is shown in figure 9 and results 

of the film analysis are shown in figure 10, this shows an approximately linear 
- 

variation of f, with z. However, the profiles should not be regarded as of high 

accuracy because of the difficulties in obtaining uniform backlighting and a perfect 

refractive index match. 

Figure 9: Experiment 94, CaC1, solution (dyed)/hexane, p,/p, = 1.7 



z,cm 
(a )  t = 52.0ms 

z,cm 
(b) t = 57.5ms 

z,cm z,cm z,cm 
(d) t = 6 8 . 4 m s  (e) t =  73 .9ms ( f )  t + 7 9 . 4 m s  

Figure 10: Experiment 94, volume fraction distributions 

Tilted-rig experimerzts 

In some experiments the rig was tilted by an accurately measured angle, 9, 
as shown in figure 2. This gave a way of generating a two-dimensional (on average) 

flow from precisely known initial conditions. The purpose of these experiments was 

to provide data for two-dimensional turbulence models. Similar experiments at a 

density ratio p , / p ,  close to unity are described by Andrews [22]. 

The tank acceleration g remains aligned with the sides of the tank. Hence 

the experiment is equivalent to using a vertical rig with a linear initial 

perturbation. 

where a, = %W tang. 

The small amplitude linear theory for Rayleigh-Taylor instability may be 

used to give an indication of the early time behaviour. At time t the perturbation 

is given by 

Bao cos(2r + 1) nx/W 
X = - 7 (zr + l ) 2  cosh nt 

n 
r=O 

where n is the coefficient of exponential growth for perturbations of wave number 

k = (2r t 1) n/W. If viscosity and surface tension are neglected n - - as k + - and 
the series (7) diverges for t > 0. However, if a small amount of viscosity is added 

the singularity is removed. Numerical summation of the series shows that narrow jets 

are formed at X = 0 and X = W. 



Figures 11 and 12 show experimental photographs for two experiments at 

p , / p ,  = 2.9 and 19.6. For the lower density ratio, jets forming at the sides of the 

tank are clearly seen at the beginning of the experiment. Non-linear effects soon 

set in and mushrooming out of the jets occurs. As time proceeds the features at the 

side of the tank increase in size and a gross overturning motion occurs. Figure 13 

shows plots of the instability penetrations measured for this experiment. At early 

time the variation of the width of the mixed region in the centre of the tank, 6, is 

close to that expected for 0 = 0, ie 

At late time the graph of 6 versus X flattens off. At the higher density 

ratio, figure 11, the behaviour is markedly different. As before jets form at the 

sides of the tank. However, the feature at X = W develops into a large bubble 

whereas the feature at X = 0 forms a narrow spike. 

Two-dimensional numerical simulation of these two experiments, Youngs [19], 

reproduced both the behaviour at the side walls and the gross overturning motion seen 

in these experiments. 

NaI solution 

Figure 11: Experiment 110, NaI solution/hexane, p,/p,  = 2.9, 0 = 5O46', g = 35 go 
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Figure 12: Experiment 115, pentane/compressed SF,, p,/p, = 19.6, 0 = 5O9', q = 16 go 

// 
Q\ 

0 

0 

. HI, right hand bubble 

X H2. left hand spike 

a , , width of  central mixed region 

/ 

l I l I l 
0 2 00 Ltoo 600 800 l000 

X ,  scaled acceleration distance 

Figure 13: Instability penetrations for experiment 110. 

Three fluid exper irne ,z i s  

In many problems where Rayleigh-Taylor instability has an important effect, 

such as the implosion of Inertially Confined Fusion capsules, several layers of 

material with different densities may be present and in some cases thin layers of 

material will become fully mixed. Hence there is a need for turbulence models to 

treat the mixing of more than two materials. Three-fluid experiments have been 

carried out using the Rocket-Rig apparatus [2,3]. A series of experiments has been 

performed using carbon tetrachlorideflacl solutionfiexane with densities p, p, p,. 



Figure 14: Experiment 59, carbon tetrachlorideflacl solution/hexane, thickness of 
middle layer = 20 mm 

11 r Expcr iment  5 5 ,  A = 20mm 
X Exper iment  5 9 , A  = 20  mm 

1 0 1  
+ Exper iment  6 4 ,  A = 20mm 
0 Exper iment  73 ,  A = lOmm 
A E x p e r i m e n t  7 9 ,  A = 20mm g1 i 3 E  xper iment  8 2 ,  A = lOmm 

Exper iment  8 6 ,  A = 4.7mm 81 t Exper iment  9 2 ,  A = lOmm 

l 

4-  

0  10 20 30 4 0  5 0  60 70 80 9 0  100 110 120 130 140 150 
X- Scaled Acce lera t ion  D is tance  -- 
A I n i t i a l  Width of Middle Layer 

Figure 15: Analysis of the three-fluid experiments 



The concentration of the salt solution was adjusted to make the density of the 

intermediate layer p, = dpip,. Experiments were performed with intermediate layer 

thicknesses of A = 5, 10 and 20 mm. Photographs for one such experiment are shown in 

figure 14. Instability growth is related to the parameter 

A non-dimensional plot is obtained by plotting h,/& against X/A, see 

figure 15. h, is the penetration of the densest fluid, as defined in figure 2. 

Results for the smallest value of A, 5 nun, are not considered accurate; it appears 

that the perturbation due to the meniscus at the top and bottom of the intermediate 

layer enhanced instability growth. A t  early time, before the layer of fluid 2 has 

broken up h, is about half that expected with no intermediate layer. This is a 

consequence of the reduced Atwood number. At late time the effect of the 

intermediate layer should be negligible and h, should be given by 

where B is a constant. It is not possible to give a precise estimate. However, 

figure 15 suggests that B is probably about 2%. Hence the effect of the intermediate 

layer is to reduce h, by about 2 ? 4 ~  at late time. 

COMPUTER SIMULATION 

Two dimensional computer simulation [18,19] has indicated a -0.04 to 0.05 

and h2/h, a slowly increasing function of density ratio p,/p2. A calculation at 

pi/p, = 20 [l91 gave h2/h, -2.3 in fair agreement with the experimental estimate of 

2.0, figure 8. Hence the simulations also indicate high drag on the spikes. The 2D 

estimates of a tend to be somewhat less than the observed values. Recently 3 D  

calculations have begun using a restricted mesh. The numerical method is an 

extension to 3 D  of the compressible technique used by Youngs [18]. The 3 D  version 

was developed by Rowse et a1 [20]. The sound speeds were chosen to be high enough to 

give an almost incompressible flow. Calculations have been performed at a density 

ratio p,/p,of 3. In some of the calculations an interface tracking technique was 

used to follow the boundary between the two fluids. Plots of the interface are 

useful for visualising bubble formation. However, in reality the sharp interface is 

broken up by small scale eddies and mixing at a molecular level occurs. Other 

calculations have used a single fluid with an initial density step. The density 

discontinuity is then smeared by numerical diffusion. As fine scale mixing indeed 

occurs there seems no reason for believing that this simpler approach is less 

accurate. 



The calculations used an initial interface perturbation 

mnx nnY 
am,, COS - COS - 

W D 

where amn is a random number chosen from a Gaussian distribution, 

S is a scaling factor chosen to give { < 5 2 > } H  = a the required initial 
amplitude, 

- - a,,, - aio - a,, = 0. 

3D calculations with interface tracking used 32 X 32 X 40 zones, W = D = 1, 

N = 12 and a = 0.002. Calculations were performed without interface tracking using 

32 X 32 X 60 zones and the same initial perturbations. For comparison 2D calcu- 

lations were performed with only the n = 0 modes present and mesh sizes of 32 X 

40 (interface tracking) and 32 X 60 (no interface tracking). To show the effect of 

mesh size, the 2D calculations without interface tracking were repeated using 96 X 

180 zones, N increased to 36 and a reduced to 0.0007. The acceleration g was chosen 

to give nw = 1.0. All calculations used zero normal velocity boundary conditions. 

Figure 16 shows a sequence of interface plots for one of the 3D 

calculations with interface tracking. Two views are given, a side view and a view of 

the bubbles forming. The fluid 1 volume fraction averaged over a horizontal layer is 

defined to be 

Figure 16: Interface plots obtained by 3D numerical simulation 

624 



Figure 17: Instability penetration obtained from 2D and 3D numerical simulation 

The instability penetration, h,, is then measured to the point where 

f, = 0.95. Plots of h, against AgtZ are shown in figure 16. Each type of calcu- 

lation has been repeated using different random initial perturbations. 

Comparison of 3D calculations and 2D calculations with the same mesh size 

show that the 3D growth rate is about 30% greater than the 2D growth rate. The 2D 

calculations with the finer mesh show that the slope of the h, vs X curve has not yet 

settled down to its limiting value. Hence the 3D calculations need to be repeated 

with a finer mesh before definitive statements can be made about the 3D value of a. 

Nevertheless, the 2D estimate of a - 0.04 to 0.05 together with the somewhat higher 
growth rate in 3D seems consistent with the observed estimate of U- 0.06. 

5. CONCLUSIONS 

Experiments performed at a wide range of density ratios show that if mixing 

evolves from small random pertubations, then the depth to which the instability 

penetrates the denser fluid is given by 

A value of U of approximately 0.06 is recommended for all density ratios. 

The ratio (spike penetration)/(bubble penetration) = h2/h, is a slowly increasing 

function of p,/p2. At p,/p2 = 20, h2/h, is approximately 2. 

The overall growth rate of the mixed region has been measured and shown to 

fit into a simple pattern. The mean volume fraction distribution has been estimated 



at low density ratios. However, there are major gaps in the data even for this 

simple situation; for example the proportion of the turbulence kinetic energy 

generated which is dissipated and the degree to which the fluids mix at a molecular 

level have yet to be quantified. 

The simple quadratic law is obtained when the mixing process loses memory 

of the initial conditions. In many real applications large amplitude long wavelength 

will be present and loss of memory of the initial conditions may not occur. It would 

be useful to have a model relating the non-linear growth of the mixed region to the 

initial perturbation spectrum. 
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